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ABSTRACT

Objectives: To support development of a robust postmarket device evaluation system using real-world data

(RWD) from electronic health records (EHRs) and other sources, employing unique device identifiers (UDIs) to

link to device information.

Methods: To create consistent device-related EHR RWD across 3 institutions, we established a distributed data

network and created UDI-enriched research databases (UDIRs) employing a common data model comprised of

24 tables and 472 fields. To test the system, patients receiving coronary stents between 2010 and 2019 were

loaded into each institution’s UDIR to support distributed queries without sharing identifiable patient informa-

tion. The ability of the system to execute queries was tested with 3 quality assurance checks. To demonstrate

face validity of the data, a retrospective survival study of patients receiving zotarolimus or everolimus stents

from 2012 to 2017 was performed using distributed analysis. Propensity score matching was used to compare

risk of 6 cardiovascular outcomes within 12 months postimplantation.

Results: The test queries established network functionality. In the analysis, we identified 9141 patients

(Mercy¼4905, Geisinger¼4109, Intermountain¼127); mean age 65 6 12 years, 69% males, 23% zotarolimus.

Separate matched analyses at the 3 institutions showed hazard ratio estimates (zotarolimus vs everolimus) of

0.85–1.59 for subsequent percutaneous coronary intervention (P¼ .14–.52), 1.06–2.03 for death (P¼ .16–.78) and

0.94–1.40 for the composite endpoint (P¼ .16–.62).

Discussion: The analysis results are consistent with clinical studies comparing these devices.

Conclusion: This project shows that multi-institutional data networks can provide clinically relevant real-world

evidence via distributed analysis while maintaining data privacy.
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LAY SUMMARY

Our objective was to support FDA’s efforts to build a system for using electronic health record and other data to evaluate

the real-world safety and effectiveness of medical devices after their initial approval. To accomplish this while protecting pa-

tient privacy, we developed a data network of 3 major health systems and created data standards for each health system to

use in building their individual research databases. A single request for summary data could then be sent to all 3 databases

and the results combined without sharing individual patient information, which remained behind the health system firewalls

(“distributed analysis”). As the first device to evaluate with this system, we selected coronary stents, which are inserted into

heart arteries to relieve chest pain and stop heart attacks. We compared 2 types of stents and found no significant differen-

ces in safety or effectiveness between them—a result previously noted in clinical trials and supportive of the reliability of

our data. Ours is the first data network established for the express purpose of evaluating medical devices using distributed

analysis. We are working to extend this work to other devices and other health systems in support of the new National Eval-

uation System for health Technology.

INTRODUCTION

Current medical device surveillance systems in the United States

have been criticized for inadequacies in timely dissemination of ac-

curate, up-to-date information about device performance, recalls,

and other potential safety issues.1–4 The Food and Drug Administra-

tion (FDA), responsible for activities that protect public health, in-

cluding postmarket surveillance of medical devices, has historically

used adverse event reporting as the primary mechanism for accom-

plishing that goal. To advance device traceability, implant identifi-

cation, adverse event reporting, recall management, and other

aspects of surveillance beyond adverse event reporting, the FDA in

2013 published the unique device identification (UDI) System Final

Rule, which required manufacturers to label marketed devices with

a UDI. A UDI identifies the manufacturer and model (device identi-

fier/DI) as well as the lot number, serial number, and/or expiration

date (production identifier/PI).5 The goal has been for UDIs to be

electronically documented in health information systems, transmit-

ted in adverse event reports, used in recalls, and utilized broadly in

postmarket surveillance activities. However, without a mandate for

hospitals, providers, and insurers to incorporate the UDI into infor-

mation systems including electronic health records (EHRs) and

claims systems, application of the UDI remains limited.

On the pharmaceutical side, the FDA launched its Sentinel Initia-

tive in 2008 as a distributed data network (DDN) of curated elec-

tronic health data covering over 100 million people to assess

potential drug safety signals and provide evidence about efficacy.6 A

key component of Sentinel pharmacy data is the National Drug

Code, which is routinely captured in claims enabling linkage to

granular drug data supporting pharmacovigilance and research us-

ing real-world data (RWD). The hope has been that UDI would play

the same role in medical device evaluations. DDNs protect patient

privacy by allowing data partners to maintain control over source

data behind firewalls. Analyses are conducted following the trans-

formation of source data into a common data model (CDM) format

that allows executable queries to be run against the CDM, returning

summary data for aggregation without identifiable, individual

patient-level data being exchanged. Congress intended Sentinel to

include both drug and medical device information,7,8 but the current

lack of device-identifying information in EHR and health insurance

claims systems has effectively precluded device data from being in-

corporated.9

The Building UDI into Longitudinal Data for Medical Device

Evaluation initiative (BUILD), initially funded by the FDA, was

launched in 2015 to explore the use of UDI for the evaluation of med-

ical device safety and effectiveness.10 BUILD included 2 projects. The

first used qualitative methods to study the experiences of health sys-

tems that had implemented UDI for implantable devices in their car-

diac catheterization labs (Cath Labs) or operating rooms. This

project, which was advised by a multistakeholder panel (BUILD Con-

sortium),11 resulted in a conceptual model and detailed recommenda-

tions to guide health systems in UDI implementation.12 The second

project was to test the practicability and deliverability of a DDN

model for device evaluation via a demonstration across multiple

health systems. The CDM for this DDN would combine data from

cardiovascular procedure systems, EHRs, payors, the FDA Global

UDI Database (GUDID) available as AccessGUDID at the National

Library of Medicine,13 and an augmented UDI database (AUDI), con-

structed from publicly available industry data.14

OBJECTIVES

In this article, we describe the design and implementation of the

BUILD DDN and CDM and the use of UDIs to link to AccessGU-

DID and AUDI device information. We also present the results of

the initial tests of the system. More details are available in the ac-

companying Supplementary Materials.

MATERIALS AND METHODS

Setting
This project was conducted at 3 health systems, Geisinger (Danville,

PA), Intermountain Healthcare (Salt Lake City, UT), and Mercy Health

(Chesterfield, MO). All are members of the Healthcare Transformation

Group (HTG), a 6-system alliance that promotes the adoption of data

standards in the healthcare supply chain.15 The project was an out-

growth of the HTG-supported Mercy UDI Demonstration project,

funded by the FDA as part of the initial Medical Device Epidemiology

Network (MDEpiNet) projects aimed at modernizing postmarket med-

ical device evaluation.16–19 Additional detail on the Mercy UDI Dem-

onstration project is available in the Supplementary Materials.

Design and implementation of healthcare system

databases and the DNN
A workgroup of clinicians, researchers, and informaticists from the

3 systems was formed to develop governance and processes for the

creation of the site UDI research databases (UDIRs) and the DDN.

Modeled on other DDNs such as Sentinel and the Healthcare Sys-

tems Research Network (HCSRN) Virtual Data Warehouse

2 JAMIA Open, 2022, Vol. 5, No. 2

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooac035#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooac035#supplementary-data


(VDW),20 the BUILD DDN was designed to combine device, regis-

try, payor, and patient data in a common format (the BUILD

CDM). This federated approach enables the authoring of query code

that can be run without modification at each participating site with-

out sharing individual-level patient data. Figure 1 provides an illus-

tration of the process by which a DDN query is completed

(additional detail on the UDIR and DDN is available in Supplemen-

tary Materials). Because the devices selected for evaluation were cor-

onary stents, the CDM design was comprised primarily of elements

of the Sentinel CDM (which includes longitudinal EHR and payor

data) and cardiology-specific tables that closely followed the Na-

tional Cardiovascular Data Registry (NCDR) CathPCI Registry’sVR

data content. In addition, the CDM included tables of publicly ac-

cessible data from AccessGUDID and from the supplemental AUDI

database containing 9 stent-specific attributes.

The workgroup reviewed every field from these sources and dis-

cussed definitions and feasibility of capturing the data uniformly

across health systems. The other novel addition to this CDM was a

table titled “Device” with 11 fields including UDI (divided into DI

and PI), UDI format,21 and device disposition (eg, implanted,

explanted, or not used). This table, though not currently part of Sen-

tinel, was designed by the authors in consultation with the leaders of

the Sentinel network22 to follow their naming conventions and be

consistently linkable in the future with Sentinel fields for patient, en-

counter, and provider. The final design of the BUILD CDM con-

sisted of 24 tables, summarized in Figure 2, containing a total of

Figure 1. Illustration of how a query is completed in the BUILD distributed data network (DDN).
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472 fields (The BUILD CDM and AUDI database are included in

the Supplementary Materials).

Implementation of the DDN
Next, each health system needed to populate their individual UDIR

database conforming to the BUILD CDM. Each health system had

flexibility in how to implement the extraction, transformation, and

loading of source data, following the general principles of accurately

capturing stent patients, their devices, and longitudinal follow-up

care. Mercy and Geisinger had been electronically capturing DI data

since 2010, and Intermountain had captured these data since 2017,

so these years were used as starting dates for the individual health

system retrospective data pulls.

Subjects included in the databases were patients undergoing per-

cutaneous coronary intervention (PCI) with stent implantation be-

tween 2010 and 2019 at any of the participating centers. Data from

patients age 18 or older were included in the comparative analysis if

they received an everolimus-eluting stent (EES) or zotarolimus-

eluting stent (ZES), but not both, between 2012 and 2019, had an

encounter at least 12 months before implantation, and had >90

days follow-up or died in the first 90 days postimplantation. Index

date was defined as the stent implantation date, and records from

the 12 months leading up to index date were used to establish base-

line demographics and disease history.

Once populated, the ability of the system to distribute and execute

queries was tested with 3 quality assurance checks. First, each site’s

database was queried to verify that it contained each required table.

Second, each individual variable was queried to verify its presence,

length, format, and percent of blank or missing entries. Finally, the

device-relevant sections of the database were queried to quantify the

number of devices, stents, and stent type by the FDA product code.

Retrospective analysis
To demonstrate face validity of the DDN, a retrospective analysis was

performed on a sample of cases taken from the UDIRs and carried out

according to a pre-specified statistical analysis plan to leverage both the

device-specific attributes and longitudinal patient outcome data. A

comparison of EES versus ZES stent types was made for 6 outcomes:

acute myocardial infarction (AMI), stroke, subsequent PCI procedure,

coronary artery bypass graft (CABG) procedure, all-cause mortality,

and a composite endpoint of all the above. The statistical analytic plan

described below was developed prior to performing the analysis. Gei-

singer served as the data coordinating center.

Because treatment assignment was nonrandomized, we used pro-

pensity score matching to mitigate confounding. We originally iden-

tified 32 covariates based on input from the clinical coinvestigators,

but found that 9 of these were unavailable for more than 50% of

patients, so those were omitted, leaving 23 covariates for the pro-

pensity score model. Propensity for receiving ZES was modeled on

these covariates, and the distributed query was written to fit the pro-

pensity model separately at each site and adapt to different patterns

of missing data at the various health systems. Covariates are shown

in Table 1 and included demographics (eg, age, sex, insurance),

comorbidities (eg, diabetes, heart failure), and cardiac-specific varia-

bles (eg, stress test results). The most frequently missing variables

among these were stress test results and prior surgical history (eg,

PCI, CABG), in which case these were completed with single impu-

tation using the PROC MI procedure of SAS (SAS 9.4, Cary, NC).

Multiple imputation was discussed but ultimately not used in the in-

terest of keeping the analysis straightforward. Each patient was

matched to a patient in the other stent group from the same site

with a similar index date (66 months), same sex, and propensity

scores within a caliper (0.6 SDs of logit score). Greedy matching

was used, with priority given to the patients with the smallest num-

ber of potential matches. Patients with nonoverlapping propensity

scores or no matches were dropped from analysis. Standardized

difference jdj of mean or percentage was used to assess differences in

covariates between groups, prior to any examination of outcomes, with

jdj < 0.10 considered desirable for reducing the observed confounding.

After matching and balance assessment, Cox proportional haz-

ards analysis was used to estimate hazard ratios and 95% confi-

dence intervals (CIs) and to test for statistical significance between

groups. Kaplan–Meier curves were generated for each endpoint for

visual inspection. Patients were right-censored when they experi-

enced the outcome, had 90 days with no follow-up encounter, or

reached 365 days of follow-up, whichever came first. A sensitivity

analysis using inverse probability treatment weighting in place of

matching was also performed but achieved less balance in the con-

founding covariates and also reached very similar conclusions, so we

present only the propensity-matched results here. All statistical anal-

ysis was performed using SAS software with differences of P< .05

considered statistically significant.

In addition to the matched analysis, a query was devised to ag-

gregate survival data from all 3 health systems while staying consis-

tent with the DDN approach not to share individual patient data,

following the “risk set” or aggregation approaches described else-

where.23 This query divided patients by stent type and presence or

absence of each outcome event and created tables where each record

summarized patients into groups of 5 with the same stent type, cen-

soring event, and similar times-to-event. These tables were then

shared with the data coordinating center and recombined into a

master dataset to produce unadjusted survival curves for both stent

types from all 3 health systems together.

Table_Name Domain
ACC_CORONARY_ANATOMY CathPCI Registry Data
ACC_CURRENT_COMMON
ACC_CURRENT_NOT_STEMI
ACC_CURRENT_STEMI
ACC_DEMOGRAPHIC
ACC_DISCHARGE
ACC_EPISODE_OF_CARE
ACC_HISTORY_PAST
ACC_INHOSPITAL_EVENTS
ACC_PROC_CARDIAC_CATH
ACC_PROC_PCI
CAUSE_OF_DEATH EHR/Claims Longitudinal Data
DEATH (adapted FDA Sen�nel CDM)
DEMOGRAPHIC
DEVICE*
DIAGNOSIS
DISPENSING
ENCOUNTER
ENROLLMENT
INPATIENT_PHARMACY
INPATIENT_TRANSFUSION
LABORATORY_RESULT
PROCEDURE
VITAL_SIGNS

*New table, not currently in FDA Sentinel model

Figure 2. BUILD common data model tables, grouped by domain.
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This was a retrospective review of data collected for nonresearch

purposes which was granted a Health Insurance Portability and Ac-

countability Act of 1996 (HIPAA) waiver of authorization.

The project was granted exempt status by Institutional Research

Boards (IRBs) at all 3 institutions.

RESULTS

The quality assurance checks demonstrated that the CDM tables at

each health system were appropriately populated as shown in online

Supplementary Tables S2–S5. The Geisinger UDIR contains all

patients undergoing procedures in their cardiac Cath Labs between

January 2010 and February 2018. The Mercy UDIR contains all

patients undergoing coronary stent implantation between March

2010 and April 2019. The Intermountain UDIR contains all patients

undergoing coronary stent implantation between October 2017 and

April 2019 (a period of 19 months). The numbers of patients under-

going drug eluting and bare metal coronary stent implantations dur-

ing these time periods were as follows: Geisinger 8840; Mercy

11 446; Intermountain 1888. During the checks, mis-specified varia-

bles, for example, numeric versus character or different entry

lengths, were revised to ensure conformance across all 3 health sys-

tem databases. Those errors were subsequently fixed so that all 3

health system databases conformed to the BUILD CDM.

In the retrospective analysis, 12 862 unique patients, who re-

ceived EES or ZES during the study period of 2012–2017, were ini-

tially identified across the 3 health systems. After removing patients

who received both stent types or had insufficient baseline or follow-

up information, the final cohort size for analysis was 9141 patients

(Mercy¼4905, Geisinger¼4109, and Intermountain¼127). (Inter-

mountain’s UDIR contained data on patients undergoing procedures

only in the last 3 months of the study period: October–December

2017.) Mean age was 65 years (SD 12 years), 69% of patients were

male, and 23% of patients received a ZES.

Propensity score matching was successful at identifying 1:1

matched cohorts at all 3 health systems and reducing the standard-

ized differences jdj within those health systems to 0.10 or less for

almost all covariates, indicating good balance between groups.

Figure 3 plots the standardized differences for 23 covariates before

and after propensity matching for comparison, and Table 1 shows

the covariate means and percentages as well as jdj for the final,

matched cohorts. At Mercy and Geisinger, the number of patients

receiving ZES was much smaller than the number receiving EES

and dictated the sizes of the final cohorts, which were 1215

patients in each drug group at Geisinger and 600 in each group at

Mercy. At Intermountain, there were fewer EES patients than

ZES, and a more limited timeframe, so the cohorts were much

smaller (29 patients per group), bringing the total final combined

sample size for the matched analysis to 3688 patients.

The absolute counts and percentages of patients experiencing each

of the 6 outcome events during follow-up are shown in Table 2, though

these numbers should be interpreted with caution as they do not take

into account that patients had varying follow-up times. In general, sub-

sequent PCI was the most frequently observed of the 5 individual end-

points (as high as 15.9% per cohort), with stroke and CABG surgery

being the least frequent (0.0–1.3% and 0.0–2.2%, respectively). Over-

all, 152 patients (4.1% total) died during the study period.

Survival curves from the proportional hazards modeling are

shown in Figures 4A–F for the 6 study endpoints. Table 3 shows

estimates of hazard ratios (ZES vs EES) for the 3 health systems.

These hazard ratios ranged from 0.85 to 4.86 for subsequent PCI

Table 1. Baseline patient characteristics after propensity score matching

Geisinger Mercy Intermountain

Everolimus Zotarolimus jdj Everolimus Zotarolimus jdj Everolimus Zotarolimus jdj

Total N (%), patients 1215 (100) 1215 (100) — 600 (100) 600 (100) — 29 (100) 29 (100) —

Age in years, mean (SD) 63 (12) 63 (12) 0.05 65 (12) 65 (12) 0.03 67 (10) 67 (14) 0.00

Males, N (%) 881 (73) 881 (73) 0.00 412 (69) 412 (69) 0.00 23 (79) 23 (79) 0.00

Ethnicity of Hispanic origin, N (%) 13 (1.1) 16 (1.3) 0.02 3 (0.5) 4 (0.7) 0.03 0 (0) 0 (0) 0.00

Current tobacco smoker, N (%) 357 (29) 333 (27) 0.04 144 (24) 142 (24) 0.01 0 (0) 0 (0) 0.00

Hypertension, N (%) 963 (79) 939 (77) 0.05 535 (89) 533 (89) 0.01 2 (7) 3 (10) 0.10

Diabetes, N (%) 403 (33) 417 (34) 0.02 260 (43) 261 (44) 0.00 0 (0) 0 (0) 0.00

Dyslipidemia, N (%) 943 (78) 922 (76) 0.04 516 (86) 518 (86) 0.01 1 (3.4) 1 (3.4) 0.00

Heart failure, N (%) 129 (11) 136 (11) 0.02 133 (22) 151 (25) 0.07 0 (0) 0 (0) 0.00

Prior myocardial infarction, N (%) 340 (28) 343 (28) 0.00 246 (41) 255 (43) 0.03 0 (0) 0 (0) 0.00

Currently on dialysis, N (%) 7 (0.6) 10 (0.8) 0.02 17 (2.8) 17 (2.8) 0.00 0 (0) 0 (0) 0.00

Prior CABG surgery, N (%) 177 (15) 166 (14) 0.03 137 (23) 150 (25) 0.05 0 (0) 0 (0) 0.00

Prior PCI procedure, N (%) 421 (35) 416 (34) 0.01 344 (57) 344 (57) 0.00 0 (0) 0 (0) 0.00

Non-STEMIa at baseline, N (%) 301 (25) 308 (25) 0.01 124 (21) 149 (25) 0.10 3 (10) 3 (10) 0.00

Admitted via emergency department, N (%) 688 (57) 678 (56) 0.02 300 (50) 314 (52) 0.05 0 (0) 0 (0) 0.00

Had a stress imaging test, N (%) 286 (24) 273 (23) 0.02 212 (35) 210 (35) 0.01 0 (0) 0 (0) 0.00

Stress test with indeterminant result, N (%) 15 (1.2) 18 (1.5) 0.03 5 (0.8) 7 (1.2) 0.04 0 (0) 0 (0) 0.00

Stress test with negative result, N (%) 41 (3) 34 (3) 0.03 26 (4.3) 27 (4.5) 0.01 0 (0) 0 (0) 0.00

Stress test with positive result, N (%) 221 (18) 210 (17) 0.02 181 (30) 173 (29) 0.03 0 (0) 0 (0) 0.00

Left main stenosis in %, mean (SD) 9.6 (19.8) 9.9 (20.1) 0.02 12.1 (23.9) 11.6 (22.6) 0.02 6.4 (20.1) 7.7 (19.1) 0.01

Insurance: private, N (%) 791 (65) 770 (63) 0.04 469 (78) 471 (79) 0.01 0 (0) 0 (0) 0.00

Insurance: medicare, N (%) 348 (29) 362 (30) 0.03 308 (51) 313 (52) 0.02 0 (0) 0 (0) 0.00

Insurance: medicaid, N (%) 76 (6) 81 (7) 0.02 55 (9) 60 (10) 0.03 0 (0) 0 (0) 0.00

Insurance: none, N (%) 14 (1.2) 17 (1.4) 0.02 37 (6) 32 (5) 0.04 29 (100) 29 (100) 0.00

aNon-ST segment myocardial infarction.

JAMIA Open, 2022, Vol. 5, No. 2 5

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooac035#supplementary-data


Figure 3. Forest plot of standardized differences jdj in baseline variables before versus after propensity score matching. Open symbols represent standardized dif-

ferences before matching, solid symbols represent standardized differences after matching. Note that not all variables were used at all health systems.

Table 2. Numbers and percentages of patients in the everolimus and zotarolimus matched cohorts at each institution who experienced

each of the 6 study endpoints

N, patients in

matched cohort

N (%)

with AMI

N (%),

with stroke

N (%), with

subsequent PCI

N (%),

with CABG

N (%), with

all-cause mortality

N (%), with

composite endpointa

Geisinger

Everolimus 1215 6 (0.5) 4 (0.3) 193 (15.9) 15 (1.2) 37 (3.0) 231 (19)

Zotarolimus 1215 12 (1.0) 0 (0.0) 167 (13.7) 20 (1.6) 40 (3.3) 221 (18)

Mercy

Everolimus 600 32 (5.3) 8 (1.3) 64 (10.7) 11 (1.8) 30 (5.0) 123 (20.5)

Zotarolimus 600 19 (3.2) 7 (1.2) 75 (12.5) 13 (2.2) 42 (7.0) 137 (22.8)

Intermountain

Everolimus 29 0 (0.0) 0 (0.0) 2 (6.9) 0 (0.0) 1 (3.4) 3 (10.3)

Zotarolimus 29 0 (.00) 0 (0.0) 3 (10.3) 0 (0.0) 2 (6.9) 4 (13.8)

Notes: Note that patients were followed for different amounts of time so these simple percentages should not be compared statistically.
aComposite endpoint includes all 5 of the other outcomes.
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Figure 4. Survival curves comparing everolimus versus zotarolimus stents for propensity-matched cohorts at all 3 BUILD health systems. (A) Acute myocardial in-

farction. (B) Stroke. (C) Subsequent percutaneous coronary intervention (PCI) procedure. (D) Coronary artery bypass grafting (CABG) procedure. (E) All-cause

mortality. (F) Composite of all 5 other endpoints.

Table 3. Hazard ratio results from Cox proportional hazards analysis comparing event-free survival between zotarolimus versus everolimus

(reference group) patients, stratified by BUILD site

Geisinger Mercy Intermountain

Hazard ratio [95% CI] P value Hazard ratio [95% CI] P value Hazard ratio [95% CI] P value

AMI 1.98 [0.78, 4.99] 0.15 0.60 [0.34, 1.06] 0.08 a a

Stroke a a 0.88 [0.30, 2.63] 0.83 a a

Subsequent PCI 0.85 [0.69. 1.05] 0.14 1.18 [0.84, 1.66] 0.35 1.59 [0.39, 6.46] 0.52

CABG procedure 1.31 [0.66, 2.61] 0.44 1.19 [0.53, 2.67] 0.67 a a

All-cause mortality 1.06 [0.68, 1.66] 0.78 1.41 [0.87, 2.29] 0.16 2.03 [0.19, 22.16] 0.56

Composite endpointb 0.94 [0.78, 1.13] 0.53 1.12 [0.88, 1.44] 0.37 1.40 [0.38, 5.16] 0.62

aThese groups had no events and, therefore, hazard ratios could not be calculated.
bComposite endpoint includes all 5 of the other outcomes.
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(P¼ .10–.35), 1.06–2.12 for death (P¼ .16–.78), and 0.94–3.02 for

the composite endpoint (P¼ .16–.53). In summary, we could dem-

onstrate no significant differences in the hazards of these outcomes

between the 2 stents recognizing that the sample sizes are relatively

small and the 95% CIs are wide, especially in the Intermountain

analysis.

Finally, an additional set of survival curves is shown in Figure 5,

based on the aggregated (not matched) data from all eligible study

patients at all 3 health systems, with shaded areas indicating the 95%

CIs; no hypothesis testing was performed on these unmatched data.

DISCUSSION

In the BUILD initiative, we defined the data needed to assess coro-

nary artery stents, sourced the data across 3 domains (EHR, Access-

GUDID/AUDI, and the CathPCI RegistryVR ), and developed a CDM

as a framework for data specifics. Each participating health system

then captured and transformed their data to the CDM. This allowed

the performance of distributed analysis by executing a single com-

mon query across the 3 health system databases that returned aggre-

gate, deidentified data which were analyzed separately by health

system with an exploratory analysis performed on the aggregate.

Our sample analyses consisted of comparisons of the real-world

performance of 2 DES and demonstrate face validity of the BUILD

DDN approach. Our results are consistent with randomized trials,

which have shown no significant differences in clinical outcomes be-

tween the 2 stents with absolute differences for EES compared with

ZES in various 1-year adverse events (death, MI, target lesion revas-

cularization, and composites) ranging from �0.4% to 3.4%.24–28

Additionally, Park et al,29 reported nonsignificant hazard ratios of

0.83–1.4 for the individual outcomes including stroke. A registry-

based study did show some benefit for EES over ZES in the setting

of AMI30 but another prospective registry study in broader patient

Figure 5. Survival curves showing everolimus vs. zotarolimus stents for aggregated data (not propensity score matched) from all 3 BUILD health systems, with

shaded regions representing 95% confidence intervals. (A) Acute myocardial infarction. (B) Stroke. (C) Subsequent PCI procedure. (D) CABG procedure. (E) All-

cause mortality. (F) Composite of all 5 other endpoints.
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populations showed no differences between the stents.31 Finally, the

findings of the current analysis are consistent with and build on a

similar study performed in the Mercy UDI Demonstration project.16

Importantly the analyses also demonstrate the face validity of the

BUILD DDN as an approach to maintaining local control of data

while allowing for RWD aggregate analytics sufficient for new

knowledge generation, contributions to science, and regulatory deci-

sion making.

Coronary stents were selected as the initial area for system test-

ing because DES have become the standard of care for PCI and have

been well studied in clinical trials. Also, the drug eluted by a DES is

one of the key clinical stent attributes found in UDI-linked AUDI

data. This work provides important evidence of the feasibility of in-

tegrating UDIs into Sentinel-like data networks to perform device ef-

fectiveness studies and to support a modern medical device

surveillance system, which has significant importance for physicians,

patients, and healthcare.

EHR data, which were captured in the routine course of care, en-

abled longitudinal follow-up that is essential for device surveillance.

AccessGUDID and AUDI provided novel, device-specific informa-

tion that was only linkable because of the availability of UDIs in

health system databases. The CathPCI RegistryVR data, which re-

quired manual entry into the registry at each health system, provided

highly standardized short-term clinical information following stent

implantation.

A major goal of the BUILD initiative was to develop methods

that other hospitals could follow to capture robust device data, com-

bine it with clinical data captured in the course of patient care, and

thus enable the tracking of medical device performance for quality

and research purposes and, in particular, for safety surveillance. We

believe we have accomplished that goal. As illustrated in the Supple-

mentary Appendix, the 3 BUILD health systems took different

approaches to creating their device databases (the UDIRs) driven by

their individual organizational technology infrastructure, databases,

and available resources. In addition, we have previously published

the results of the BUILD Leading Practices project, which explored

the methods used by several health systems to capture UDI systemat-

ically.12 It is our opinion that the robust device data capture and

analysis approach we have taken would not be possible without

UDI.

Limitations
Data missingness is a significant RWE challenge. Missingness can

occur in data types or in the amount of data available for analysis.

The most obvious missingness in our data relates to post-PCI serv-

ices rendered patients by other health providers, resulting in the ab-

sence of records of those encounters in the respective UDIRs. We did

not formally address the degree or causes of missingness in our data.

Additionally, while we fit propensity models at each site to address

confounding, newer methods for distributed analytics do exist and

could have been employed.23 We considered a hybrid approach that

would share only propensity scores and outcomes with the coordi-

nating center, without sharing any other individual patient data, but

ultimately decided that aggregating patients into groups of 5, while

simplistic, was easier for interpretation and provided an adequate

demonstration of the network. Our analyses also possess the weak-

nesses of observational studies including likely residual confound-

ing, although our comparison groups were well matched using

propensity models. Moreover, due to factors such as timing of an

EHR system conversion at one site (Intermountain) limiting the time

period for which data were available, the participating health sys-

tems contributed different amounts of data to the analysis. We feel,

however, that the successful involvement of all 3 health systems

demonstrates the feasibility and generalizability of the overall ap-

proach to other health systems. Additionally, since UDIs were not

captured at the point of care at Intermountain until 2017, product

codes, which included the drug type, had to be utilized to identify the

stents of interest prior to that date. Finally, due to time limitations

full validation of the AUDI database could not be accomplished dur-

ing this project but will have to be carried out before strong inferences

can be drawn from analyses employing AUDI data.

CONCLUSIONS

In support of the efforts of FDA to develop a robust, post-market

medical device evaluation system utilizing RWD and enabled by UDI,

we have established the first DDN and CDM to make use of real-

world EHR data and UDI-linked device data. The 3 health system

BUILD participants are among the first to implement point of care

UDI data capture. The UDI enabled the linking of stent data from

AccessGUDID to patient-level data, greatly simplifying analyses.13

In the BUILD initiative, we also expanded on the original Mercy

supplementary UDI-enriched Database (SUDID), renamed AUDI

that contains publicly available key clinical device characteristics,

which were linked to patient data with UDI. This approach is much

like that used by the FDA’s Sentinel program for evaluating drugs

and is the next step in creating a large EHR-based DDN for evaluat-

ing all medical devices.32,33

Future directions
The science of using EHR data combined with registry and device

data in medical device real-world safety and effectiveness analyses is

still nascent. However, when implemented in a large DDN, there is

tremendous potential because of the ability to aggregate data gener-

ated in everyday practice and link it via UDIs to other data needed

for robust device assessments. To advance this potential, the BUILD

investigators are continuing work on EHR data quality including

the challenge of data missingness. Future work includes incorporat-

ing insurance claims data and patient-reported information into the

UDIRs, adding additional hospital systems to the DDN, and

expanding research to other device types. BUILD investigators are

also working with the National Evaluation System for health Tech-

nology (NEST) Coordinating Center on the use of EHR data and

UDIs in further developing an RWD platform for medical device

evaluation across the total product life cycle.34
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