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Abstract

Finding relatives within a study cohort is a necessary step in many genomic studies. However, 

when the cohort is distributed across multiple entities subject to data-sharing restrictions, 

performing this step often becomes infeasible. Developing a privacy-preserving solution for this 

task is challenging due to the significant burden of estimating kinship between all pairs of 

individuals across datasets. We introduce SF-Relate, a practical and secure federated algorithm for 

identifying genetic relatives across data silos. SF-Relate vastly reduces the number of individual 

pairs to compare while maintaining accurate detection through a novel locality-sensitive hashing 

approach. We assign individuals who are likely to be related together into buckets and then 

test relationships only between individuals in matching buckets across parties. To this end, we 

construct an effective hash function that captures identity-by-descent (IBD) segments in genetic 

sequences, which, along with a new bucketing strategy, enable accurate and practical private 

relative detection. To guarantee privacy, we introduce an efficient algorithm based on multiparty 

homomorphic encryption (MHE) to allow data holders to cooperatively compute the relatedness 

coefficients between individuals, and to further classify their degrees of relatedness, all without 

sharing any private data. We demonstrate the accuracy and practical runtimes of SF-Relate on the 

UK Biobank and All of Us datasets. On a dataset of 200K individuals split between two parties, 

SF-Relate detects 94.9% of third-degree relatives, and 99.9% of second-degree or closer relatives, 

within 15 hours of runtime. Our work enables secure identification of relatives across large-scale 

genomic datasets.
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Introduction

Collaborative studies that aim to jointly analyze genomic data from multiple parties are 

essential for increasing the sample sizes to enhance the discovery of biomedical insights. 

However, when sharing individual-level genetic data is not feasible due to privacy concerns 

(e.g., (Erlich et al. 2018)), the range of joint analyses that can be performed is severely 

limited. As a result, many existing collaborations have relied on simplified analysis pipelines 

where some key analysis steps, such as cohort identification, quality control procedures, and 

correction for confounding factors (e.g., population structure) are performed independently 

by each party on their respective datasets without considering the pooled data. This presents 

a key barrier to realizing the full potential of collaborative genomics research.

An important analysis task that is commonly omitted in collaborative studies is the 

identification of genetic relatives across isolated datasets. Identifying and excluding close 

relatives within a study cohort is a standard step in many genetic analyses (e.g., genome-

wide association studies (Anderson et al. 2010)), because the presence of relatives can 

introduce bias and confounding that undermine the accuracy of study results (Astle and 

Balding 2009; Bhatia et al. 2016; Devlin and Roeder 1999; Hellwege et al. 2017; Kang 

et al. 2010; Newman et al. 2001; Shibata et al. 2013; Voight and Pritchard 2005; Young 

et al. 2019). For large-scale biobanks, a substantial portion of study participants may be 

biologically related; an estimated 32.3% of the individuals in the UK Biobank dataset 

(Bycroft et al. 2018) have a third-degree or closer relative in the same dataset. Thus, 

controlling for relatedness can have a major impact on the size and composition of 

the analysis cohort, and thereby affect the final analysis results. Removal of duplicate 

individuals across datasets is a special case of detecting relatives, which our work also 

addresses.

There are several key hurdles to identifying related individuals across datasets. Unlike 

other analysis tasks that derive aggregate-level insights from the pooled data, such as 

association tests, finding relatives is an inherently sensitive task, directly operating at the 

level of individuals. Consequently, most existing approaches for cross-site analysis, e.g., 

meta-analysis or federated learning, cannot be applied in our setting, as they rely on sharing 

aggregate-level data between the parties. Furthermore, despite the growing literature on 

cryptography-based secure computation algorithms for biomedicine (Blatt et al. 2020; Cho 

et al. 2018; Froelicher et al. 2021b; Cho et al. 2022), which allow joint computation without 

sharing private data between parties, to our knowledge no practical solution exists for 

relative detection. This is mainly because standard tools for evaluating kinship require all 

pairs of individuals between two datasets to be compared (Manichaikul et al. 2010; Purcell 

and Chang 2023; Conomos et al. 2016) or involve complex combinatorial operations (e.g., 

string matching) (Gusev et al. 2009; Naseri et al. 2019; Shemirani et al. 2021), which incur 

an overwhelming cost when implemented using cryptographic operations.

Here we introduce SF-Relate, a scalable and privacy-preserving solution for identifying 

relatives across distributed datasets, as illustrated in Figure 1. Our novel approach entails 

each party locally assigning their samples to buckets such that related samples are more 

likely to be assigned to the same bucket, via locality sensitive hashing (LSH) (Indyk and 
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Motwani 1998), and then securely estimating kinship only between samples that end up 

in the same bucket across parties. We devised a data encoding scheme for LSH aimed 

at capturing identity-by-descent (IBD) segments in genetic sequences, thus effectively 

grouping together samples that are likely to be related. Furthermore, we introduce a new 

strategy for bucket assignment, in which buckets obtained through multiple LSH trials 

are merged and filtered to obtain a set of size-one buckets (referred to as micro-buckets), 

enabling efficient comparison between parties. We illustrate how our techniques guarantee 

a high probability of detecting related samples, minimize computational overhead, and 

ensure that no private information is revealed between the parties. Moreover, to estimate 

kinship coefficients (Methods) for pairs of samples in the same bucket between parties 

without sharing data, we introduce a provably end-to-end secure approach that leverages 

homomorphic encryption, a cryptographic technique allowing for direct computation on 

encrypted data, combined with efficient distributed computation strategies. SF-Relate keeps 

each party’s data confidential throughout the computation, revealing only the final output to 

each party, which includes only the list of their own samples that have at least one relative in 

another dataset.

Our results show that our solution remains practical even for large-scale biobank datasets 

with a runtime of 14.5 hours to identify the relatives among a pair of datasets consisting of 

200K real genomic samples in total. Our privacy-preserving solution enables us to identify 

more than 97% of the related samples (third-degree or closer) by performing only 0.13% of 

the computation required by the naive solution in which all pairs of samples are compared 

between the parties.

Results

Overview of SF-Relate

SF-Relate enables multiple parties to detect cross-site relatives in their joint dataset without 

having to share any sensitive information (Figure 1). The input dataset for each party 

includes phased haplotype sequences from individuals within that party’s cohort. We 

consider the parties to be honest-but-curious, meaning that they follow our analysis protocol 

faithfully but might try to infer information about other parties’ datasets based on what 

they observe individually during the protocol execution. Based on this model, SF-Relate 

guarantees end-to-end confidentiality for each party’s input dataset, protecting it from other 

parties in the protocol. During the protocol, any data exchanged between the parties are 

encrypted in a manner that requires the participation of all parties for decryption, thus 

ensuring a high level of protection. This approach allows parties to disclose only the 

information they agree to reveal, such as the final output.

To efficiently scale to large datasets, SF-Relate follows a two-step approach (Methods). In 

Step 1: Hashing and Bucketing, each party locally evaluates a series of hash functions 

on each individual’s haplotype sequences to assign the individual to buckets across a 

collection of hash tables, such that related individuals are more likely to be assigned to 

the same bucket index. For this purpose, we devised a novel encoding scheme that splits 

and subsamples genotypes into k-SNPs (similar to k-mers, but non-contiguous; SNP: single 

nucleotide polymorphism), such that the similarity between k-SNPs reflects extended runs 
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of identical genotypes, typically indicative of relatedness. We then leverage LSH to derive 

bucket indices from the k-SNPs. To capitalize on the fact that related samples will likely 

be assigned to the same buckets multiple times, SF-Relate merges buckets with the same 

indices across multiple hash tables (produced by different subchromosomes) and then filters 

every bucket down to a single element, thus minimizing the number of costly kinship 

evaluations. We refer to this as a micro-bucketing strategy. A somewhat surprising finding 
of our work is that, despite the extreme level of filtering applied to each bucket during 
this process, our strategy enables accurate detection of relatives with remarkable efficiency. 
At the end of this process, each party obtains a single hash table with size-one buckets, 

effectively an ordered list of samples.

In Step 2: Secure Kinship Evaluation, the parties securely perform element-wise 

comparisons between their ordered lists of samples from Step 1. Each comparison involves 

evaluating a standard estimator of the kinship coefficient, KING (Manichaikul et al. 2010). 

To calculate the estimator without revealing private information between the parties, we 

employ multiparty homomorphic encryption (MHE). Data encrypted under MHE can be 

directly used in computation without needing to be decrypted first, and decryption requires 

the cooperation of all parties. To minimize the computational overhead of MHE, SF-

Relate uses sketching techniques on input haplotypes to reduce data dimensionality before 

performing kinship computations. Furthermore, our protocol is optimized to maximize the 

use of operations on local, non-encrypted data, which are significantly more efficient than 

operations on encrypted data. Finally, the encrypted results are compared to relatedness 

thresholds and aggregated for each individual, providing each party with an indicator that 

reflects the presence of a close relative in the other dataset.

We detail our algorithms and novel techniques in Methods.

Datasets and evaluation settings

To evaluate SF-Relate, we obtained three genomic datasets of varying sizes, including a 

dataset of 20K samples (individuals) with 1M SNPs from the All of Us Research Program 

(AoU) (All of Us Research Program Investigators 2019) and two datasets from the UK 

Biobank (UKB) (Bycroft et al. 2018) including 100K and 200K samples, respectively, both 

with 650K SNPs. The two UKB datasets were uniformly sampled from the full UK Biobank 

release v3 (n = 488,377), and the AoU dataset comprises the first 20K individuals in the the 

All of Us release v5 (n = 98,590). We then evenly split each dataset into two parts to emulate 

a cross-dataset analysis involving two parties. We compute the ground-truth by evaluating 

all pairwise kinship coefficients using the KING approach ((Manichaikul et al. 2010); see 

Methods) in plaintexts on a set of ancestry-agnostic SNPs, as in UK Biobank’s pipeline 

(Bycroft et al. 2018). We provide further details on dataset preparation in Methods.

We evaluate the accuracy of our method in detecting close relatives between two datasets 

using the standard metrics of recall and precision. Recall represents the fraction of samples 

with a close relative in the other dataset (as determined by the baseline KING method 

given a threshold) that SF-Relate successfully identifies. Precision represents the fraction of 

samples identified by SF-Relate as having a close relative in the other dataset that actually 

have such a relationship according to the baseline method. For evaluation of computational 
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costs, we measured the elapsed wall-clock time and the total number of bytes sent from 

one party to another (given the symmetry of SF-Relate’s computation) for runtime and 

communication costs, respectively.

All of our experiments were performed using virtual machines (VMs) on the Google Cloud 

Platform (GCP). This represents a realistic setting where parties use a cloud service provider 

to access high-performance computing resources that may not be readily available in the 

local environment. Furthermore, many biobank datasets, including AoU and UKB, are now 

hosted on cloud-native environments for data analysis. For UKB, we used two VMs (one 

for each party) with 128 virtual CPUs (vCPUs) and 856 GB of memory (n2-highmem-128) 

co-located in the same zone in GCP. For AoU, we emulated the two parties in a single VM 

with 96 vCPUs and 624GB memory due to the constraints of the provided data analysis 

platform. Supplemental Table S1 summarizes all symbols and default parameters.

SF-Relate accurately and efficiently detects close relatives between large-scale datasets

We summarize our results on the AoU and UKB datasets in Tables 1 and 2. Across all three 

datasets (AoU-20K, UKB-100K, and UKB-200K), SF-Relate obtains near-perfect recall 

and precision (both exceeding 97% in all cases) for detecting the presence of 3rd-degree 

or closer relationships between two parties. Calculating the recall separately for each 

relatedness degree from 0th (monozygotic twins) to 3rd, we observe that most missing 

relationships are for the 3rd degree; SF-Relate finds all existing relationships up to the 

2nd degree in all three datasets, with the exception of the 2nd degree in UKB-200K, for 

which it missed 2 out of 1711 individuals with a relative. The recall metric for third-degree 

relationships remains high—above 94% for all three datasets. Note that the more distant 

the relationship, the more difficult it is to detect, because the IBD segments become more 

scattered and reduced in quantity, which in turn results in a lower rate of surviving the 

filtering step in micro-bucketing. In UKB-200K, we observed that a small fraction (5%) 

of 3rd-degree relatives, missed by SF-Relate, correspond to those with kinship coefficients 

near the 4th-degree threshold (Figure 2), suggesting that some of them may not be real 

3rd-degree relationships considering the stochastic nature of the kinship estimator.

Furthermore, SF-Relate consistently achieves high detection accuracy across a variety of 

populations with distinct ancestry backgrounds. SF-Relate maintains a recall rate exceeding 

98% for a dataset comprising individuals of African ancestry (Supplemental Table S2). 

SF-Relate largely remains effective in multi-ancestry datasets, achieving a recall higher 

than 80% across all subpopulations (Supplemental Table S3). Ancestry groups with the 

lowest recall (Indian and Other with 84.4% and 82.4%, respectively) are associated 

with small sample counts, suggesting that the slight reduction in recall may be due to 

sampling noise. Taken together, these results demonstrate SF-Relate’s accurate relative 

detection performance across a range of datasets, which is achieved without revealing any 

private information between the two parties due to SF-Relate’s use of secure computation 

techniques when jointly analyzing the two datasets.

Despite the overhead of cryptographic protocols for secure computation, the runtime of 

SF-Relate remains practical for all three datasets, resulting in 5.8, 7.3, and 14.5 hours of 

runtime for AoU-20K, UKB-100K, and UKB-200K, respectively. We note that the doubling 
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of runtime from UKB-100K to UKB-200K reflects the linear scaling of SF-Relate in the 

number of individuals in the dataset, since these datasets were analyzed using the same 

computing environment, unlike AoU. More precisely, the computational cost of the MHE 

calculation of pairwise kinship coefficients, which is the main computational bottleneck of 

SF-Relate, grows linearly in both the number of SNPs after sketching and the size of the 

hash table. Although both parameters can be adjusted by the user, to maintain accurate 

performance, these parameters need to be linearly scaled with the total number of SNPs and 

individuals in the original input dataset, respectively. We provide a systematic evaluation of 

the runtime scaling of SF-Relate in Supplemental Figure S1. The observed communication 

costs in the order of tens of terabytes (e.g., 93.2 TB for UKB-200K) are not small, but our 

results demonstrate that transferring such large amounts of data does not lead to impractical 

runtimes. In addition, we note that more than 99% of the communication bandwidth is 

due to the exchange of encrypted hash tables including the sketched haplotypes, which 

can, in principle, be transferred in a single round of communication. Therefore, we expect 

the impact of high communication on runtime to be minimal even in a wide-area network 

(WAN) setting with high communication latency (round-trip delay).

Furthermore, we highlight that without the hashing and bucketing strategy we introduced 

in SF-Relate, it would not be feasible to securely detect relatives between datasets by 

all-pairwise computation of the kinship coefficient (All-pairwise in Table 2). Even with 

our efficient MHE implementation of the kinship calculation over the sketched haplotypes, 

performing all-pairwise comparisons for the UKB-200K dataset is estimated to take 1.3 

years based on the same computational setting. On the contrary, SF-Relate obtains practical 

runtimes by significantly reducing the number of candidate individual pairs to test without 

compromising accuracy through our novel use of LSH hash tables. Remarkably, SF-Relate 

makes only 1.28%, 0.26%, and 0.13% of pairwise comparisons compared to the total 

number of individual pairs between the two datasets for AoU-20K, UKB-100K, and 

UKB-200K, respectively (Table 1). This drastically reduces not only the runtime but also the 

communication costs; e.g., our MHE computation would require 65 PB of communication 

without our hashing techniques (Table 2).

Navigating SF-Relate’s accuracy-runtime tradeoffs and parametrization

The runtime and accuracy of SF-Relate are primarily influenced by the hash table size 

N = τ · n, determined by the dataset size n and table ratio (τ; Methods), and the sample 

size for comparison, determined by the subsampling ratio (s) and the number of SNPs 

(Methods). As shown in Figure 2, increasing s improves the overall recall and precision, 

while increasing τ enables the detection of more distant relationships, also increasing overall 

recall. However, the runtime depends linearly on both s and τ, highlighting the trade-off 

between SF-Relate’s accuracy and runtime. We expect the optimal trade-off to depend on the 

application setting.

For example, if users want to focus on identifying relatives up to the 2nd degree within 

the UKB-200K dataset, they could set the table ratio τ to 64 and the subsampling rate s
to 0.7, instead of τ = 128 and s = 0.7 in our experiments (Methods). This results in a 

two-fold improvement with respect to our experiments due to halving of the hash table 
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size. Even in this scenario, users would maintain an effective detection rate of over 95% 

for individuals with relationships closer than the 2nd degree (Figure 2B). Alternatively, if 

users want to achieve perfect accuracy, they can increase s and τ. Increasing s from 0.7 

to 1 (i.e., no sketching), improved SF-Relate’s overall recall on UKB-200K from 97.0% 

to 98.7% and precision from 98.5% to 99.9% (Table 1 and Supplemental Figure S2). The 

runtime increased from 14 to 21 hours. Furthermore, by doubling the table ratio τ, SF-Relate 

achieves perfect accuracy for relations up to the 3rd degree, while doubling its runtime. 

Overall, SF-Relate’s recall remains consistently high, above 95%, across a wide range of 

parameters, and only starts to decrease when the parameters significantly deviate from the 

default setting (Supplementary Table S4).

To choose suitable values for s and τ in practice, we recommend that users first determine 

the farthest relationships they wish to detect and an acceptable level of recall. Using Figure 

2, they can then determine the required s and hash table size N = τn. The expected runtime 

can be estimated by considering the linear relationship between these parameters and SF-

Relate’s runtime. To select the Hashing and Bucketing parameters, the users may initially 

opt for our recommended parameters (Supplemental Table S1), which consistently achieve 

accurate and efficient performance across all our datasets. Optionally, users can conduct 

a local assessment using their own dataset to verify and fine-tune the chosen parameters, 

which involves examining the number of shared genomic segments between local relatives 

and their matching probabilities (as depicted in Supplemental Figure S3) and estimating the 

detection rate among local relatives.

SF-Relate’s IBD-based hashing strategy improves detection accuracy over the KING 
estimator

SF-Relate leverages a secure implementation of the KING formula (Manichaikul et al. 

2010) to estimate relatedness (Methods). Nevertheless, we observed that SF-Relate can 

sometimes lead to even more accurate identification of relatives than KING. This is due to 

SF-Relate’s IBD-based approach to bucketing the samples, which helps filter out spurious 

pairs of samples that are identified by KING as being related, which in fact do not share 

any long IBD segments. We confirmed this in our comparisons with PC-Relate (Conomos 

et al. 2016) and RAFFI (Naseri et al. 2021), recent methods for kinship detection designed 

to improve upon KING’s accuracy by correcting for population structure and incorporating 

IBD segment detection, respectively. We evaluated all methods on a subset of 20K samples 

from the UKB-200K, distributed across two parties. As expected, they produce highly 

similar results for up to the 3rd degree relatives (Figure 3, Supplemental Table S5, and 

Supplemental Figure S4). However, for detecting 4th-degree relatives, standard KING 

erroneously identified numerous individuals as being related due to the presence of an 

outlier sample that is detected as related to thousands of samples in the other dataset; 

SF-Relate, akin to the more advanced tools PC-Relate and RAFFI, successfully avoids these 

errors. Similar outlier-related issues regarding KING have been noted in UK Biobank’s 

official report on relatedness inference (Supplementary in (Bycroft et al. 2018)). In Figure 

3, we visualize sequence similarity between four pairs of haplotypes involving the outlier 

sample, compared with typical 4th-degree relative pairs identified by PC-Relate. We observe 

light yellow bands of high sequence similarity regions exclusively in PC-Relate’s pairs, 
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which signifies real IBD segments. This suggests that SF-Relate’s bucketing approach based 

on IBD segments can effectively distinguish outlier pairs from real ones, thus leading to 

more accurate detection of relatives.

SF-Relate supports alternative output settings

In SF-Relate’s default setting, each party learns only whether each local individual has 

a close relative within the joint dataset. SF-Relate offers an option to output kinship 

computation results with more detailed granularity, summarizing them at various levels to 

address a range of analysis needs. Alternative outputs include the closest relatedness degree 

for each individual, the maximum kinship coefficient for each individual (discretized), and 

the full list of computed kinship coefficients. The SF-Relate output remains accurate in 

all settings: The individual kinship coefficients computed by SF-Relate exhibit a small 

average absolute error of 5.8 × 10−4 when compared to KING (Supplemental Figure S5). 

The closest degree reported for each individual matched with the ground truth for 99.9% 

of the individuals (Supplemental Figure S6). Calculating the maximum kinship coefficient, 

discretized using the smallest bin width of 0.016, SF-Relate accurately assigned more than 

85% of the samples to the correct bins, and more than 99.9% were within one bin of the true 

output (Supplemental Figure S6).

A case study: SF-Relate reduces false positives in genome-wide association studies

We show that SF-Relate can be used to improve the accuracy of downstream studies 

without requiring the sharing of sensitive information. We illustrate this using the GWAS 

workflow and demonstrate SF-Relate’s effectiveness in mitigating confounding from cryptic 

relatedness by enabling parties to detect and remove relatives from their joint dataset 

prior to conducting the GWAS. We simulate a multi-site GWAS using a subset of 100K 

samples from white British participants in UKB, distributed geographically among six 

parties (Methods and Supplemental Table S6). 50% of these samples have at least one 

relative of 3rd-degree or less in the dataset. We then simulate 100 phenotypes and perform 

a linear regression-based GWAS with the top principal component as a covariate (Methods). 

On average, using a nominal significance cut-off p-value of 0.05, SF-Relate removes 2.60% 

of the falsely identified loci (false positives) with a drop in false positive rate (FPR) from 

5.14% to 5.01%, compared to when relatives are not removed from the dataset (Figure 4). 

When parties independently remove local relatives, 18% of the remaining samples still have 

relatives in the joint dataset, and 2.03% of false positives are removed with a FPR drop from 

5.14% to 5.04%. The one-sided Mann-Whitney U test p-value that SF-Relate produces lower 

FPRs across all phenotypes compared to the local removal of relatives is 1.25×10−5. Thus, 

SF-Relate significantly mitigates confounding, producing a FPR near the nominal cutoff 

p-value of 0.05, comparable to centrally-coordinated sample removal (Figure 4).

Discussion

We presented SF-Relate, a secure federated algorithm for identifying close relatives between 

isolated genomic datasets. Using a novel strategy for hashing and bucketing individuals to 

capture shared IBD segments between relatives, SF-Relate achieves near-perfect detection 

while maintaining a practical runtime (i.e., less than a day) even on a large dataset including 
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200K individuals. To the best of our knowledge, our work is the first to demonstrate 

secure relative detection at scale while also ensuring a strong, formal notion of privacy 

for each input dataset. We expect SF-Relate to be a useful tool for the growing networks 

of collaborating institutions, which currently lack the tools to jointly perform a variety 

of genetic analyses without sharing data. To facilitate the use of SF-Relate, we provide 

automated deployment workflows on the sfkit web server (Mendelsohn et al. 2023), which 

streamlines the collaborative execution of a range of secure federated tools such as SF-

Relate.

There are several directions that we would like to pursue in future research. First, while 

SF-Relate identifies relatives based on the standard KING-robust estimator (Manichaikul et 

al. 2010), there are other approaches that may provide more robust estimation, especially 

for more distant relatives beyond the third degree, in terms of both correcting for population 

structure (e.g., PC-Relate (Conomos et al. 2016)) and detecting IBD segments to allow a 

more direct calculation of the proportion of IBD sharing (e.g., RAFFI (Naseri et al. 2021)). 

Although we have demonstrated that our method can often mirror the behavior of these 

advanced methods (Figure 3; Supplemental Table S5 and Supplemental Figure S4), directly 

implementing these approaches may be more effective for identifying distant relatives. 

Integrating our approach with a recently proposed secure federated algorithm for principal 

component analysis (Froelicher et al. 2023), may help to address the former. For the latter, 

we posit that an extension of our hashing strategy to quantify the rate of collision, which 

represents the sharing of a short IBD segment between individuals, may be possible.

Extending SF-Relate to accommodate a broader range of scenarios represents another key 

direction of future work. For scenarios involving more than two parties, developing a more 

efficient strategy than the straightforward all-pairwise execution of SF-Relate would be 

beneficial. Additionally, enabling the detection of relatives for a single query individual 

within a large (distributed) database would be useful for services that help individuals find 

lost biological relatives (e.g., MyHeritage (2023)). There is also a need to facilitate similarity 

computations for other data types, including medical records. In any of these scenarios, 

it would be meaningful to further explore potential information leakage in the output and 

devise strategies to mitigate any remaining risk. Overall, our work offers technical insights 

that are broadly applicable to discovering relations across siloed datasets.

Methods

Overview of the Cross-Dataset Kinship Estimation Problem

We consider the setting in which multiple parties (e.g., researchers from different 

institutions) wish to identify genetically related individuals between their private datasets 

while protecting the confidentiality of their data (Fig. 1). The goal of the parties is to use 

this information to facilitate downstream collaborative analysis by excluding duplicate or 

related individuals from the analysis to minimize bias in statistical analyses. For simplicity, 

we focus on the setting with two parties, each holding a dataset including phased haplotypes 

of n individuals over m genetic variants, such as single nucleotide polymorphisms (SNPs). 

The desired output for each party is a list of individuals in their private dataset who have 

at least one “close” relative in the other party’s dataset with respect to some relatedness 
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threshold. In our work, we mainly consider the detection of third-degree or closer relatives, 

which are the closest relations most commonly used in genomic studies and data releases 

(e.g., UK Biobank (Bycroft et al. 2018)). We assume each input dataset to be locally phased 

by each party (i.e., each individual’s genome is represented as two haplotype sequences), 

which is crucial for capturing identity-by-descent (IBD) sharing patterns, as we describe 

later. We further consider a threat model where the parties are honest-but-curious; i.e., they 

faithfully follow the protocol as specified, but might attempt to infer private information 

about the other parties’ datasets based on the data observed during the process. Given this 

model, we aim to provide formal privacy guarantees for each party’s input dataset, ensuring 

that no information is revealed to other parties except for what can be gleaned from each 

party’s respective output and global parameters of the problem (e.g., dataset dimensions and 

security parameters).

Estimation of kinship coefficients

The kinship coefficient ϕ between a pair of individuals is defined as the probability that a 

pair of randomly sampled alleles is identical by descent (IBD), i.e., when the pair of alleles 

is identical due to genetic inheritance rather than by chance. For example, since human 

genomes are diploid, a direct descendant inherits exactly one set of chromosomes from each 

parent; in this case, the kinship coefficient between an individual and his or her parent is, in 

principle, 0.5 · 0.5 = 0.25.

Existing approaches for estimating the kinship coefficients typically fall into one of two 

classes: distance-based methods, which use a notion of distance between two genotype 

vectors that often incorporate information about minor allele frequencies (MAF) (Conomos 

et al. 2016; Manichaikul et al. 2010); and IBD-segment-based methods, which first identify 

long shared segments between individuals that are likely due to IBD (Nait Saada et al. 

2020; Naseri et al. 2019; Shemirani et al. 2021) and estimate kinship based on the extent 

of these shared segments. In a benchmarking study, Ramstetter et al. (2017) showed that 

both approaches achieve high accuracy for up to third-degree relationships, while agreement 

becomes weaker for more distant relationships, which we also observe between PC-Relate 

and KING (Figure 3). Although IBD-segment-based methods generally offer a more 

accurate estimation of kinship by analyzing IBD sharing patterns, distance-based approaches 

represent an efficient alternative that does not involve costly string matching, which often 

leads to substantially higher runtime (e.g., days vs. minutes (Ramstetter et al. 2017)). As a 

result, distance-based methods have been more commonly applied to large datasets (Bycroft 

et al. 2018). Recently proposed methods (e.g., RaPID (Naseri et al. 2019)) introduce hashing 

techniques to improve the scalability of IBD segment detection, which in some cases 

exceed the efficiency of distance-based methods due to the quadratic scaling of pairwise 

distance calculation. However, IBD segment finding methods are still combinatorial in 

nature and cannot be efficiently implemented using existing secure computation techniques. 

In our work, we adopt a distance-based approach to minimize the computational overhead 

associated with secure computation but simultaneously exploit IBD sharing patterns to 

significantly improve the scalability of our approach.
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Our work addresses the problem of applying the widely adopted distance-based method 

for kinship estimation, the KING-robust estimator (referred to as KING in what follows 

for simplicity) (Manichaikul et al. 2010), to find relationships between two datasets. This 

method is implemented in several standard genomic analysis toolkits, such as Hail (Hail 

2023) and PLINK (Purcell and Chang 2023), and recently the UK Biobank released 

relatedness data for individuals in the dataset using this estimator (Bycroft et al. 2018). 

KING estimates the kinship coefficient between two genotype vectors x and y ∈ 0, 1, 2 m

using the following formula:

ϕ(x, y) = 1
2 − 1

4 ⋅ ∥ x − y ∥ 2
min ℎx, ℎy

,

(1)

where each element in x and y represents the minor allele dosage of a genetic variant, and ℎx

and ℎy represent the fraction of heterozygous loci in each vector (i.e., the heterozygosity of 

the individual).

Existing cross-dataset approaches and their limitations

Wang et al. (Wang et al. 2022) proposed a homomorphic encryption method for identifying 

genetic relationships across parties, but their approach requires kinship computation for all 
pairs of samples, which does not scale to large datasets. Other previous approaches (Dervishi 

et al. 2023; Glusman et al. 2017; Hormozdiari et al. 2014; Robinson and Glusman 2018) 

rely on sharing a limited amount of processed data between parties to find related samples, 

which sacrifices both privacy and accuracy to some extent. For instance, Dervishi et al. 

(Dervishi et al. 2023) introduced a solution in which the parties reveal a subset of SNPs in 

a shuffled order for their respective samples to estimate the kinship coefficients. Robinson 

and Glusman (2018) and Glusman et al. (2017) proposed to compare “fingerprints” obtained 

by applying a random projection to genomic samples to infer relatedness. He et al. (2014) 

and Hormozdiari et al. (2014) used error-correcting codes and fuzzy encryption to compare 

genotype vectors such that the comparison result can be decoded only if the two vectors are 

similar enough. These solutions require comparison between all pairs of samples between 

datasets, and the processing of genotype vectors into limited representations that can be 

shared leads to loss of precision.

In a recent competition organized by the iDASH Workshop 2023 (iDASH 2023), identifying 

the presence of relatives in encrypted datasets was posed as one of the challenge tasks. The 

challenge considered a setting that is different from our work. It involved a client-server 

scenario with small datasets (e.g., 2K individuals and 16K variants) and restricted any 

data preprocessing for evaluation purposes, thus limiting the applicability of the proposed 

solutions in a real use-case scenario. The best-performing solutions to the challenge 

generally followed a similar approach adapting the work of Homer et al. (2008). In this 

approach, the presence of a relative in a dataset is inferred based on a statistic evaluating 

whether the individual’s genotype vector is closer to the allele frequencies in the dataset than 

to background frequencies computed in a reference population. We show in Supplemental 

Figure S7 that computing this statistic securely does not lead to accurate results in realistic 
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settings, involving complete genomes and a large number of individuals (e.g., tens of 

thousands or more).

Our novel approach to securely detecting relatives across large-scale and distributed 
datasets

We developed SF-Relate to allow secure and efficient detection of relatives between large-

scale datasets by drastically reducing the number of kinship computations, from quadratic 

to linear, while preserving accuracy. For a graphical overview of SF-Relate’s workflow, see 

Supplemental Figure S8. To achieve this solution, SF-Relate draws ideas from both distance-
based and IBD-segment-based kinship estimation methods. It first identifies pairs of samples 

to be compared between parties using a locality sensitive hash (LSH) function (Indyk and 

Motwani 1998), which we adapt to ensure that both (or all) parties assign individuals 

with shared IBD segments to the same bucket with a higher probability than for unrelated 

individuals. SF-Relate sets the capacity of each bucket to one, discarding duplicate hits, 

which we refer to as a micro-bucketing strategy. As we demonstrate, this novel approach is 

key to minimizing the number of comparisons while maintaining accuracy. Next, SF-Relate 

securely estimates and thresholds the kinship coefficients between pairs of samples in 

buckets with the same index across parties then aggregates the results per sample using our 

secure implementation of a distance-based kinship estimator (KING-robust (KING 2023)). 

To perform these operations while keeping each party’s data confidential from other parties, 

we develop efficient two-party computation protocols based on multiparty homomorphic 

encryption (MHE) techniques (Mouchet et al. 2021). We additionally incorporate sketching 

techniques to further reduce the computational cost of MHE computations. In the following, 

we provide details of each step of our algorithm.

Step 1: Hashing and bucketing

In this step, each party locally evaluates a series of hash functions on each individual’s 

haplotype sequences to assign the individual to buckets across a collection of hash tables, 

such that related individuals are more likely to be assigned to the same bucket index. Only 

individuals in the same bucket across parties are compared in a later step.

Locality sensitive hashing to capture IBD segments.—SF-Relate assigns 

individuals to buckets using a locality sensitivity hash (LSH) (Indyk and Motwani 1998). 

LSH functions map similar items to the same value more frequently based on a similarity 

notion. Specifically, the Hamming LSH, which relies on the Hamming similarity (defined 

as the number of equal coordinates between vectors), projects a vector onto one random 

coordinate and uses its value as the output. In our setting, applying the Hamming LSH (or 

other LSH methods, such as MinHash (Broder 1997)) directly to each sample, encoded as 

a genotype vector, for bucket assignment would not work in practice. This is because the 

difference between related and unrelated individuals, with respect to the distance between 

samples’ encodings, is too small for LSH to distinguish; the average relative Hamming 

distance between third-degree relatives and unrelated individuals in UK Biobank are 22% 

and 23%, respectively. Hence, SF-Relate applies an encoding scheme that results in highly 

similar Hamming vectors for related samples. This encoding captures the biological signal 

of IBD distributions, and can be seen as a variant of the encoding in (Shemirani et al. 
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2021). It applies LSH on split chromosomes, exploiting the key insight that IBD segments 

are unevenly distributed on the genome. The subchromosomes are further divided into short 

string of genotypes (similar to k-mers), to extract long runs of identical genotypes that are 

unlikely by chance.

The first three steps of our hashing approach encode IBD segments: (1) Splitting: 

Haplotypes are divided into genomic segments of fixed-length in genetic distance (centi-

Morgans). (2) Subsampling: Each segment is randomly projected down to a fixed number 

of SNPs, where the SNPs are sampled with probability proportional to their minor-allele 

frequency (MAF). This reduces the impact of genotyping errors and rare variants on hashing 

and unifies the SNP density across different segments and datasets, inspired by Naseri 

et al. (2019). (3) K-merization: Subsampled genotypes for several contiguous segments 

are concatenated to form a k-SNP (akin to k-shingles in (Shemirani et al. 2021)), i.e., 

a sequence of genotypes for k SNPs, which helps to identify matches of long genomic 

segments. Through these steps, we encode each sample as a list of subchromosome k-SNP 

vectors. In fact, we confirmed that related pairs share significantly more Hamming-similar 

subchromosomes under this encoding scheme (Supplemental Figure S3).

The final step of hashing applies LSH on the subchromosome vectors to obtain the 

actual bucket index. To utilize the raw probability gap between non-IBD segments and 

IBD-segments produced by LSH (such as the gap between 0.5 and 1.0 in Supplemental 

Figure S3) we need to amplify it. For this, we choose a concatenation parameter ℓ and define 

the bucket index as the FNV-1 hash (Eastlake et al. 2019) on the concatenation of the outputs 

of ℓ independent Hamming LSH applied to the subchromosome vector. This in turn boosts 

the gap by raising it to the power of ℓ. An alternative (as in (Shemirani et al. 2021)) would 

be to apply the LSH function MinHash (Broder 1997), which captures the set-based Jaccard 

similarity. Nevertheless, Hamming similarity is more natural for IBD detection, as IBD 

segments are by definition matching k-SNPs at the same genetic positions, while the Jaccard 

similarity discards positional information of the two sets of k-SNPs. Indeed, Hamming 

similarity detects more highly similar subchromosomes (Supplemental Figure S9). The final 

output of this procedure is a list of hash tables, each consisting of buckets storing sample 

IDs.

Micro-bucketing strategy.—To prevent leakage of private information, the parties 

need to compare the samples in corresponding buckets without exposing any additional 

information about their datasets, such as the distribution of non-empty buckets and their 

sizes. This requires that the buckets created in the previous step be padded to a fixed size by 

adding dummy samples. However, to keep the sample identities hidden, all pairs of samples 

in a bucket between the parties need to be compared, which leads to both quadratic scaling 

of comparisons with the bucket size and a large amount of wasted computation involving 

dummy samples. To address this issue, SF-Relate introduces a micro-bucketing strategy, 

which merges buckets across multiple hash tables (produced by different subchromosomes) 

and then filters every bucket down to a single element. Dummy samples are added only 

at the end to pad empty bucket to size one. This effectively transforms the parties’ local 

bucket assignments into an ordered list of samples to be securely compared against the 
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corresponding list obtained by the other party in an element-wise fashion. This approach 

avoids the quadratic scaling while minimizing the addition of dummy samples due to the 

merging of buckets (i.e., a bucket is filled if at least one sample is assigned to it in one of the 

hash tables). Despite the extreme level of filtering applied to each bucket during this process, 

our strategy enables accurate detection of relatives with remarkable efficiency.

SF-Relate chooses a table size parameter N, and a bucket size parameter C. It aligns the 

different hash tables and merge buckets with the same remainder modulo N into one. This 

ensures the number of buckets is at most N. In practice, on a dataset with n local samples, 

N is determined by first choosing a table ratio τ, and letting N = τn. (A table of the main 

symbols and their default values is provided in Supplemental Table S1.) After this merge, 

buckets with more than C samples are filtered until C samples remain. In this filtering step, 

samples from buckets built by smaller subchromosome index are given higher preference, 

but otherwise a uniformly random filtering is performed. The preference towards smaller 

subchromosome indices is to ensure samples in corresponding buckets in hash tables more 

likely originates from the same hash table. The parties then repeat the entire hashing step 

locally L times (each with new randomness) until 99% of the buckets are full. Only at the 

end, dummy samples are inserted to ensure a constant bucket size.

On the realistic datasets UKB-200K, we evaluate the best bucket capacity C, by keeping the 

number of comparisons NC2 fixed and checking the fraction of related pairs that appear in at 

least one corresponding bucket after micro-bucketing. Surprisingly, the minimal capacity C 
= 1 gives the highest recall. This is because related samples share many rare IBD segments 

(many of which is unique) that cause them to end up in small-sized bucket (Supplemental 

Figure S3). When this happens, both samples remain in the corresponding bucket with high 

probability (as there is no competition within that bucket). The average fraction of shared 

unqiue IBD segments is not high for 3rd degree (20/352), but given that our goal is to 

use the list of buckets to trigger subsequent kinship computations (which operates on the 

entire genome), and not identifying all IBD segments between pairs (unlike (Shemirani et al. 

2021; Naseri et al. 2019)), as long as one of the many small-sized buckets due to rare IBD 

segments survive micro-bucketing, the pair of relatives would be discovered. This explains 

the effectiveness of micro-bucketing when restricted micro capacities C. In fact, for the rest 

of the paper, we always set C = 1.

In sum, each party in SF-Relate obtains a single hash table with N buckets (each with C = 1 

samples), and micro-bucketing ensures the hash tables are highly utilized. The parties hence 

perform C2N = N secure kinship computation in Step 2: Secure kinship evaluation.

Step 2: Secure kinship evaluation

In this step, the parties perform element-wise comparisons between their ordered list of 

samples (representing elements in a merged hash table with size-one buckets), obtained 

in Step 1. They first jointly evaluate the kinship coefficient for each pair (MHE-Phase 
1), before aggregating the results to obtain an indicator for each individual reflecting the 

presence of a close relative in the other dataset (MHE-Phase 2).
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Review of multiparty homomorphic encryption (MHE).—To compute on encrypted 

data in a secure manner, SF-Relate builds upon multiparty homomorphic encryption (MHE) 

(Mouchet et al. 2021; Froelicher et al. 2021a), extending the CKKS scheme (Cheon et 

al. 2017). CKKS encodes a vector of real number values in a single ciphertext and is 

well-suited for calculations where a small amount of noise can be tolerated. Like other HE 

schemes, it provides operations for addition, multiplication, and rotation (i.e., permutation 

of elements in a vector) of encrypted values in a ciphertext while providing the single 

instruction, multiple data (SIMD) property. Operations involving plaintext (unencrypted) 

data are substantially more computationally efficient; e.g., ciphertext-plaintext multiplication 

is seven times faster than ciphertext-ciphertext multiplication based on our parameter setting. 

MHE extends the CKKS scheme to the setting with multiple parties, by secret-sharing the 

decryption key and constructing a shared collective encryption key. Any party can encrypt 

data and perform homomorphic computations locally, but decryption can be performed 

only if all parties cooperate. Moreover, in the multiparty setting, some heavy cryptographic 

operations, e.g., the bootstrapping which is required to “refresh” a ciphertext after a certain 

number of multiplications, can be replaced by lightweight interactive protocols (Mouchet et 

al. 2021; Froelicher et al. 2021a). In SF-Relate, all exchanged data are encrypted under the 

collective encryption key and only the final result can be decrypted with the cooperation of 

all parties.

In the following, we describe our efficient MHE-based secure computation protocols for 

kinship evaluation between two parties (MHE-Phases 1 and 2) based on the bucketed 

samples from Step 1. We exploit key properties of MHE to minimize the cryptographic 

overhead of our protocols by maximizing the use of locally available plaintext data and 

balancing the workload between the parties. Although we focus on the two-party setting, our 

protocols naturally extend to settings with more than two parties, since we can execute the 

protocols between all pairs of parties and then aggregate the results.

MHE-Phase 1: Secure computation of kinship coefficients.—Given a list of 

N samples on both sides, where each sample is associated with a vector of M SNPs, 

the parties collaborate to calculate kinship coefficients for the N pairs of samples 

between them and compare each to a threshold. The desired comparison test given 

a threshold θ is ϕ = 1
2 − 1

4 ⋅ ∥ x − y ∥ 2
min ℎx, ℎy

≥ θ. For efficient evaluation under encryption, 

we can rewrite it as 2 − 4θ min ℎx, ℎy − ∥ x − y ∥2 ≥ 0, thus avoiding the division 

operation. The comparison test passes when both ℎx and ℎy satisfies it, so we compute 

SIGN (2 − 4θ)ℎx − ( ∥ x ∥ 2 − 2⟨x, y⟩ + ∥ y ∥ 2) ⋅ SIGN (2 − 4θ)ℎy − ( ∥ x ∥ 2 − 2⟨x, y⟩ + ∥ y ∥2 )
,

which evaluates to 1 if the coefficient is above the threshold and 0 otherwise. Boxed terms 

represent encrypted data, and SIGN v  is the indicator function for v ≥ 0. Note that we 

assign the evaluation of this expression to the party that holds x (Party 1) and have the other 

party (Party 2) transfer the encrypted y for computation. This allows most operations to be 

performed efficiently using the plaintext x. We observe that ℎy (the number of heterozygous 

in the genotype) and ∥ y ∥2 can be computed locally by Party 2 before encryption. Hence, 
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the most expensive operation is the inner product x, y , which requires a plaintext-ciphertext 

multiplication between vectors of size M and a summation of elements of the resulting 

vector. We use a polynomial approximation of the sign function to homomorphically 

evaluate SIGN · . The cost of this function, despite requiring homomorphic evaluation of 

a high-degree polynomial, is dwarfed by the cost of computing the inner products. Finally, 

in addition to the SIMD property of MHE operations, we process batches of coefficients 

in parallel and evenly distribute the workload between parties by alternating their roles 

across batches with respect to who holds the plaintext vector x. Our protocol is provided in 

Supplemental Note S1.

MHE-Phase 2: Secure aggregation of results for individual samples.—Next, the 

parties aggregate the comparison results for each individual to compute a single binary 

indicator representing the presence of a relative. For this, they first perform a linear scan 

over the comparison results, which selects the results corresponding to the same individual 

and masks the rest. The selected results are then accumulated, after which another sign 

test is performed to obtain a binary value as desired, hiding the number of identified 

relationships as a result. At the end of the protocol, the parties decrypt the vectors and each 

obtain a list of indicators, determining whether each sample has at least one close relative 

in the other dataset; this is the only information that is revealed to each party. Note that the 

complexity of this step depends only on the number of comparisons and individuals, while 

MHE-Phase 1 also scales with the number of SNPs, which is typically large (e.g., >500K). 

We provide our protocol for this step in Supplemental Note S1.

Accelerating kinship computation using sketching.—To further reduce the cost 

of secure kinship evaluation, SF-Relate first reduces the size of each sample through 

sketching. In particular, given the subsampling ratio parameter 0 < s ≤ 1, SF-Relate 

randomly chooses a s fraction of SNPs to use for kinship evaluation. This provides a natural 

approximation for the KING kinship estimator, which includes squared Euclidean distance 

between two genotype vectors that can be estimated using a random subset of coordinates 

in an unbiased manner (see Supplemental Figure S10). Our results show that this approach 

enables a meaningful trade-off between accuracy and efficiency; a minor loss in precision 

introduced by sketching allows us to obtain a substantial reduction in computational cost 

while maintaining near-perfect detection accuracy.

Alternative output modes.—By default, SF-Relate computes a list of indicators 

representing whether each sample has at least one close relative in the other datasets. 

SF-Relate also supports securely computing other types of output, including the closest 

relatedness degree for each individual, the maximum kinship for each individual 

(discretized), and the full list of computed kinship coefficients.

For outputting all kinship coefficients, we replace the final sign test computations with the 

computation of the kinship coefficients in MHE-Phase 1 (Supplemental Note S1). That is, 

the parties homomorphically compute ϕ = 1
2 − 1

4 ⋅ ∥ x − y ∥ 2
min ℎx, ℎy

. To speed up the computation, 
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they precompute the values ℎx
−1 and ℎy

−1 locally in plaintext, which allows replacing the 

division with a multiplication by max ℎx
−1, ℎy

−1 , which can be more efficienctly computed.

For both the closest relatedness degree and the maximum kinship coefficient, SF-Relate 

computes multiple comparison tests with respect to a series of kinship thresholds, then 

executes MHE-Phase 2 in parallel to accumulate the resulting comparison results. The 

decryption of these results reveals the largest threshold at which the comparison test 

succeeded. Based on this information, the parties can determine the closest degree or the 

maximum kinship as desired.

Note that, in any of these settings, the final results can also be kept in encrypted form 

and utilized in subsequent analysis steps without revealing the results of relative detection. 

Additionally, the complexity of MHE-Phase 1 is constant across all output modes with N
plaintext-ciphertext multiplications between vectors of length M, whereas the complexity 

of MHE-Phase 2 increases linearly with the number of thresholds t. The default setting of 

SF-Relate corresponds to t = 1, while the version that reveals all coefficients corresponds to 

t = 0.

Dataset preprocessing

We utilize three datasets sampled from prominent genomic data consortia: UK Biobank 

(UKB) and All of Us (AoU). Specifically, we extract two datasets from UKB, 

one comprising 100K samples (UKB-100K) and the other comprising 200K samples 

(UKB-200K). In both cases, we randomly split the datasets among two sites. From AoU, 

we extracted a dataset of 20K samples. Due to the smaller size of this dataset and to avoid 

an highly imbalanced distribution, we first split the individuals with close relations on the 

two sites, and then randomly split the set of unrelated individuals across the two sites. On 

the UKB dataset, we use phased autosomal haplotypes officially released in UK Biobank v3 

as input to the hashing (Methods), while for All of Us, we phase a batch of 20K samples 

from AoU using Eagle 2 (Loh et al. 2016). We observe that independently phasing the data 

at each site does not affect the accuracy of SF-Relate (Supplemental Table S2).

Ground truth preparation

To compute the ground truth of related individuals in our datasets, we follow the approach 

proposed in UKB documentation (Bycroft et al. 2018). We first filter the SNPs based on 

their implications in population structure, before computing the kinship using the KING 

approach (Manichaikul et al. 2010). To determine the set of SNPs to retain, we conduct 

a PCA on a publicly-available dataset (i.e., 1000 Genomes) using the intersection of loci 

with our dataset. Utilizing a reference dataset ensures that our method is not tailored to the 

processed dataset and effectively generalizes to other datasets. We then exclude SNPs that 

exhibit high PC loadings in the top three PCs, using a threshold set at the 75th percentile 

of these loadings. This strategy enables us to filter out SNPs with heavy loadings while 

retaining sufficient ancestry-agnostic autosomal SNPs for kinship inference.

Applying this approach to the UKB datasets results in selecting 90K SNPs, upon which the 

KING estimator predominantly identifies the same related pairs as those in UK Biobank’s 
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relatedness release. The ground-truth relatedness degrees in our experiments are based 

on these KING coefficients, utilizing the recommended thresholds 2−d−1.5 for degree d 
(Manichaikul et al. 2010).

Kinship estimation using alternative non-secure methods

Even though SF-Relate builds upon the KING estimator (Manichaikul et al. 2010), it 

outperforms it due to its novel approach in pre-selecting individuals likely to be related, 

utilizing an encoding and hashing scheme specialized to capture IBD signals. To showcase 

this, we compare SF-Relate and standard KING estimator alongside two advanced relatives 

detection tools: PC-Relate (Conomos et al. 2016) and RAFFI (Naseri et al. 2021). For 

PC-Relate, we rely on the hail implementation (Hail 2023) and consider only bi-allelic 

variants from the UK Biobank SNP panel to compute all pairwise coefficients. We set the 

minor allele frequency and the number of PCs to 0.1 and 10, respectively, and remove 

variants with missing rate higher than 5%. Additionally, we perform ld-pruning on the SNP 

set, reducing from 600K to 300K variants using parameters r2 = 0.05 and bp window size 

= 500000. For kinship estimation with RAFFI, we first run the IBD-finding tool RAPID 

with the parameters −r3 − s1 − d5 − w3, followed by executing RAFFI (v0.1) for kinship 

estimation. However, we observed that the initial segment of length 10 cM on chromosome 

15 is only covered by 16 base pairs in the UKB dataset, resulting in excessive candidate 

IBD segment pairs processed by RAPID. As the 10 cM sharing negligibly affects the overall 

kinship coefficient, we removed these base pairs when running RAPID on UKB.

Phenotype simulation for the GWAS case study

To evaluate the effectiveness of SF-Relate in mitigating the confounding effects of cryptic 

relatedness for GWAS, we simulate a GWAS study on a subset of 100K samples from UKB 

using simulated phenotypes, following the methodology proposed in REGENIE (Mbatchou 

et al. 2021) as described next. We select a set of random variants from odd-chromosomes to 

serve as causal variants, reserving the even-chromosomes to assess the level of false positive 

associations. We exclude extremely rare SNPs (minor allele count < 5), before randomly 

selecting P SNPs located in odd-numbered chromosomes, for P ∈ {100,1000,10000}. These 

selected SNPs are designated as causal. For each causal SNP, we sample its effect size βj

with the constraint that the total variance (i.e., narrow-sense heritability) is ℎ2 = 0.2. We then 

use a linear model with top principal component correction to simulate the phenotype Y i for 

each individual i as

Y i =
j = 1

P
Gi, jβj + Ai + ϵi,

where Gi, j is the standardized genotype of individual i at SNP j, Ai is the first PC score of 

individual i (scaled to have variance 0.05), and ϵi is a Gaussian noise variable with variance 

0.75, representing environmental effects.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1: SF-Relate overview.
When genetic relatives across datasets cannot be identified due to restricted data sharing, 

joint studies can suffer from bias and confounding (A). SF-Relate allows parties to securely 

identify and correct for cross-dataset relatives to enhance downstream analysis (B).
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Fig.2: SF-Relate achieves higher accuracy for samples with closer kinship and enables a trade-off 
between accuracy and runtime.
(A) We plot the distribution of kinship coefficients (KING) stratified by the (closest) 

relatedness degree of the relative pairs and by whether they were detected by SF-Relate 

as related. Misclassifications by SF-Relate are concentrated around kinship thresholds 

for different relatedness degrees, indicated by vertical dashed lines. (B) We vary the 

subsampling ratio (s) and the table ratio (τ) parameters in SF-Relate and report the resulting 

precision and recall for different relatedness degrees. For precision, only the overall metric 

is shown for detecting 3rd-degree or closer relatives. By default, s = 0.7 and τ = 128. There 

parameters determine the trade-off between the runtime and accuracy of SF-Relate.

Hong et al. Page 23

Res Comput Mol Biol. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.3: SF-Relate excludes spurious 4th-degree relatives detected by KING.
(A) We show confusion matrices assessing the relatedness classification accuracy of KING 

(left) and SF-Relate (right), comparing with the output of PC-Relate as the ground-truth. 

SF-Relate is performed in plaintext (i.e., without MHE), focusing on the evaluation of 

the bucket assignment. Unlike SF-Relate, KING classifies many unrelated samples as 4-th 

degree relatives. Most of these pairs involve the same outlier sample, which has many 

spurious relationships. (B) We verify that pairs involving the outlier do not exhibit IBD 

sharing patterns (left), evident in 4th-degree pairs from PC-Relate (right). Four example 

pairs are shown for both cases. For each pair, we compute the Hamming similarity between 

the two samples of genomic segments across the genome. Bright yellow bands represent 

likely IBD segments. The locations of the bands are randomly permuted to obscure their 

positions.
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Fig.4: SF-Relate reduces false positives in multi-site GWAS.
We vary the number of causal SNPs used in simulating the phenotypes, and compare four 

quality control (QC) approaches for excluding related individuals: (i) Centralized removal 
(non-private): all relatives are removed from the pooled dataset, (ii) SF-Relate: relatives are 

removed using our secure approach, (iii) Local removal: each party filters relatives from its 

local dataset independently, and (iv) No removal: no relatives removed. Initially, 50% of 

samples have relatives, and Local removal results in 18% of remaining samples still having 

a relative in the joint dataset. We plot the fraction of significant loci (p-value < 0.05) on 

even numbered chromosomes in that are designed to be non-causal in the simulation (A), 

and the genome inflation factor λGC in (B). The filled boxes represent interquantile ranges 

of statistics across 100 simulated phenotypes. While local removal of relatives help reducing 

the confounding to some extent, SF-Relate significantly mitigates confounding, comparable 

to centrally-coordinated sample removal.
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Table 1:
SF-Relate achieves near-perfect accuracy for identifying close relatives in UK Biobank 
and All of Us datasets.

Ground-truth relatedness degrees for recall and precision metrics are obtained using the KING method and 

assigning each sample to the lowest degree of relatedness observed. SF-Relate obtains accurate results while 

performing only a small fraction of comparisons compared to all-pairwise comparison between datasets.

Dataset

Recall (%, counts)

Precision (%, counts) % of comparisons w.r.t. all-
pairwiseRelatedness degree

Overall
0th 1st 2nd 3rd

UKB-200K 100.0%
16/16

100.0%
4702/4702

99.8%
1709/1711

94.9%
8475/8925

97.0%
14902/15354

98.5%
14902/15129 0.13%

UKB-100K 100.0%
6/6

100.0%
1243/1243

100.0%
404/404

95.1%
2169/2279

97.2%
3822/3932

98.7%
3822/3872 0.26%

AoU-20K 100.0%
14/14

100.0%
209/209

100.0%
93/93

94.1%
145/154

98.0%
461/470

100.0%
461/461 1.28%
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Table 2:
SF-Relate scales efficiently to large datasets.

We report the runtime and communication costs for individual steps of SF-Relate described in Methods. The 

runtime and communication costs for setting up the cryptographic keys are 40.4 s and 1.7 GB, respectively, 

constant across all experiments. We also show the estimated total costs of running all-pairwise comparisons 

and determining the closest relationship for each individual both using MHE.

Dataset

SF-Relate All-pairwise

Runtime Communication

Runtime (est. 
total)

Comm. (est. 
total)Step 1

Step 2 (MHE)
Total Step 1

Step 2 (MHE)
Total

Phase 1 Phase 2 Phase 1 Phase 2

UKB-200K 1.8 m 14.0 h 0.5 h 14.5 h — 46.6 TB 0.5 GB 46.6 TB 1.3 y 32.5 PB

UKB-100K 49.5 s 7.05 h 0.23 h 7.29 h — 23.85 TB 241.7 MB 23.85 TB 112 d 9.8 PB

AoU-20K 18.6 s 5.65 h 0.11 h 5.79 h — 6.2 TB 77.6 MB 6.2 TB 18.8 d 2.31 PB
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