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Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by
neuroimaging techniques. In this paper, electroencephalogram (EEG) is used to explore the markers for video-induced emotions.
The problem is approached from a classifier perspective: the features that perform best in classifying person’s valence and arousal
while watching video clips with audiovisual emotional content are searched from a large feature set constructed from the EEG
spectral powers of single channels as well as power differences between specific channel pairs. The feature selection is carried out
using a sequential forward floating search method and is done separately for the classification of valence and arousal, both derived
from the emotional keyword that the subject had chosen after seeing the clips. The proposed classifier-based approach reveals
a clear association between the increased high-frequency (15–32Hz) activity in the left temporal area and the clips described as
“pleasant” in the valence and “medium arousal” in the arousal scale. These clips represent the emotional keywords amusement and
joy/happiness. The finding suggests the occurrence of a specific neural activation during video-induced pleasant emotion and the
possibility to detect this from the left temporal area using EEG.

1. Introduction

The understanding and measurement of emotional expe-
riences is a critical task in affective computing, a nascent
field of study to understand the technological implications
and possibilities of emotional computing [1]. After a few
centuries of scientific study, the current understanding of
emotional expressions and themultimodal nature of audiovi-
sual experience of emotion have evolvedmuch from the early
treatises on emotion [2]. Old views that attribute emotions
and expressions thereof to monopolar emotional labels of
acquired qualities or even God-given abilities [2], which
were famously countered by Darwin in his classic book [3]
have been superseded by modern approaches. The search
for an atomic fundamental representation of affect, beyond
the concept of basic emotions popular during the last half
century [4], has resulted in, among other models of emo-
tion, for example, component models of cognitive appraisal,

the modern paradigm of dimensional model of emotion in
the last few decades [5–7]. While static emotional labels
are still very much relevant, a two-dimensional bipolar
circumplexmodel of valence and arousal [5] can be seen as an
essential representation of the affective space enhancing the
strict label-based views of categorical emotions by integrating
the emotional labels into a looser more malleable continuous
structure. The dimensional model of valence and arousal is
thus an important foundation for the technological study of
emotion allowing, for example, via a projection of distinct
emotional class labels into a low dimensional representation,
a more efficient description of emotional data.

Due to the recent advance in functional imaging modal-
ities, certain brain areas, such as limbic system’s anterior
cingulate cortex, amygdala, orbitofrontal cortex, and insular
cortex, have been associated with the processing of emotional
stimuli [8]. Studies have also been addressed to explore
the distinct brain systems responsible for the processing of
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valence and arousal [9–11]. The findings suggest that specific
neural correlates for these key elements of basic emotions do
exist and can be identified by neuroimaging techniques [12].

Electroencephalogram (EEG) represents one of the
modalities frequently applied for emotion recognition in
recent studies. Compared to other imaging techniques, such
as the functional magnetic resonance imaging, EEG provides
certain obvious advantages. In addition to its high temporal
resolution, the recordings can be carried out with low-priced
and portable equipment. The novel easy-to-attach and even
wireless measurement systems have made the usage of EEG
possible also outside the clinical environment. The EEG-
based technological solutions for emotion recognition have
conventionally relied on assessing the activity changes in
the classical frequencies, that is, delta (1–4Hz), theta (5–
8Hz), alpha (9–12Hz), beta (13–30), and gamma (>30Hz)
bands, as well as the activity differences between the hemi-
spheres. The electrical activity of the brain was shown to
be affected by emotions more than 30 years ago [13] after
which an extensive amount of research related to EEG-
based emotion recognition has been carried out. For example,
approaches for classifying music- [14] and picture-induced
[15] emotions have been proposed. Emotion classification
using EEG after audiovisual stimulation has also been widely
studied. Murugappan et al. successfully carried this out using
discrete wavelet transform with fuzzy 𝑐-means and fuzzy 𝑘-
means clustering [16] and later with 𝑘 nearest neighbors and
linear discriminant analysis [17]. Although the role of frontal
EEG activity in video-induced emotion recognition has been
emphasized [18], lately novel approaches such as functional
connectivity pattern analysis of different topographic areas
of the brain have also been proposed [19]. While still being
in its infancy, emotion recognition using EEG can be seen
to provide a huge scientific potential from both neuroscience
and technological points of view.

In this paper, the EEG markers for video-induced emo-
tions are explored. Even though the literature presents sev-
eral approaches for this (see, e.g., [19, 20]), no compelling
evidence of markers consistently seen across different studies
is provided. One of the reasons for this might be in the
common practice of restricting the analysis to the classical
frequency bands (delta, theta, alpha, beta, and gamma),
even though narrower bands have been suggested to better
reveal the emotion-related changes in EEG [21]. Marosi et
al. found specific bands within alpha and beta ranges to
be indicative of the person’s emotional state and concluded
that the usage of classical frequency bands may cause the
frequency-specific effects to go undetected or cancel each
other.The restriction is mainly to avoid the difficulties related
to the analysis of the huge amount of data produced by higher
number of narrower bands. Current paper overcomes this
problem by a novel classifier-based approach: the features
that perform best in classifying the emotion of subjects
watching video clips with emotional content are selected
from a large feature set generated using a high number of
partly overlapping frequency bands of varying width. The
feature selection is carried out by applying a sequential
forward floating search method to the feature set reduced
in advance by a statistical preselection. The selection is

performed to construct two different feature sets optimizing
the classification of valence and arousal, both derived from
the emotional keywords the subjects chose after seeing the
clips. The features are comprised of the spectral powers (SPs)
of single channels as well as the spectral power differences
(SPDs) between specific channel pairs located symmetrically
on the different hemispheres. Compared to the previous
studies, this approach provides an exceptional possibility
to observe empirically derived topographic and frequency
characteristics, not restricted by the classical frequency bands
of EEG, related to emotional experience during audiovisual
stimulation. We hypothesize that there exists a topographic
pattern of frequency-specific features that perform best in
classification of person’s emotional state while watching
emotional video clips and that the features might not follow
the classical frequency bands used in the EEG analysis. The
findings are confirmed with a separate validation protocol in
which also the contribution of electro-oculographic (EOG)
and transient electromyographic (EMG) artifacts is assessed.

2. Materials and Methods

2.1. Data Collection. The study was carried out using the
MAHNOB Database [22]. The database is available online
(http://www.ibug.doc.ic.ac.uk/resources/mahnob-hci-tagging-
database/) and contains recordings of user responses to mul-
timedia content. The original experimental protocol con-
sisted of two parts, from which only the first one was used in
this study.

A detailed description of the experimental protocol and
data collection is given in [22]. During the experiment,
fragments of videos with emotional content were shown to
30 subjects (13 males and 17 females). In addition to visual
content, the video clips contained music and speech. The
participants were 19–40 years old (26.06 ± 4.39) and came
from different cultural backgrounds. The handedness of the
subjects was not controlled. The instructions for the experi-
ment were given in English.The video material, consisting of
20 clips 34.9–117 s, in duration, was taken from commercially
produced movies (14) or online resources (6). The clips, rep-
resentative of different emotions, were selected based on the
results of a preliminary study conducted utilizing an online
affective video annotation system [22]. The 20 selected clips
represented six different emotions: neutral (3), amusement
(3), joy (5), disgust (3), fear (3), and sadness (3).The clips were
played in a random order. After each clip, the participant was
asked to annotate their emotive state using a keyword. The
annotation was performed by pressing a numerical key. The
keywordwas chosen fromnine possibilities: neutral, surprise,
amusement, joy/happiness, disgust, anger, fear, sadness, and
anxiety. Based on the division presented by Fontaine et
al. [7], each keyword was then mapped into one of three
classes according to the valence and arousal.The classes were
“pleasant” (amusement, joy/happiness), “neutral valence”
(neutral, surprise), and “unpleasant” (disgust, anger, fear,
sadness, anxiety) for valence and “calm” (neutral, disgust,
sadness), “medium arousal” (amusement, joy/happiness),
and “excited/activated” (surprise, anger, fear, anxiety) for
arousal. Each keyword-based annotation was thus translated
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to have a representative class in both valence and arousal
scale. For examples, for keyword disgust the translation was
“unpleasant” and “calm.”

While the subjects watched the videos, EEGwas recorded
using 32 active AgCl electrodes following the international
10/20 system of electrode placement. The recording was
carried out with a sampling rate of 1024Hz after which
the signals were downsampled to 256Hz. Common aver-
age reference was used. Due to unfinished data collection,
technical problems, and signal artifact, only 541 of the 600
data recordings (20 clips for 30 subjects) could be included
in the analysis. The data recordings (referred to as samples
from this point on) left out included the whole data (20
samples) of two subjects.With the approach presented above,
each EEG recoding could be associated with one of the three
classes in both valence and arousal scales. Only the signal
parts recordedwhile the participants watched the videoswere
included in the analysis, while the part recorded during the
annotation was left out.

2.2. Feature Extraction. The EEG signal processing and data
analysis presented in this paper have been carried out using
the Matlab technical computing language (The MathWorks,
Inc., Natick, MA).

For each EEG recoding, a power spectral density estimate
was calculated using Welch’s averaged periodogram method
[23]. Hamming windowing with a window length of 5 s and
overlap of 4 s was used. Features were then extracted from
the estimates using the band 1–32Hz. Firstly, the powers in
all the single frequencies of the band were chosen as separate
features. Secondly, the powers in all adjacent 2Hz, 4Hz, 8Hz,
and 16Hz wide subbands were included in the feature set
as well as the total power in the 1–32Hz frequency band.
These spectral power (SP) features were calculated for all
32 channels recorded. In addition, spectral power difference
(SPD) featureswere determined by calculating the differences
of the above described features between the 14 electrode pairs
located symmetrically over the left and right hemispheres.
The total number of features was thus 2898 including 2016
SP (63 frequency subbands × 32 channels) and 882 SPD
(63 frequency subbands × 14 channel pairs) features. The
above-described feature extraction approaches were shown
to perform well with the used data in our previous work and
including higher frequencies (>32Hz) did not improve the
result [24].

Due to several reasons, such as electrode impedance and
anatomical differences, the absolute values of EEG may vary
substantially between individuals.This variation was reduced
by mapping the feature values separately for each subject into
the range of [0, 1]. This feature normalization was carried out
by subtracting the minimum value of the feature from all the
feature values and then dividing the values by the difference
between the maximum and minimum values of that specific
feature. Similar feature normalization approach was used, for
example, in [22].

2.3. Feature Selection. A sequential forward floating search
method was applied to the original feature set aiming to
reduce the dimensionality of the data and thereby improve

the classification performance. The method was applied to
the data separately for valence and arousal resulting in two
different feature sets. The used method, proposed by Pudil
et al. [25], is based on a sequential search of the best feature
subset using dynamic inclusion and exclusion of features. In
a nutshell, the algorithm comprises the following steps.

(1) Inclusion. Inclusion of the features that are not yet
in the feature set is tested one by one. The feature
that leads to the best performance is included in the
feature set.

(2) Conditional Exclusion. Exclusion of the features that
are already in the feature set is tested one by one.
If there is a feature, whose removal leads to better
performance compared to the performance received
with the reduced feature set earlier, the feature is
excluded from the feature set. If there is more than
one such feature, the one whose removal leads to the
best performance is selected.

At first, the feature set is empty. After performing step
(1), step (2) is repeated until the criterion is not fulfilled.
The algorithm then goes back to step (1). When all or a
predefined number of features are included in the feature
set, the algorithm terminates. While being computationally
effective compared to, for example, the approach of trying all
the feature combinations, the algorithm has been shown to
provide an optimal or near optimal performance.The perfor-
mance of the feature set was determined by the classification
rate thatwas calculated using a 𝑘nearest neighbors leave-one-
subject-out approach. Based on our previous studies with the
same dataset, 𝑘 = 3 was used in the classification [24].

As the number of features in the original feature set was
high, the application of the feature selection algorithm to the
whole set would have been computationally too demanding.
Consequently, a preselection of features was carried out
separately for valence and arousal using one-way ANOVA
test. The test was performed separately for each feature in the
whole data set with the class (i.e., “pleasant,” “neutral valence,”
and “unpleasant” for valence) as the independent variable and
the feature value as the dependent variable. Only the features
for which a statistical threshold was exceeded (𝑃 < 0.2) were
included in the further analysis, that is, the application of
the above-described feature selection algorithm.The decision
of the statistical threshold was based on the results of our
previous work [24]. The chosen threshold represented the
best compromise between reducing the number of features
enough while not being restricted too strictly only to the
features that linearly separate the classes.

2.4. Validation of the Results. In classification tasks, the usage
of high number of features compared to the number of data
samples may lead to overlearning. Usually, this problem is
avoided by dividing the data into training and testing sets.
However, as the amount of samples in the used dataset was
rather small, leaving out a substantial part of the data for
testing potentially deteriorates the findings. We therefore
carried out a separate procedure for the validation of the
result achieved with the whole dataset. In this procedure,
six random samples were chosen from each participant to
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form the testing set. The above-described feature selection
method including the preselection part was then applied
to the rest of the data comprising the training set. By
using an independent testing set, we were able to assess
the classification performance and possible overlearning at
different phases of feature selection and thereby validate the
results achieved with the whole dataset.

Due to the experimental setup, some of the recordings
were contaminated with complex EMG and EOG artifacts.
Removal of these samples would have substantially reduced
the amount of data. On the other hand, due to the partly
overlapping spectral properties of the signals, the removal of
the artifacts would have affected the EEG. Instead, an alterna-
tive approach was chosen. Automatic artifact detection was
carried out to estimate the contribution of EMG and EOG to
the data. With this approach, the role of the artifacts could be
taken into account when interpreting the findings.

For EMG detection, the spectrogram for each sample was
calculated using Short-time Fourier transform (1-s Hamming
window, no overlap). The power of each 1-s signal segment
was then determined in the frequency band > 70Hz. If the
power exceeded more than 10 times the median of that sam-
ple, the signal segment was classified to contain EMG. This
approach detected reliably transient EMG artifacts assuming
that less than half of the data sample was contaminated. The
number of the segments containing EMG was then divided
by the length of the sample to give a reference value for the
contribution of EMG to that specific sample.

For the detection of EOG artifacts, the signal baseline
was removed with median filtering. By applying a finite
impulse response lowpass filter, the signal components higher
than 20Hz were then removed. The locations where the
filtered signal exceeded a predefined threshold, that is, 2
times the standard deviation of the median filtered signal,
were classified to contain EOG artifact. The number of EOG
artifacts detected was divided by the length of the sample to
give a reference value for the contribution of EOG to that
specific sample.

2.5. Statistical Analysis. The feature values representing the
activity in single frequencies between 1 and 32Hz were
statistically compared using one-way ANOVA test. The anal-
ysis was performed separately for valence and arousal using
the class as the independent variable and the feature value
as the dependent variable. 𝑃 values less than 0.05 were
considered to indicate statistical significance. The approach
was used to find out clear differences in topographical as
well as frequency space signal characteristics between groups.
Due to the multiple comparisons, the statistical results were
interpreted conservatively. For the most prominent finding
related to the channel T7, the difference between all three
pairs of classes was further explored with the Tukey post hoc
honestly significant difference test. The amount of EMG and
EOG artifact was also statistically compared between classes
using a Mann-Whitney 𝑈 test.

3. Results
After carrying out a statistical preselection for the features
extracted, two separate feature sets were selected to optimize

the EEG-based classification of person’s valence and arousal
while watching videos with emotional content. The contri-
bution of different frequencies in the preselected feature set
as well as the optimized (i.e., best performing) features set
is illustrated in Figure 1 for both valence and arousal. The
size of the preselected feature set was 866 features for valence
and 896 for arousal while the number of features in the best
performing feature set was 181 for valence and 90 for arousal.
Generally, the contribution of low (<8Hz) and high (>25Hz)
frequencies was emphasized in the classification of valence
whereas, for arousal, the absence of features representing
5–15-Hz activity was notable. Figure 1 also shows that even
though the preselected feature sets contained many SPD
features, almost none of them were selected in the best
performing feature set.

The classification performance, that is, the percentage of
correctly classified samples, in different phases of the feature
selection is illustrated in Figure 2.The best classification rates
were 63.0% and 65.1% for valence and arousal, respectively.
The figure also shows how the features were topographically
distributed over the scalp. The topographic plots are made
using EEGLAB [26].

3.1. Valence. In Figure 3, the topographical distribution of
features resulting in the best classification rate is presented
for valence. The channel-wise contribution of different fre-
quencies is given as well. Whereas the SPD features were
practically absent in the set, the SP features could be seen to
fall into three topographic clusters.This division was robustly
seen also in different phases of feature selection presented
in Figure 2. Most of the features were selected from the
temporal area of the left hemisphere and represented high
frequencies (15–32Hz). These frequencies were also present
in the second cluster, located in the parieto-occipital area
of right hemisphere. Low frequencies (<6Hz) were seen in
all three topographic clusters being most prominent in the
frontal area. The number of features might not, however, be
an optimal measure for the importance of certain channels
or frequencies. Figure 4 addresses this problem by showing
how the classification rate for valence was affected if the
features representing certain channel were removed. As
expected the results correlated well with those illustrated in
Figure 3 indicating that the channels represented by many
of the features were also the most important ones in terms
of the classification. Figure 4 also shows the channel-wise
feature values for the three different classes of valence.
In several channels of the left hemisphere’s temporal and
right hemisphere’s parieto-occipital areas, increased high-
frequency (15–32Hz) activity was associated with “pleasant.”
Most dramatically this was seen in T7, in which the feature
values were found to be statistically significantly higher
compared to those of “neutral valence” and “unpleasant” in
almost all frequencies as illustrated in Figure 5. No significant
difference was found between “unpleasant” and “neutral
valence.” The “pleasant” was also associated with decreased
low-frequency (<6Hz) activity in all three above-mentioned
topographic clusters.
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Figure 1: The contribution of different frequencies (upper row) and the number of features (lower row) in the preselected (black) and best
performing (red) feature sets for valence and arousal. The contribution of different frequencies is illustrated in arbitrary scale so that each
feature equally contributes to the area in the histogram. The features representing single frequencies increase the corresponding bins. The
features representing more than one frequency, for example, 2Hz wide bands, increase all the corresponding bins within the bands. The bins
are, however, increased only by half compared to the previous case of single frequencies.The number of features is given separately for spectral
power (SP) and spectral power difference (SPD) features.

3.2. Arousal. Figure 6 presents a similar topographical dis-
tribution of features and channel-wise contribution of fre-
quencies for arousal already illustrated for valence. The role
of the left hemisphere’s temporal lobe seemed to be even
more dominant in the best performing feature set of arousal
than it was for valence. This feature distribution was seen
throughout the feature selection procedure (see Figure 2).
Again, most of the features represented high frequencies (15–
32Hz) which were also apparent in the parieto-occipital area.
The contribution of SPD features in the feature set was higher
for arousal than it was for valence. The results are further
analyzed in Figure 7, in which the importance of different
channels for the classification performance as well as the
channel-wise feature values for the three different classes of
arousal are exposed. The most dominant finding was the
association between the increased high-frequency (15–32Hz)

activity and “medium arousal.” This association was seen
mostly in the left temporal area (see Figure 5 for the results
of statistical analysis) but also partly in the right parieto-
occipital area. It should be noted that, based on the nine
emotional keywords used, the samples annotated as “medium
arousal” were exactly the same annotated as “pleasant”
representing the keywords amusement and joy/happiness.
The figure also shows some associations between “calm” and
decreased high-frequency (15–32Hz) activity in O2 and C3-
C4 leads, as well as increased low-frequency (<6Hz) activity
in FC1-FC2 lead.

3.3. Validation of the Results. The results of the validation
procedure carried out with the separate training and testing
sets are illustrated in Figure 8.The classification performance
for both sets as well as the topographical distribution of
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illustrated separately. The topographic plots are given in absolute scale representing the number of features.

features in different phases of the feature selection is given.
The topographical distribution of features resembled closely
that of achieved with the whole dataset emphasizing the
role of the left hemisphere’s temporal area for both valence
and arousal. As expected, dividing the data into two subsets

affected the generalizability of the feature set optimized for
training data leading to a fundamentally lower classification
rate for testing data. The finding indicates the vulnerability
of a rather small dataset with a high interindividual and
intersample variation. The figure shows, however, similar
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statistically significantly (𝑃 < 0.05) according to one-way ANOVA test. The gray bars represent the contribution of different frequencies in
that specific channel in the best performing feature set.

behavior between the classification rates of training and
testing sets suggesting that, with feature selection approach
carried out, a significant overlearning is unlikely. Figure 9
shows the topographical distribution of features and impor-
tance of different channels in the classification of testing data

for valence and arousal. The figure verifies that the results
achieved with independent training and testing sets were
similar to those presented above for the whole dataset.

The contribution of EOG and EMG artifacts was esti-
mated based on the findings and the results are illustrated
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Figure 5: The results of the statistical analysis for valence and arousal. In the upper row, the 𝑃 values for the one-way ANOVA test are
given separately for all of the features representing the activity in single frequencies between 1 and 32Hz. Each trend corresponds to either a
single channel or a channel pair. T7 is highlighted with red color. Below are the results of Tukey post hoc honestly significant difference test
carried out separately for the features representing the activity in single frequencies of channel T7. Bars indicate the estimated difference in
the class means and the 95% confidence intervals. For valence the comparison is made between the classes “unpleasant” and “neutral valence”
(red), “unpleasant” and “pleasant” (green), and “neutral valence” and “pleasant” (blue). For arousal the comparison is made between “calm”
and “medium arousal” (red), “calm” and “excited/activated” (green), and “medium arousal” and “excited/activate” (blue). If the bar does not
contain value 0, the class means differ statistically significantly (𝑃 < 0.05).

in Figure 10. The difference between the frequency of EOG
artifacts in the samples representing “neutral valence” and
“pleasant” was found to be statistically significant suggest-
ing that, while watching videos with pleasant content, the
subjects move and blink their eyes less. As the power of
EOG artifacts mainly lies in the lower frequencies, the
phenomenon may have contributed to the above-resented
findings related to the frontal area. The contribution of EMG

artifact was found to be comparable in all three classes of
valence and arousal. Transient EMG artifacts hence did not
explain the reported difference in the high-frequency activity
of the left temporal area.

4. Discussion
In this study, the EEG characteristics related to video-induced
emotions were explored. The problem was approached from
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illustrated separately. The topographic plots are given in absolute scale representing the number of features.

a classifier perspective: the features that performed best
in classifying person’s valence and arousal while watching
audiovisual material with emotional content were searched.
Compared to the previous studies, the analysis was not
restricted to the classical frequency bands of EEG. Instead,
the features optimizing the classification were selected from
a large set created using a high number of partly overlapping
frequency bands of varying width. The proposed classifier-
based approach was able to reveal a clear association between
the increased high-frequency (15–32Hz) activity in the left
temporal area and the samples classified as “pleasant” and
“medium arousal.” These samples represented the emotional
keywords amusement and joy/happiness. The finding sug-
gests the occurrence of a specific neural activation during
video-induced pleasant emotion and the possibility to detect
this from the left temporal area using EEG. The results thus
offer valuable new information from both neuroscience and
technological point of view.

While the asymmetric cortical electrical activity related to
emotional processing iswell known, the previous studies have
mainly focused on assessing the changes in the prefrontal
area [27]. In the current study, left temporal area was found
to be most informative when it comes to detecting pleasant
affect. Several observations in the literature support the role
of temporal cortex in the processing of audiovisual material
with emotional content. The superior temporal regions are
considered to be in a key role when it comes to the face
perception [28, 29] and the recognition of facial expressions

of emotions has been reported to induce even stronger
activation of these areas than simple face detection [30].
While being responsible for the speech and linguistically
relevant sound processing [31], the superior temporal cortex
has also proved to be more responsive to the emotional tone
of voice compared to that of neutral tone [32, 33]. Since
both audio and visual emotional stimuli have been shown to
activate superior temporal regions, a possible general role for
the perception of emotional expressions has been suggested
for these areas [34, 35]. In line with this are the findings
of Schellberg et al. [36] who reported the fast beta EEG
activity at temporal locations to be indicative of the emotional
state of people watching emotionally engaging films. Unlike
in the current study, they found the right temporal area
to be more indicative of the person’s positive and negative
emotional states. Interestingly, emotional responses after
intracerebral electrical stimulation of temporal lobe have also
been reported [37]. Our results support the important role of
high-frequency temporal activity in the EEG-based emotion
classification in addition to, for example, the well-known
asymmetric frontal activity. While no compelling evidence
of EEG markers consistently seen across different studies
is observed, one can assume experimental factors such as
study design, induced emotional stimulation, and/or emotion
categorization to substantially affect the results.

In the present study, left hemisphere’s temporal activity
was found to most distinguishably carry the information
about the subject’s emotional experience. Since the emotional
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Figure 7: The importance of different channels and frequencies in the classification of arousal. The topographic plots illustrate channel-wise
how the classification performance is decreased if all the features in that specific channel are excluded from the best performing feature set.The
plots have beenmade separately for the spectral power (on the left) and the spectral power difference (on the right) features.The channel-wise
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representing the single frequencies. The dots above the curves indicate that the values between the classes in that specific frequency differ
statistically significantly (𝑃 < 0.05) according to one-way ANOVA test. The gray bars represent the contribution of different frequencies in
that specific channel in the best performing feature set.

stimulus was induced by showing videos, both audio and
visual aspects should be taken into account when considering
the neural mechanisms behind the finding. According to
the traditional notion, language functions arise from the left
temporal area, whereas the right side is more specialized for

the processing ofmusic [28, 38]. Recently, Schirmer et al. [39]
confirmed the left-lateralization for speech but failed to reveal
clear right hemisphere dominance for music. On the other
hand, a near-infrared spectroscopic study showed that the left
temporal area is significantly activatedwhen looking at happy
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faces [40]. An integrative role in the processing of audiovisual
information has also been suggested for the left hemisphere’s
superior temporal cortex [41]. Consequently, whether our
observation about the significance of left temporal area in
the classification of person’s emotional experience arises
solely from audio or visual stimulation or originates from
the integration of the emotional information from these
modalities is yet to be confirmed.

People tend to convey their emotional state through facial
expressions, due to which, in the current experimental setup,

the EEG recordings were potentially subject to muscular
artifact correlating with the emotion experienced. The spec-
trum of contracting striated muscle, measured using surface
EMG, is known to represent a band of 20–300Hz [42] which
entirely overlaps with the high-frequency neural activity [43].
Ruling out the contribution of EMG to the findings is thus
extremely important when exploring the emotion-induced
cortical activity. Several facts, however, suggest that our
results do not originate from muscular activity. The careful
inspection of the recordings from left temporal area showed
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Figure 10: The contribution of EOG and EMG artifact to the signal for the three different classes of valence and arousal. The upper row
represents the average of the frequency of EOG artifacts calculated from Fp1 and Fp2 leads. The lower row shows the percentage of EMG
contaminated signal in T7. Statistical comparison between all three pairs of classes was performed with Mann-Whitney 𝑈 test (∗𝑃 < 0.05).

that transient EMG artifact did not explain the increased
high-frequency activity related to positive valence. In fact,
the amount of artifact was slightly, albeit not significantly,
higher in the samples representing the unpleasant emotion
compared to those of pleasant emotion. The only possible
source for the finding, other than cortical, would thus have
been static long-lasting muscle activity practically impossible
to differentiate from EEG. The origin of static muscular
activity does not, however, fit with the fact that one would
assume to see this kind of rigidity in the facial area related to
unpleasant emotion rather than pleasant. The phenomenon
would also be likely to occur bilaterally, while our results refer
to solely left side activity.

In the current study, a two-dimensional bipolar circum-
plex model of valence and arousal was used to describe the
subjects’ emotions. In the literature, additional dimensions,
such as potency and unpredictability, to the model have
also often been proposed [7]. The most commonly suggested
addition, that is, potency, is typically justified by the inability
of the two-dimensional valence-arousal space to effectively
differentiate between fear and anger [44]. However, there is
no solid consensus as to which, if any, additional dimen-
sions are needed. Furthermore, valence and arousal have
widely been accepted to carry the most relevant information

regarding the emotional experience (see, e.g., [45]), due to
which the bipolar circumplex model was also utilized in this
study.

Compared to the previous studies, our approach for
feature selection provided an exceptional and unique pos-
sibility to observe without restriction the characteristics of
the features essential for EEG-based recognition of emotional
experience. Conventionally, the technological solutions for
this task have been based on assessing the activity changes
in the classical frequency bands (see, e.g., [14, 15, 22]). The
computational demands as well as the historical reasons have
generally led to the restriction of the feature set in terms
of frequency space even though using higher number of
narrower bands has been proposed to improve the detection
of emotional responses from the signal [21]. Consequently,
our intention was to not restrict the frequency characteristics
of the features to the fixed bands, but instead to observe
more generally how the essential information is divided in the
frequency space. Similarly, we wanted to provide a possibility
for the classifier to choose the most informative combination
of SP and SPD features as well as the features from different
topographic locations. Interestingly, the most informative
part of the signal was found to be on 15–32Hz frequency band
which overlaps almost entirely with the beta activity.



Computational Intelligence and Neuroscience 13

The large feature set compared to the number of samples
comes with a risk of overlearning, which should be taken
into account when interpreting the results. From the over
800 features preselected for both valence and arousal most
likely some performed well in classification only by chance.
Therefore, one should not make conclusive statements based
on single features, but instead look at the more general
frequency and topographical characteristics of the best
performing feature set. Taking this into account, only the
most substantial finding in terms of number of features,
classification performance, and statistical significance, that
is, the left temporal activation during pleasant emotion was
highlighted when reporting the results of the current study.

Several aspects of the study will require further explo-
ration. The small size of the dataset did not allow us to
examine the findings separately for right and left handed
subjectswhich should be carried out in future.Thedifferences
between genders should be assessed as well. As the subject’s
emotional state may also alter substantially during a single
video clip, an analysis of the dynamical EEG changes would
be likely to reveal even more clearly the effects of emotional
experience than the features calculated over the whole sam-
ple. Since the contribution of EMG to the main finding could
not be totally ruled out, it would be preferable to confirm the
phenomenon also with a different modality, such as fMRI,
that is not sensitive to muscle artifact. In addition, different
movie clips should be used as the results may be to some
extent specific to the video material.
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