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ABSTRACT

Motivation: Energy landscapes provide a valuable means for studying

the folding dynamics of short RNA molecules in detail by modeling all

possible structures and their transitions. Higher abstraction levels

based on a macro-state decomposition of the landscape enable the

study of larger systems; however, they are still restricted by huge

memory requirements of exact approaches.

Results: We present a highly parallelizable local enumeration scheme

that enables the computation of exact macro-state transition models

with highly reduced memory requirements. The approach is evaluated

on RNA secondary structure landscapes using a gradient basin def-

inition for macro-states. Furthermore, we demonstrate the need for

exact transition models by comparing two barrier-based approaches,

and perform a detailed investigation of gradient basins in RNA energy

landscapes.

Availability and implementation: Source code is part of the C++

Energy Landscape Library available at http://www.bioinf.uni-freiburg.

de/Software/.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The driving force of disordered systems in physics, chemistry and

biology is characterized by coupling and competing interaction

of microscopic components. At a qualitative level, this is

reflected by the potential energy function and often results in

complex topological properties induced by individual con-

formational degrees of freedom. It seems fair to say that it is

practically impossible to compute dynamic and thermodynamic

properties directly from the Hamiltonian of such a complex

system. However, analyzing the underlying energy landscape

and its features directly provides a valuable alternative.
Here, we focus on RNA molecules and their folding kinetics.

RNAs are key players in cells acting as regulators, messengers,

enzymes and many more roles. In many cases, a specific structure

is crucial for biological specificity and functionality. The forma-

tion of these functional structures, i.e. the folding process, can be

studied at the level of RNA energy landscapes (Flamm and

Hofacker, 2008; Geis et al., 2008).
RNA is composed of the biophysical alphabet {A,C,G,U}

and has the ability to fold back onto itself by formation of dis-

crete base pairs, thus forming secondary structures. The latter

provide a natural coarse-graining for the description of the

thermodynamic and kinetic properties of RNA because, in con-

trast to proteins, the secondary structure of RNA captures most

of the folding free energy. This is accommodated by novel

approaches for predicting 3D RNA structures from secondary

structures (Popenda et al., 2012).
Formally, an RNA secondary structure is defined as a set of

base pairs between the nuclear bases complying with the rules: (i)

only A-U, G-C and G-U pairings are allowed, (ii) any base is

involved in maximal one base pair and (iii) the structure is

nested, i.e. there are no two base pairs with indices (i, j), (k,l)

with i5k5j5l. Summation over the individual base pair bind-

ing energies and entropic contributions for unpaired bases de-

fines the energy function E (Freier et al., 1986; Hofacker et al.,

1994; Tinoco et al., 1971). The degeneracy of this energy defin-

ition is countered via a structure ordering based on their string

encoding (Flamm et al., 2002). We refer to the literature (Chen,

2008; Flamm and Hofacker, 2008) for more details.
In this work, we study the folding kinetics of RNA molecules

by means of a discrete energy landscape approach. While sto-

chastic folding simulations based on solving the Master equation

are limited to relatively short sequence lengths (Aviram et al.,

2012; Flamm et al., 2000b), a common approach to studying

biopolymer folding dynamics is using a coarse-grained model

that partitions the energy landscape into distinct basins of attrac-

tion, thus assigning macro-states to each basin (Wolfinger et al.,

2004). The basin decomposition and computation has been

described in different contexts, including potential energy

landscapes (Heuer, 2008), RNA kinetics (Flamm and

Hofacker, 2008) and lattice protein folding (Tang and Zhou,

2012; Wolfinger et al., 2006). Given appropriate transition

rates between macro-states (optionally composed of rates

among micro-states that form a macro-state), the dynamics can

be modeled as continuous-time Markov process and solved dir-

ectly by numerical integration (Wolfinger et al., 2004).

While suitable for system sizes up to �10 000 states, improve-

ments to this approach are currently subject to our research,

allowing investigation of up to a few hundred thousand

states by incorporating sparsity information and additional

approximations.*To whom correspondence should be addressed.
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The crucial step in the procedure sketched above is to obtain
the transition rates between macro-states. Global methods for

complete (Flamm et al., 2002) or partial (Kubota and Hagiya,
2005; Sibani et al., 1999; Wolfinger et al., 2006) enumeration of

the energy landscape are not applicable to large systems because
of memory restrictions. On the other side, sampling with high

precision requires long sampling times (Mann and Klemm,
2011). Therefore, approximating the energy landscape by a

subset of important local minima, gained via sampling
approaches or spectroscopic methods (Alem�an et al., 2008;

F €urtig et al., 2007; Rinnenthal et al., 2011), and transition
paths between them (No�e and Fischer, 2008) has been investi-

gated in the past (Kuchar�ık et al., 2014; Tang et al., 2005, 2008).
We propose a novel, highly parallelizable and memory-

efficient local enumeration approach for computing exact tran-
sition probabilities. While the method is intrinsically generic and

can be readily applied to other discrete systems, we exemplify the
concept in the context of energy landscapes of RNA secondary

structures, based on the Turner energy model (Xia et al., 1998),
as implemented in the Vienna RNA Package (Hofacker et al.,

1994; Lorenz et al., 2011) and the Energy Landscape Library

(ELL; Mann et al., 2007). We evaluate the memory efficiency
and dynamics quality for different RNA molecules and report

features of gradient basin macro-states in RNA energy
landscapes.

2 DISCRETE ENERGY LANDSCAPES

In the following, we will define energy landscapes for two levels

of abstraction: the microscopic level covers all possible (micro-)
states of a system and its dynamics, whereas themacroscopic level

enables a more coarse-grained model of the system’s dynamics,
based on a partitioning of all micro-states into macro-states. The

macroscopic view is required when studying the dynamics of
larger systems.

2.1 Microscopic level

Discrete energy landscapes are defined by a triple ðX;E;MÞ
given a finite set of (micro-)states X, an appropriate energy
function E : X! R, and a symmetric neighborhood relation

M : X! PðXÞ (also known as move set), where PðXÞ is the
power set of X. The neighborhood MðxÞ is the set of all neigh-

boring states that can be directly reached from state x by a simple
move set operation.

Consequently, RNA energy (folding) landscapes can be
defined at the level of secondary structures, which represent the

micro-states x 2 X. An RNA structure y is neighbored to a struc-
ture x (y 2MðxÞ), if they differ in one base pair only. Although

alternative move set definitions are possible (Flamm et al.,
2000b), they are not considered in this work for simplicity.

Within this work, we consider time-discrete stochastic dy-
namics based on Metropolis transition probabilities P at inverse

temperature �:

px!y="�1minfexpð��½EðyÞ � EðxÞ�Þ; 1g

="�1minfwðyÞ=wðxÞ; 1g
ð1Þ

with wðxÞ=expð��EðxÞÞ ð2Þ

and "=max
x2X
jMðxÞj: ð3Þ

w(x) is the Boltzmann weight of x. Normalization is performed

via the constant ", which is the maximally possible number of

neighbors/transitions of any state. The transition probability

px!y is only defined for neighboring states, i.e. y 2MðxÞ.

2.2 Macroscopic level

Although desirable, studying dynamic properties at the micro-

scopic level is often not feasible because of the vastness of the

state space X, even for relatively small systems. An alternative

approach is coarse graining, i.e. lumping many micro-states into

fewer macro-states, such that the microscopic dynamics is

resembled as closely as possible (Wolfinger et al., 2004).

This can be achieved by partitioning of the state spaceX with a

mapping function F : X! B that uniquely assigns any micro-

state in X to a macro-state in B. With F�1ðbÞ we denote the

inverse function that gives the set of all F-assigned states for a

macro-state b 2 B. Following (Flamm and Hofacker, 2008;

Kramers, 1940; Mann and Klemm, 2011; Wolfinger et al.,

2004), we will use the simplifying assumption that the probability

of the system to be in micro-state x while it is in macro-state

b 2 B is given by

PbðxÞ=
wðxÞZ�1b if x 2 F�1ðbÞ

0 otherwise

(
ð4Þ

with Zb =
X

y2F�1ðbÞ

wðyÞ: ð5Þ

Based on this, we can define the macroscopic transition prob-

abilities qb!c between macro-states b; c 2 B by means of the

microscopic probabilities P from Equation (1) as follows:

qb!c=
X

x2F�1ðbÞ

PbðxÞ
X

y2MðxÞ\F�1ðcÞ

px!y

0
@

1
A

=
X
ðx;yÞ

Pb xð Þpx!y

=
X
ðx;yÞ

wðxÞ

Zb
"�1min w yð Þ=w xð Þ; 1

� �

=Z�1b

X
ðx;yÞ

"�1minfwðyÞ;wðxÞg=Z�1b Zfb;cg and thus ð6Þ

qc!b=Z�1c Zfb;cg: ð7Þ

Equation (6) considers all microscopic transitions x! y from

a micro-state x in b to a micro-state y in c, based on the prob-

ability of x ðPbðxÞÞ and the transition probability px!y. The en-

ergetically higher micro-state of each such transition contributes

to the partition function of all transition states between b and c,

Zfb;cg [Equations (6 and 7)]. Consequently, Zfb;cg � Zfc;bg, i.e. the

transition state partition function is direction-independent.

Within this work, we use the common gradient basin parti-

tioning of X following (Doye, 2002; Flamm et al., 2002; Flamm
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and Hofacker, 2008; Mann and Klemm, 2011). A gradient basin

is defined as the set of all states who have a steepest descent

(gradient) walk ending in the same local minimum, where x� is

a local minimum if 8y2Mðx�Þ : Eðx�Þ5EðyÞ. In this context, the set

of macro-states B is given by the set of all local minima of the

landscape, whose number is drastically smaller than that of all

micro-states (Lorenz and Clote, 2011). The mapping function

F(x) applies a gradient walk starting in x, thus assigning it a

local minimum x� and a macro-state b. Here, the minimum is

used as a representative for the macro-state composed of the

gradient basin.
A coarse abstraction of the macro-state transition probabilities

can be obtained by an Arrhenius-like transition model

(Wolfinger et al., 2004). Here, the transition probability is domi-

nated by the minimal energy barrier that needs to be traversed to

go from one state to another. Formally, given two states x and y,

one has to identify the path p=ðx1; . . . ;xlÞ 2 Xl; l41 with

x1=x, xl=y and 8i5l : xi+1 2MðxiÞ, with lowest energy max-

imum. Arrhenius barrier-based transition probabilities are thus

defined by

ax!y=A expð��ðEðx; yÞ � EðxÞÞÞ with ð8Þ

Eðx; yÞ=min
p2X�

max
xi2p
ðEðxiÞÞ ð9Þ

where A is an intrinsically unknown pre-exponential factor. For

macro-state transitions based on a gradient basin partitioning,

transition probabilities can be approximated by Arrhenius prob-

abilities among local minima of macro-states. In this context, it is

important to note that this transition model does not enforce

neighborhood of the macro-states. The impact on modeling

quality of such an Arrhenius-based model is evaluated in

Section 4. We will now present approaches for the exact deter-

mination of the macro-state transition probabilities for a given

landscape and partitioning.

3 MACRO-STATE TRANSITION PROBABILITIES

Following the rationale presented above, all macroscopic transi-

tion rates need to be determined to study the coarse-grained dy-

namics. Given Equation (6), the partition function Zb [Equation

(5)] and adjunct partition functions of transition states Zfb;cg to

adjacent c 6¼ b have to be computed for each macro-state b.

A direct approach is brute-force enumeration of X, computing

F(x) for each micro-state x 2 X and updating ZFðxÞ accordingly.

Subsequently, all neighbors y 2MðxÞ are enumerated to update

ZfFðxÞ;FðyÞg if FðxÞ 6¼ FðyÞ. Although this is the simplest and most

general approach, it is not efficient for the majority of definitions

of F. It can, however, be replaced with more efficient dedicated

flooding algorithms and can be even more tuned for gradient

basin definitions of F as we will discuss now.

3.1 Standard approach via global flooding

The lid method (Sch €on and Sibani, 1998; Sibani et al., 1999)

performs a ‘spreading’ enumeration starting from a local min-

imum with an upper energy bound for micro-states to consider,

the lid. Internally, two lists are hashed: the set D containing all

micro-states that have been processed so far and the ‘to-do-list’ T

composed of states neighbored to D but not handled yet.

Each processed micro-state x is assigned to its corresponding

macro-state b=FðxÞ during the enumeration process. b is

stored along with x in D and T, and the partition function Zb

is updated by w(x) accordingly. Subsequently, all neighbors y 2

MðxÞ of x with EðyÞ5 lid-threshold are enumerated and either

found in D or T (thus saving F(x) computation) or added to T. If

the macro-state assignment for x and y differs, i.e. FðxÞ 6¼ FðyÞ,

the corresponding transition state partition function ZfFðxÞ;FðyÞg is

increased by "�1minðwðxÞ;wðyÞÞ. The method was reformulated

by Kubota and Hagiya (2005) for DNA energy landscapes and

Wolfinger et al. (2006) in the context of lattice proteins.

The barriers approach by Flamm et al. (2002) performs a

‘bottom-up’ evaluation of energy landscape topology based on

an energy-sorted list of all micro-states in X above the ground

state up to a predefined energy threshold. Here, the macro-state

assignment F can be handled more efficiently compared with the

lid-method, if gradient basins are applied: given that the stee-

pest descent walk used for a gradient mapping F is recursive, i.e.

the assignment F(x) of a state x is known as soon as the assign-

ment FðmminÞ of its steepest descent neighbor mmin 2MðxÞ is

known, the macro-state assignment is accomplished by a single

hash lookup: because the processed set of states D already con-

tains all states with energy less than E(x), looking up mmin and its

corresponding macro-state FðmminÞ in D yields FðxÞ � FðmminÞ.

The energy of the micro-state currently processed marks the

‘flood level’, i.e. all states in X with energy below have been

processed. Consequently, the macro-state partition functions

Zb are collected as soon as the flood level reaches the according

local minimum defining b.
Both methods perform a massive hashing of processed states

and are thus restricted by memory, i.e. the number of micro-

states that can be stored in D and T is constrained to the avail-

able memory resources. Considering the exponential growth, e.g.

of the RNA structure space X (Hofacker et al., 1998), the

memory is easily exhausted for relatively short sequence lengths.

As the memory limit is approached, both methods result in in-

complete macro-state transition data.
The barriers approach ensures a ‘global picture’ of the

landscape because it covers the lower parts of all macro-states

up to the reached flood level exhaustively, missing all macro-

states above the limit. In case the transition states connecting

the macro-states are above the flood level, no transition infor-

mation is available. This can be approached by heuristics

approximating the transition barrier (Bogomolov et al., 2010;

Flamm et al., 2000a; Morgan and Higgs, 1998; Richter et al.,

2008; Wolfinger et al., 2004); however, the outcome is still not

reflecting the true targeted macro-state dynamics. In contrast,

the lid method will always result in connected macro-states

but only a restricted part of the landscape is covered.

Furthermore, each macro-state is enumerated up to different

(energy) heights resulting in varying quality of the collected par-

tition function estimates, which further distorts the dynamics.

3.2 Memory-efficient local flooding

To overcome the memory limitation of global flooding

approaches, we introduce a local flooding scheme. It enables

parallel identification of the partition function Zb and all
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transition state partitions Zfb;cg for a macro-state b without the

need of full landscape enumeration.
Similar to global flooding, the local approach uses a set D of

already processed micro-states that are part of b, i.e.

8x2D : FðxÞ=b, and a set T of micro-states that might be part

of b or adjacent to it.
The algorithm starts in the local minimum l 2 X of b, i.e.

F(l)= b and 8x6¼l2F�1ðbÞ : EðxÞ4EðlÞ, and does a local enumer-

ation of micro-states in increasing energy order starting from

b. Thus, Zb is initialized with Zb=w(l), all neighbors m 2MðlÞ

of the minimum are pushed to T, and l is added to D.

Afterwards, the following procedure is applied until T is empty.

1. Get energy minimal micro-state x from T with

8x0 6¼x2T : EðxÞ5Eðx0Þ

2. Identify steepest descent neighbor mmin 2MðxÞ with

8m6¼mmin2MðxÞ : EðmminÞ5EðmÞ

3. If mmin 2 D! FðxÞ=b:

� x is added to D,

� Zb=Zb+w(x),

� All neighbors m 2MðxÞ with E(m)4E(x) are added to

T, and

� Descending transitions leaving b are handled:

x is transition state for all m 2MðxÞ with E(m)5E(x) and

m 2 D:

Zfb;FðmÞg=Zfb;FðmÞg+"�1wðxÞ

else! FðxÞ 6¼ b:

� Descending transitions entering b are handled:

x is transition state for all m 2MðxÞ with E(m)5E(x) and

m 2 D:

ZfFðxÞ;bg=ZfFðxÞ;bg+"�1wðxÞ

We use a data structure for T that is automatically sorted by

increasing energy to boost performance of Step 1.
The algorithm computes Zb and Z{b,c}, which are required for

deriving the macro-state transition rates qb!c [Equation (6)]

from one macro-state b to adjacent macro-states c 6¼ b. It is in-

dividually applied to all macro-states to get the full transition

rate information of the energy landscape. Evidently, the transi-

tion state partition function Z{b,F(x)}, covering states between two

macro-states b and c, has to be computed only once for each pair

[see Equations (6 and 7)].
The major advantage of the local flooding method compared

with global flooding approaches is an extremely reduced memory

consumption. This is achieved by only storing the micro-states

part of the current macro-state b (set D) plus all member and

transition state candidates (set T). The reduction effect is studied

in detail in the next section, and an implementation of the

presented local flooding has been added to the Energy

Landscape Library (ELL; Mann et al., 2007). The ELL provides

a generic platform for an independent implementation of algo-

rithms and energy landscape models to be freely combined

(Mann et al., 2008; Mann and Klemm, 2011). Within this

work, we tested our new method using the ELL-provided

RNA secondary structure model, as discussed in the following

section.
The reduced memory consumption of the local flooding

scheme comes at the cost of increased computational efforts

for the assignment of states that are not part of macro-state b.

The above workflow does an explicit computation of F for all

these states. Here, more sophisticated methods can be applied

that either do a full or partial hashing of states partaking in

steepest descent walks to increase the performance.
Another advantage is the inherent option for distributed com-

puting, as the local flooding is performed independently for each

macro-state. As such, we can yield a highly parallelized transition

rate computation not possible in the global flooding scheme.

This can be combined with an automatic landscape exploration

approach where each local flooding instance identifies neighbor-

ing, yet unexplored, macro-states that will be automatically dis-

tributed for processing until the entire energy landscape is

discovered.
We will now investigate the requirement and impact of our

local flooding approach in the context of folding landscapes of

RNA molecules.

4 FOLDING LANDSCAPES OF RNA MOLECULES

In the following, we will study the energy landscapes for the

bistable RNA d33 from (Mann and Klemm, 2011) and the

iron response element (IRE) of the Homo sapiens L-ferritin

gene (GenBank ID: KC153429.1) in detail. The sequences are

GGGAAUUAUUGUUCCCUGAGAGCGGUAGUUCUC and CUGUCUCUU
GCUUCAACAGUGUUUGGACGGAACAG, respectively. In addition,

and to evaluate the general character of our results, we generated

110 random RNA sequences with uniform base composition, 10

for each length from 25 to 35 nt. For this set average values are

reported. The length restriction was a requirement for compari-

son with exhaustive methods.

4.1 Exact versus approximated transition models

We will first investigate whether exact macro-state transition

probabilities are essentially required for computing a coarse-

grained dynamics or whether an approximated model is provid-

ing similar results. To address this question, we performed an

exhaustive enumeration of the RNA energy landscapes for d33

and IRE, resulting in �30 and 21 million micro-states, respect-

ively, that are clustered into �2900 gradient basin macro-states

for each sequence. These basins are connected by �60000

macro-state transitions, representing only a fraction of 1.5% of

all possible pairwise transitions.

The concept of barrier trees (Flamm et al., 2002; Flamm and

Hofacker, 2008) represents a straightforward approach for

modeling the coarse-grained folding dynamics of an RNA mol-

ecule without explicit knowledge of the exact pairwise micro-

scopic transition probabilities. In this context, transition

probabilities between any two gradient basin macro-states b

and c are defined via an Arrhenius-like equation. The latter is

given in Equation (8), considering the energy difference "E be-

tween the local minimum of macro-state b and the lowest saddle

point of any path to the target macro state c (which may traverse

some other macro-states). The saddle point can be identified
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either via exhaustive enumeration (Flamm et al., 2002) or esti-

mated by path sampling techniques (Bogomolov et al., 2010;

Kuchar�ık et al., 2014; Li and Zhang, 2012; Lorenz et al., 2009;

Richter et al., 2008). Energy barriers can be visualized in a tree-

like hierarchical data structure, the barrier tree, resulting in all n2

pairwise transition probabilities for n macro-states. Coarse-

grained folding kinetics based on this framework has been

shown to resemble visual characteristics of the exact macro-

state kinetics (Flamm et al., 2002; Wolfinger et al., 2004).

The Supplementary Material provides a visual comparison of

coarse-grained folding dynamics for RNA d33, based on two

different transition models. While the pure barrier tree dynamics

resembles the overall dynamics of the two energetically lowest

macro-states of the exact model well, it shows significant differ-

ences for states populated at lower extent. Given these visual

discrepancies, we are interested in measuring the modeling qual-

ity of the barrier tree-based transition model versus the exact

configuration. To this end, we will analyze mean first passage

times (FPT) and their correlations. The FPT �ðb; tÞ, also termed

exit time (Freier et al., 1986), is the expected number of steps to

reach the target state t 2 B from a start state b 2 B for the first

time (Grinstead and Snell, 1997). The first passage time for a

state to itself is 0 per definition, i.e. �ðb; bÞ=0. For all other

cases, it is defined by the recursion

�ðb; tÞ=1+
X
c2B

qb!c�ðc; tÞ: ð10Þ

We are focused on folding kinetics, i.e. we compute the FPT

from the unfolded state to all other macro-states using (i) the

exact macro-state transition probabilities [Equation (6)] obsolete

and (ii) the barrier tree-based transition probabilities based on

the Arrhenius equation [Equation (8), barrier model].

First passage time values depend on the intrinsically unknown

Arrhenius prefactor. As such, we will compare the two models

using a Spearman rank correlation of the FPT, i.e. we compare

the relation between FPTs rather than final values.

For d33 and IRE, the Spearman rank correlation coefficients

are 0.28 and –0.12, respectively, indicating no correlation. The

random sequence set shows a mean coefficient of 0.2, indicating

no correlation either. No length-dependent bias was found (see

Supplementary Material). Results are summarized in Table 1.
The barrier model is a simplification of the full model in two

aspects: (i) loss of precision—the computation of transition rates

based on Arrhenius-like equations is less accurate and (ii) loss of

topology—the barrier model allows for all possible pairwise tran-

sitions, which may lead to an overestimation of transitions. To

further distinguish between these two transition approaches, we

have derived a merged transition model with modified transition

probabilities q
0

. Within this merged model, q0b!c is given by the

Arrhenius-like equation [Equation (8)] for all exact macro-state

transitions [qb!c 6¼ 0, Equation (6)] and zero otherwise.

Investigating the Spearman rank correlation of the merged

model’s FPTs with the exact FPTs, an increased correlation co-

efficient (0.85 for d33 and 0.64 for IRE) is observed. This is

supported by a robust average coefficient of 0.71 for the set of

random sequences (see Supplementary Material).
These results clearly show two key aspects of reduced folding

dynamics: First, importance of the underlying topology of the

landscape, i.e. the necessity to identify sparse exact transitions

between macro-states, and second the reduced modeling quality

when restricting the computation of transition probabilities to

energy barrier-based (Arrhenius-like) approximations. The im-

portance of the topology information for kinetics is partly stu-

died in the Supplementary Material of Kuchar�ık et al. (2014).

4.2 Reduction of memory requirement

Given the need for an exact computation of macro-state transi-

tion probabilities, we will now evaluate the impact of a local

flooding scheme compared with the standard global flooding

approach. In this context, we will investigate the memory foot-

print, which is the central bottleneck of global flooding methods.
As outlined above, global flooding schemes keep track of all

micro-states x 2 X within the energy landscape. As such, the

global flooding memory consumption is dominated by

memðGÞ=jXj.
In contrast to that, all micro-states x 2 F�1ðbÞ of b in the local

flooding scheme have to be stored to compute Zb [Equation (5)]

as well as the set of all micro-state transitions leaving macro-state

b, denoted T(b), for computing Zfb;�g [Equation (6)]. The

memory consumption of local flooding of b is thus ruled by

memðLÞ=jF�1ðbÞj+jTðbÞj.

Investigating the ratio of memðLÞ=memðGÞ for all macro-

states, we find a mean value of 0.0015 and a median of

50.0001 for both the d33 and the IRE landscape. In other

words, the memory footprint of local flooding comprises

50.005 (0.5%) compared with global flooding for almost all

macro-states (99%). For �80% of the macro-states, the foot-

print drops even lower to50.01%. Similar numbers are observed

within the random set for sequences of same lengths. Most not-

ably, we see a logarithmic decrease of the average memory re-

duction with growing sequence length (Fig. 1). We find only

three large macro-states with memðLÞ=memðGÞ410% in both

landscapes.
These numbers give evidence for the memory efficiency of a

local flooding scheme. Within the context of extensive parallel-

ization, such a scheme can be applied to large energy landscapes,

as the individual memory consumption is several orders of mag-

nitudes lower compared with a global flooding scheme. The re-

maining set of few large macro-states can be handled at the cost

of longer runtimes by using the efficient local sampling scheme

for macro-state transition probabilities presented in (Mann and

Klemm, 2011).

Table 1. Spearman rank correlation of different macro-state transition

models

Sequence(s) Spearman correlation

exact–barrier

Spearman correlation

exact–merged

d33 0.28 0.85

IRE –0.12 0.64

Random 0.20 0.71

Note: Comparison of the Arrhenius barrier-based and the exact model shows almost

no correlation, while the merged model of both is highly correlated to the exact

model.
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4.3 Properties of gradient basins

In the following, we will work out various properties of gradient

basins because they are commonly used as macro-state abstrac-

tion in RNA energy landscapes. We will give examples for RNA

d33; however, the results can be generalized to other RNAs as

shown for the random sequence set.
We have shown in the context of local flooding memory con-

sumption that the overwhelming majority of gradient basins is

small, whereas there are only a few densely populated gradient

basins. Most importantly, the basin of the open, unstructured

state, which is a local minimum according to the Turner energy

model (Xia et al., 1998) and the selected neighborhood relation

M allows for the largest neighborhoods. Consequently, its gra-

dient basin is the largest for all RNAs studied and wraps �20–

30% of the state space. In the random dataset, the open state

covers on average �40% of the landscape, and we see a decrease

of this fraction with increasing sequence length. The same ten-

dency applies to the average relative basin size (Fig. 1). Other

large gradient basins are usually centered at energetically low

local minima, and their basin size is in general highly specific

for the underlying sequence. We do observe a correlation of

basin size with the energy of its local minimum (Spearman

correlation –0.73), which is in accordance to the findings of

Doye et al. (1998) for Lennard–Jones clusters.

When investigating the distribution of the energetically lowest

micro-states in each gradient basin, i.e. the local minima, we find

that most minima have positive energies (see histogram in Fig. 2).

Minima are distributed over the lower 40–50% of the energy

range for all sequences studied. The number of minima with

negative energy, i.e. stable secondary structures, is �100 for

d33 and IRE and is in the range of �5% in general for the

random set studied here. The majority of the state space of

RNA energy landscapes shows positive energies, resulting from

destabilizing energy terms for unstacked base pairs in the Turner

energy model (Xia et al., 1998). This is in accordance with the

results from Cupal et al. (1997) who found that only �106 of

�1016 structures of a tRNA show an energy of less than zero.

The energy range of most gradient basins, i.e. minimal to max-

imal energy of any micro-state in the basin as plotted in Figure 3,

covers almost the entire range above a local minimum. This is

generally independent of the basin size (compare Fig. 2 and 3);

only for energetically high basins a lower maximal energy is

observed. This might be a result of the accompanying basin

size decrease or an artifact of the energy model. The gradient

basin of the unstructured state covers the energetically highest

states.
As mentioned above, only few of the possible jBj2 macro-state

transitions are observed. We find that450% of the basins show

510 neighboring basins and almost all (98%) have transitions to

52% of the basins. The gradient basin of the unstructured state

Fig. 1. Memory consumption comparison of local versus global flooding

for the random sequence set. For each RNA sequence length, 10 mean

ratios of local versus global flooding memory requirement are measured

and visualized in a box plot. The box covers 50% of the values and shows

the median as horizontal bar. A similar picture is obtained when plotting

the mean gradient basin size for each sequence

Fig. 3. The energy range covered by each basin (Y-axis) sorted by the

minimal energy within the basin (X-axis) over the whole energy

range of the energy landscape of RNA d33. Relative energies are given

by ErelðxÞ=ðEðxÞ � Emin Þ=ðEmax � Emin Þ where Emin =Emax denote the

energy boundaries over X. The dotted lines mark the position of the

unstructured state with energy 0

Fig. 2. Distribution of basin sizes (dots) and frequency histogramof basins

(bars) over the energy range within the energy landscape of RNA d33.

Relative energies are given by ErelðxÞ=ðEðxÞ � Emin Þ=ðEmax � Emin Þ

where Emin =Emax denote the energy boundaries over X. The dotted line

marks the position of the unstructured state with energy 0
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shows the highest number of macro-state transitions and is con-

nected to 420% of the macro-states. We find that few large

basins serve as hub nodes with high connectivity. This is in ac-

cordance to findings of Doye (2002) for Lennard–Jones poly-

mers. Consequently, the number of transitions is highly

correlated to the basin size, as one would expect. This is sup-

ported by a Spearman rank correlation coefficient of� 0.8 for all

RNAs studied. The correlation to the basin’s minimal energy, as

found by Doye (2002), is not as significant (Spearman correla-

tion –0.6).

5 CONCLUSION

We have introduced a local flooding scheme for computing the

exact macro-state transition rates for arbitrary discrete energy

landscapes, provided some macro-state assignment is available.

The approach has been evaluated on RNA secondary structure

energy landscapes in the context of modeling coarse-grained

RNA folding kinetics based on gradient basins. We have demon-

strated the need for exact macro-state transition models via com-

parison with a simpler barrier tree-based Arrhenius-like model.

The latter resulted in significantly different dynamics measured

by mean FPT.
We showed that the local flooding scheme requires several

orders of magnitude less memory compared with the standard

global flooding scheme. Furthermore, it is intrinsically open to

vast parallelization, which should also result in significant run-

time reduction, given that the global flooding can not be easily

parallelized.
Finally, we performed a thorough investigation of gradient

basins in RNA energy landscapes because they are commonly

used as macro-state abstraction in the field. Gradient basins have

been shown to be generally small, which is the reason for the

tremendously reduced memory requirement of the local flooding

scheme. The basin of the unstructured state has been shown to be

special, as it is the largest, most connected macro-state and

covers the energetically highest micro-states. Independent of

their size, most basins contain micro-states of almost the entire

energy range above their respective local minimum. The majority

of the gradient basins covers only states with positive energy. We

found a low average connectivity between gradient basins, the

existence of few highly connected hub nodes and a high correl-

ation of connectivity with basin size.
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