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Arbutin has been widely studied in whitening, anti-inflammatory, and

antioxidant. However, the interaction between arbutin and intestinal microbes

has been rarely studied. Thus, mice were treated with arbutin concentrations

of 0, 0.1, 0.2, 0.4, and 1 mg/ml. We found that arbutin promoted gut

development such as villus length, villus areas, and villus length/crypt depth

(L/D). Total cholesterol (TC), high-density lipoprotein (HDL), and low-density

lipoprotein (LDL) were significantly reduced by low concentrations of arbutin.

Importantly, we analyzed the microbial composition in the control and

0.4 mg/ml arbutin group and found that the abundance of Lactobacillus

intestinalis (L. intestinalis) was highest and enhanced in arbutin. Further, mice

were fed with oral antibiotics and antibiotics + 0.4 mg/ml arbutin and then

we transplanted fecal microbes from oral 0.4 mg/ml arbutin mice to mice

pretreated with antibiotics. Our results showed that arbutin improves gut

development, such as villus width, villus length, L/D, and villus areas. In

addition, L. intestinalis monocolonization was carried out after a week of oral

antibiotics and increased villus length, crypt depth, and villus areas. Finally,

in vitro arbutin and L. intestinalis co-culture showed that arbutin promoted the

growth and proliferation of L. intestinalis. Taken together, our results suggest

that arbutin improves gut development and health of L. intestinalis. Future

studies are needed to explore the function and mechanism of L. intestinalis

affecting gut development.

KEYWORDS

arbutin, gut development, gut microbiota, fecal microflora transplantation,
Lactobacillus intestinalis

Introduction

Arbutin is a natural phytochemical active substance, which is extracted from the
bearberry leaves of Ericaceae and Saxifragaceae families (1, 2). It inhibits the activity of
tyrosinase to reduce the production of melanin in the host (3), thereby lowering the
deposition of melanin (4, 5). Meanwhile, arbutin is also associated with antioxidant
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(6, 7) and anti-inflammatory (8, 9). Additionally, arbutin has
been widely studied for its role in protecting against nerve injury
or other diseases caused by nerve injury (10, 11). However,
arbutin regulation of gut development and host metabolism
through gut microbiota has rarely been reported. The intestinal
villi were directly contacted with nutrients and absorbed small
molecules into the blood (12, 13), whereas the crypt was
genetically regulated to shrink and invaginate (14), which
was not conducive to nutrient absorption. Goblet cells secrete
mucins and mucopolysaccharides to form the mucous system
and were the site of colonization by gut microbes (15). Arbutin
was rarely absorbed by the small intestine, but the majority
was used by gut microbiota. Numerous studies reported that
the role of phytochemicals was weakened by low bioavailability
(16). Arbutin is a β-glucoside derived from hydroquinone (HQ)
(1,4-dihydroxybenzene) (2, 3), its bioactivity and bioavailability
were altered by gut microbes secreting glycoside hydrolase (17),
and gut microbes have been identified as closely related to host
metabolic disorders and diseases (18, 19).

Whether arbutin regulates gut development and host
metabolism by altering gut microbes is unclear. Thus, we
speculated that the interaction between arbutin and intestinal
microbiome influences the pathological status and development
of the gastrointestinal tract. Our results indicated that arbutin
directly affects the composition of gut microbiota and
development; further, Lactobacillus intestinalis (L. intestinalis)
may serve as the potential mechanism.

Materials and methods

Bacterial strains

The L. intestinalis (ATCC49335) used in this study was
purchased by Beijing Beina Chuanglian Biotechnology Research
Institute (Beijing, China). Unless otherwise stated, bacterial
strains were grown in MRS Broth (MRSB) (Qingdao Hope Bio-
technology Corporation Ltd.) or on MRS Agar (MRSA) plates
at 37◦C.

Animal studies

Fifty female C57BL/6 mice (aged 6 weeks, 17 ± 0.5 g
and aged 4 weeks, 14 ± 0.5 g) were randomly divided
into 5 groups with arbutin solution of 0, 0.1, 0.2, 0.4, and
1 mg/ml (20) and fed maintenance diet lasted 3 weeks. We
found that arbutin 0.4 mg/ml was most effective in improving
intestinal index; thus, twenty mice were treated with antibiotics
and antibiotics + 0.4 mg/ml arbutin for 3 weeks. Then,
we transplanted fecal microbes from oral 0.4 mg/ml arbutin
mice to mice pretreated with antibiotics for 1 week and
then normal feeding for 2 weeks. Finally, twenty mice were

pretreated with antibiotics for a week, 1.3 × 109 colony-
forming unit (CFU)/ml L. intestinalis was intragastric to mice
for 1 week, and then normal feeding for 2 weeks. All the
animals were purchased from Hunan SJA Laboratory Animal
Corporation Ltd. (Changsha, China) and used in this study.
All the experimental animals were allowed free access to food
and drinking water, and subjected to 12-h light-dark cycles,
controlled temperature (23 ± 2◦C), and humidity (45–60%)
during the experiment. The basic diet was described in our
previous study (21).

Hematoxylin and eosin staining

Intestinal HE staining was performed. The jejunal and ileal
segments were fixed in 4% paraformaldehyde solution. The
sections were first treated with xylene and ethanol solution
for 15 and 5 min, respectively, then stained with hematoxylin
for 5 min, rinsed with water for 5 min, then stained with
eosin solution for 1–3 min, and then washed with ethanol and
sealed. Finally, the villi, and crypt morphology were observed
under a microscope.

Serum biochemical parameters

Serum samples were separated after centrifugation at
1,500 × g for 10 min at 4◦C and 100 µl serum was
transferred into another tube. Serum biochemical parameters
were determined using an Automatic Biochemistry Analyzer
(Cobas c 311, Roche).

Antibiotic treatment and fecal
microflora transplantation

To eradicate commensal bacteria, filter-sterilized drinking
water was supplemented with ampicillin (0.5 mg/ml,
Meilunbio), gentamicin (0.5 mg/ml, Meilunbio), metronidazole
(0.5 mg/ml, Meilunbio), neomycin (0.5 mg/ml, Meilunbio), and
vancomycin (0.25 mg/ml, Meilunbio) for 1 week. Antibiotics
were purchased from Dalian Meilun Biotechnology Corporation
Ltd. (Dalian, China). Before fecal microbiota transplantation,
the native gut microbiota in one group of C57 female mice
(n = 10 biologically independent animals per group) was
deleted by administering drinking water containing a cocktail
of antibiotics for 1 week. Fecal samples of ∼200 mg were then
collected from arbutin (0.4 mg/ml)-fed mice and resuspended in
2.0 ml normal saline. Fecal samples were mixed and centrifuged
at 1,000 × g, and the microbiota supernatants were transplanted
into the microbiota-depleted mice by gavaging with 0.2 ml per
mice for 1 week. After transplantation, two groups of mice were
administrated with a standard diet and regular water.
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Gut microbiota profiling

Total genome DNA from ileal chyme and mucosa was
extracted using cetyltrimethylammonium bromide (CTAB)
method. DNA concentration and purity were monitored on
1% agarose gels. According to the concentration, DNA was
diluted to 1 ng/µl using sterile water. 16S rDNA genes of
distinct regions (16S V3-V4) were amplified using a specific
primer (515F-806R) with the barcode. All the PCR reactions
were carried out with 15 µl of the Phusion R© High-Fidelity
PCR Master Mix (New England Biolabs), 2 µM of forward and
reverse primers, and about 10 ng of template DNA. Sequencing
libraries were generated using the TruSeq R© DNA PCR-Free
Sample Preparation Kit (Illumina, United States) following the
manufacturer’s recommendations and index codes were added
according to our previous study (22). Microbial communities
were investigated by iTag sequencing of 16S rDNA genes
(23, 24).

Statistical analysis

All the statistical analyses were performed using the one-
way ANOVA and t-test analysis in SPSS version 20.0 software
(SPSS Incorporation, Chicago, IL, United States). The data are
expressed as the means ± SEM). P < 0.05 was considered
statistically significant. All the figures in this study were drawn
using GraphPad Prism version 8.0.

Results

Arbutin administration improves gut
development

Final body weight was not obviously changed (Figure 1A),
but the relative weight and weight/length of the intestine were
significantly increased by arbutin administration at 0.2 and
0.4 mg/ml (P < 0.05) (Figures 1B,D), and arbutin did not
alter the intestinal length, villus width and crypt depth (Figures
1C,F,H). Thus, we continued to investigate the intestinal
pathology section; the results showed that the villus length
was increased by 0.4 and 1.0 mg/ml arbutin, villus area was
enhanced by 0.2 and 0.4 mg/ml arbutin, and villus length/crypt
depth (L/D) was higher at 0.4 mg/ml arbutin (P < 0.05)
(Figures 1E,G,I,J).

Effects of arbutin on serum
biochemical parameters

To further understand the role of arbutin, lipid parameters
in serum were determined (Figures 2A–F). Arbutin at
0.4 mg/ml significantly enhanced the content of serum glucose

(Glu) (P < 0.05) (Figure 2A). Nevertheless, arbutin at 0.2 mg/ml
lowered the content of total cholesterol (TC) and high-density
lipoprotein (HDL) (P < 0.05) (Figures 2C,D), and low-density
lipoprotein (LDL) was lowered at 0.1 and 0.2 mg/ml (P < 0.05)
(Figure 2E). These results suggested that arbutin can improve
intestinal development and serum lipid parameters.

Arbutin alters the composition of gut
microbiota

To investigate the effects of arbutin on gut microbes,
we determined the microbiome by 16S rDNA sequencing at
0.4 mg/ml (Figures 3, 4). Venn diagram showed that 597 and
111 different operational taxonomic units (OTUs) were found
in the control and arbutin groups and contained the same
540 OTUs (Figure 3A), rarefaction curve indicated that the
sample capacity and sample depth were reasonable (Figure 4B).
Arbutin significantly decreased the α-diversity index [observed
species, Shannon index, phylogenetic diversity (PD), Simpson
index, Chao1, and abundance-based coverage estimator
(ACE)] (P < 0.05) (Figures 3B–D, 4A,C–E). Meanwhile,
the β-diversity index was reduced (P < 0.05) (Figure 3E),
and principal component analysis showed that there were
different zones of intestinal microflora between the control
group and arbutin (Figure 3F). At the phylum level, the relative
abundance of Actinobacteria and Proteobacteria was clearly
lowered by arbutin (P < 0.05) (Figure 3G). At the species
level, 0.4 mg/ml arbutin markedly increased the abundance
of Lactobacillus intestinalis (P < 0.05) (Figures 3H, 4F),
while the abundance of Bifidobacterium animalis, Bacillus
velezensis, Lachnospiraceae bacterium_M18-1, Eubacterium
sp_14-2, Helicobacter ganmani, Lachnospiraceae bacterium_10-
1, Lachnospiraceae bacterium_615, Planoglabratella opercularis,
Pseudoflavonifractor sp_Marseille-P3106, Clostridium
leptum, Clostridium sp_ASF356, Dubosiella newyorkensis,
Burkholderiales bacterium_YL145, Desulfovibrio sp_ABHU2SB,
Firmicutes_bacterium CAG_194_44_15, Clostridium
sp_Culture-27, and Ruminiclostridium sp_KB18 was lowered
compared to control (P < 0.05) (Figures 3H, 4F).

Arbutin improves gut development
with an antibiotics cocktail and fecal
microflora transplantation

The intestinal microbiota has been shown to regulate
intestinal development (25) and host metabolism (18). To
further determine the role of intestinal microbiota, 4 weeks
mice were given an antibiotics cocktail for 1 week with oral
arbutin solution (0.4 mg/ml). Predictably, arbutin significantly
enriched the villi width compared to the antibiotics group in the
jejunum (P < 0.05) (Figures 5A,C), but villus length, villus area,
crypt depth, L/D were not changed (Figure 5B,D–F), and there
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FIGURE 1

Oral arbutin improves gut development. Final body weight (A), relative intestinal weight (B), intestinal length (C), intestinal weight/length (D),
villus length (E), villus width (F), villus areas (G), crypt depth (H), L/D (I), and HE staining of jejunum and ileum (J). Values are presented as the
means ± SEMs. Differences were assessed by one-way ANOVA and denoted as follows: a and b indicate significant differences in each group.

FIGURE 2

Effects of oral arbutin on serum lipids. Glucose (A), total triglycerides (B), total cholesterol (C), high-density lipoprotein (D), low-density
lipoprotein (E), and total bile acid (F) (n = 10). Values are presented as the means ± SEMs. Differences were assessed by one-way ANOVA and
denoted as follows: a and b indicate significant differences in each group.
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FIGURE 3

Arbutin alters the gut microbiota. Venn diagram (A), observed species (B), Shannon index (C), PD_whole_tree (D), β-diversity index (E), principal
component analysis (F), phylum (G), and species (H) were analyzed at 0.4 mg/ml. Differences were assessed by t-test and denoted as follows:
∗P < 0.05, ∗∗ P < 0.01, ∗∗∗P < 0.001.

FIGURE 4

Arbutin alters the gut microbiota. Rank abundance plot (A), rarefaction curve (B), Simpson index (C), Chao1 (D), ACE (E), and species (F) were
analyzed at 0.4 mg/ml. Differences were assessed by t-test and denoted as follows: ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 5

Arbutin administration improved jejunal and ileal gut development after oral cocktails. HE staining of the jejunum (A), villus length in the jejunum
(B), villus width in the jejunum (C), villus areas in the jejunum (D), crypt depth in the jejunum (E), L/D in the jejunum (F), HE staining of the
ileum (G), villus length in the ileum (H), villus width in the ileum (I), villus areas in the ileum (J), crypt depth in the ileum (K), and L/D in the ileum
(L) (n = 10). Differences were assessed by t-test and denoted as follows: **P < 0.01.

was a tendency to enhance the ileal villi index (Figures 5G–
L). Then, we further collected feces from mice administered
with arbutin 0.4 mg/ml and transplanted them to mice
with an antibiotics cocktail. Fecal microflora transplantation
significantly improved intestinal pathologies, such as jejunal
villus length (Figures 6A,B), jejunal villus length/villus width
(L/D) (Figures 6A,F), and ieal villus areas (Figure 6J). But
jejunal villus width, jejunal villus area, jejunal crypt depth, ileal
villus legth, ileal villus width, ileal crypt depth and ileal L/D
were uninfluential (Figures 6C–E,H,I,K,L). In summary, gut
microbes contributed improving intestinal development.

Lactobacillus intestinalis colonization
reduces gut damage after an
antibiotics cocktail

We have found that the abundance of L. intestinalis (Lin)
was markedly enhanced by arbutin and was the most abundant

bacterium in the gut (Figures 3H, 4F). L. intestinalis was
often found in the gut of the host, which was treated for
various diseases (26–28) and metabolic disorders (29, 30), but
the effect of L. intestinalis on gut development and host lipid
metabolism was unclear. Thus, we investigated the role of
Lin on intestinal pathology and used Lin monocolonization
(31) with an antibiotics cocktail for 1 week. Interestingly,
after an antibiotics cocktail for 1 week, Lin monocolonization
clearly increased the villus length, crypt depth, and villus areas
(Figures 7A–C,E), and there was a tendency to elevate the
number of goblet cells (Figures 7A,G). Whereas villus width and
L/D were not changed by L. intestinalis (Figures 7D,F).

Arbutin promotes the growth of
Lactobacillus intestinalis in vitro

In order to verify the previous results, we co-cultured
arbutin and L. intestinalis to investigate the growth of
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FIGURE 6

Fecal microflora transplantation improved gut development in mice. HE staining of the jejunum (A), villus length in the jejunum (B), villus width
in the jejunum (C), villus areas in the jejunum (D), crypt depth in the jejunum (E), L/D in the jejunum (F), HE staining of the ileum (G), villus length
in the ileum (H), villus width in the ileum (I), villus areas in the ileum (J), crypt depth in the ileum (K), and L/D in the ileum (L) (n = 10). Differences
were assessed by t-test and denoted as follows: ∗P < 0.05, ∗∗P < 0.01.

L. intestinalis in vitro. The results showed that arbutin
significantly promotes the growth of L. intestinalis
(P < 0.05) (Figure 8).

Discussion

In recent years, arbutin has often been extensively studied
that it inhibited tyrosinase activity to reduce melanin deposition
in the cosmetic industry (32). Meanwhile, arbutin is often
used to treat various diseases, such as types of cancers, central
nervous system disorders, osteoporosis, diabetes, and so on
(20). Arbutin, as a phytochemical active substance, is low
bioavailability in the gut, and incompletely played a beneficial
role (33). Further, they are degraded by microbes to increase

their biological activity (34). However, the potential of arbutin
has rarely been reported about promoting intestinal health.
Thus, we explored the effects of arbutin on gut health in the
common condition, oral antibiotic cocktails, fecal microflora
transplantation, and Lin monocolonization.

We investigated the effects of different concentrations of
arbutin on gut health and serum lipids in mice in normal
conditions. We found that low concentrations of arbutin
reduced serum lipids, whereas reversed at high concentrations.
Previous studies have shown that arbutin significantly reduced
adipocyte differentiation and promoted fatty acid uptake in
3T3-L1 adipocytes (35). The polyjuice decoction containing
arbutin decreased the total cholesterol, triglyceride, VLDL, and
LDL in diabetic rats (36). Importantly, we found that arbutin
plays an important role in promoting intestinal development.
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FIGURE 7

Lactobacillus intestinalis colonization improved intestinal development in mice. HE staining the ileum (A), villus length in the ileum (B), villus
width in the ileum (C), villus areas in the ileum (D), crypt depth in the ileum (E), L/D in the ileum (F), and the number of goblet cells (G) (n = 10).
Differences were assessed by t-test and denoted as follows: **P < 0.01, ***P < 0.001.

FIGURE 8

Arbutin promotes the growth of Lactobacillus intestinalis in vitro. Arbutin and L. intestinalis were co-cultured and determined the OD value at
0–24 h. Differences were assessed by t-test and denoted as follows: ∗P < 0.05, ∗∗∗P < 0.001.

In this trial, 0.4 and 1.0 mg/kg arbutin markedly enhanced
the villus length, villus areas, and L/D compared to control.
Villus index was highly associated with nutrient absorption and
gut health (37); thus, the increased villus length, villus areas,
and L/D indicated a positive role of arbutin in gut nutrient
absorption. The gut microbiota may be an important reason
for this result. Arbutin, as a natural phytochemical, is a β-
glucoside derived from hydroquinone (2, 3) whose bioactivity
and bioavailability can be modified by glycoside hydrolase
activity of gut microbiota through the release of acylglycines
(38). Microorganisms are associated with the absorption and
metabolism of arbutin, a novel Janthinobacterium strain (SNU
WT3), isolated from the kidney of rainbow trout showed that

different biochemical details such as arbutin compared to its
close relatives identified (39). Further, Bifidobacterium was
proved to degrade arbutin (containing glycosides) to elevate
bioavailability by secreting β-glucosidase (38). We found that
L. intestinalis was significantly increased by arbutin, which
played an important role in gut health and metabolic disorders
(26, 29, 40). However, the abundance of another 21 species of
bacteria (such as Bifidobacterium animalis, Bacillus velezensis,
Lachnospiraceae bacterium_M18-1, Eubacterium sp_14-2, and
Helicobacter ganmani) was significantly reduced. Interestingly,
arbutin was reported to reduce colitis symptoms and inhibit
lipopolysaccharide-induced inflammation (41), and there were
significant negative correlations between arbutin contents
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and the enriched gut microbiota (e.g., Eubacterium and
Ruminococcus) (42), suggesting that there was bactericidal
ability about arbutin.

Gut damage is often associated with drugs, environmental
stress, and lifestyle (43). Especially, antibiotics are considered
only beneficial, but also potentially harmful drugs, as their
abuse appears to play a role in the pathogenesis of several
disorders associated with microbiota impairment (44). In
this trial, we demonstrated the beneficial effects of arbutin
in improving gut health with antibiotics cocktail and fecal
microflora transplantation. The result was attributed to arbutin
administration altering the gut microflora, such as L. intestinalis.
Fecal microflora transplantation is a common technique for
the treatment of host metabolic disorders and diseases (45,
46). The gut microbiota development of cesarean section
infants was rapidly restored by orally derived fecal microflora
transplantation (47). Fecal microflora transplantation played
beneficial effects on gastrointestinal transport and intestinal
barrier dysfunction (48), which were related to intestinal
permeability and pathology (49), such as villus length,
villus areas, and L/D. Furthermore, the monocolonization
technique improves the gut microbiota structure and metabolic
process of the host (50, 51) and is also one of the
measures to investigate bacterial function. For example,
probiotic colonization improved intestinal barrier function and
intestinal health, newly identified health-associated bacteria,
such as Faecalibacterium prausnitzii, Akkermansia muciniphila,
Ruminococcus bromii, and Roseburia species (52, 53). Our
results showed that L. intestinalis monocolonization reduced
intestinal damage after an antibiotics cocktail, such as villus
length, crypt depth, villus areas, and the number of goblet cells.

To prove the effect of arbutin on L. intestinalis growth,
we used the co-culture method of arbutin and L. intestinalis.
Previous studies have found that Bifidobacterium degraded β-
glucosidase to enhance the activity of glycoside by secreting β-
glucosidase (38). Liu et al. identified a glycoside hydrolase, which
is very important for the growth of type I rhamnogalacturonan
acid by commensal bacteroides (54). We found that arbutin
significantly promoted the proliferation of L. intestinalis,
suggesting the potential of arbutin on L. intestinalis proliferation
and utilizing arbutin to increase biological activity.

Conclusion

Arbutin, as a phytochemical, has been widely studied
in whitening, anti-inflammatory, and antioxidant, while the
interaction between arbutin and intestinal microbes has been
rarely studied. In this trial, we focused on the effects of
arbutin on intestinal development and microbes. Predictably,
arbutin played a positive role in the gut, such as improving
the pathological state of the jejunum and ileum and altering
the intestinal microbial structure. In addition, we demonstrated

the beneficial effects of arbutin on intestinal development
through fecal microflora transplantation and L. intestinalis
monocolonization by antibiotic cocktail therapy. However, the
specific mechanisms of L. intestinalis in intestinal development
need to be further explored.
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