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ABSTRACT
Low temperature germination (LTG) is a key agronomic trait in rice (Oryza sativa
L.). However, the genetic basis of natural variation for LTG is largely unknown. Here,
a genome-wide association study (GWAS) was performed using 276 accessions
from the 3,000 Rice Genomes (3K-RG) project with 497 k single nucleotide
polymorphisms (SNPs) to uncover potential genes for LTG in rice. In total, 37
quantitative trait loci (QTLs) from the 6th day (D6) to the 10th day (D10) were
detected in the full population, overlapping with 12 previously reported QTLs for
LTG. One novel QTL, namely qLTG1-2, was found stably on D7 in both 2019
and 2020. Based on two germination-specific transcriptome datasets, 13 seed-
expressed genes were isolated within a 200 kb interval of qLTG1-2. Combining with
haplotype analysis, a functional uncharacterized gene, LOC_Os01g23580, and a seed
germination-associated gene, LOC_Os01g23620 (OsSar1a), as promising candidate
genes, both of which were significantly differentially expressed between high and low
LTG accessions. Collectively, the candidate genes with favorable alleles may be useful
for the future characterization of the LTG mechanism and the improvement of the
LTG trait in rice breeding.
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INTRODUCTION
Rice (Oryza sativa L.) is an important staple food that feeds nearly half of the world
(Khush, 2005; Sreenivasulu, Pasion & Kohli, 2021). Due to its tropical and subtropical
origin, rice is susceptible to low temperature at all phases of growth (Cheng et al., 2007).
A temperature of 25–35 �C is optimal for the growth of rice, and temperatures below 15 �C
can cause poor seed germination and subsequently bad seedling establishment (Fujino
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et al., 2004). However, more than 15 million hectares of rice cultivated worldwide are
threatened by low temperatures, especially in Japan, South Korea, North Korea and
Northeast China (Song et al., 2018). On the other hand, direct seeding has replaced
conventional transplanting as it is both labor-saving and lower in cost, which requires
good germination characteristics for rice seeds in low temperature, since the temperatures
during the sowing period in the spring planting season are frequently below 15 �C in
temperate and high-altitude regions (Fujino et al., 2004; Fujino & Matsuda, 2010; Sales
et al., 2017; Yang et al., 2020b). Therefore, it is important to uncover the genetic basis of
LTG and apply the findings to rice breeding in order to meet the challenges mentioned
above.

In rice, LTG is a complex trait that is genetically controlled by multiple quantitative trait
loci (QTLs) (Fujino et al., 2008). One common method used to study genetic basis is
QTL analysis using bi-parental mapping populations (Huang et al., 2010). Generally,
Japonica cultivars are more cold-tolerant than Indica cultivars (Ma et al., 2015). Most
bi-parental populations used in QTL analysis have been derived from a cross between a
cold-tolerance Japonica variety and a cold-sensitive Indica group (Jiang et al., 2006; Ji et al.,
2008; Li et al., 2013; Ranawake et al., 2014; Jiang et al., 2017). Researchers identified five
QTLs on chromosomes 2, 4, 5, and 11 in a Nipponbare × Kasalath cross (Miura et al.,
2001). Through USSR5 and N22, 11 QTLs for LTG were unveiled on chromosomes 3, 4, 5,
9, 10 and 11 (Jiang et al., 2006). By crossing varieties Kinmaze and DV85, two QTLs
were found located on chromosomes 7 and 11 (Ji et al., 2008). Li et al. (2013) detected three
major QTLs for LTG and characterized qLTG-9 to a region of ~72 kb which contained five
potential genes explaining 12.12% of the phenotypic variation. A separate study used
recombinant inbred lines from a Japonica and Indica cross and found five QTLs for LTG
that explained 5.7–9.3% of the total phenotypic variance (Ranawake et al., 2014). Satoh
et al. (2015) reported four QTLs responsible for LTG on chromosomes 1, 3, and 11 in a
European rice variety. Borjas, De Leon & Subudhi (2015) found 49 QTLs related to
LTG distributed on 10 chromosomes in US weedy rice. In addition, six QTLs distributed
across chromosomes 1, 4, 8, and 11 were characterized for LTG by crossing Changhui
891 and 02428 (Jiang et al., 2017). Among the identified QTLs, only one QTL, qLTG3-1,
has been cloned, encoding a protein with unknown molecular function that may be
involved in tissue weakening (Fujino et al., 2008).

Compared with a bi-parental QTL analysis, a genome-wide association study (GWAS)
is a more efficient way to identify the genes underlying a complex trait as it has the
advantage of being able to study abundant variations in natural populations (Huang et al.,
2010). Recently, a GWAS has been used to identify QTLs for LTG. Fujino et al. (2015)
conducted a GWAS using 63 accessions with 117 markers and discovered 17 QTLs
associated with LTG, nine of which were co-localized with QTLs identified before. Using a
core collection (Rice Diversity Panel 1, RDP1) of rice, a total of 42 QTLs were identified
as being associated with cold tolerance during the germination and seedling stages
(Shakiba et al., 2017). Through a GWAS, 11 QTLs were found to be associated with LTG
among Rice Diversity Panel 2 (RDP2) and two candidate genes were narrowed down
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(Yang et al., 2020c). OsSAP16 was cloned using 187 natural accessions by GWAS in rice
(Wang et al., 2018b). Yang et al. (2020b) found 159 LTG-related QTLs in Indica accessions,
only 12 of which were co-localized with previously reported cold tolerant QTLs.
Consequently, a GWAS can identify new QTLs for LTG and provide new insights in to the
genetic basis of LTG in rice.

In this study, a collection of 276 rice accessions from the 3K-RG project with high
density SNPs were used to perform a GWAS in order to uncover potential QTLs and
identify candidate genes for LTG. The favorable haplotype and SNPs affecting gene
expression from two candidate genes for LTG were identified. These results provide a basis
for molecular breeding to enhance LTG and further elucidate the mechanisms in rice.

MATERIALS AND METHODS
Plant materials
In this study, a collection of 276 rice accessions were selected from the 3K-RG
project. All rice accessions were cultivated in the same geographical location in Huai’an
(119�0′14″E, 33�38′43″N), Jiangsu province in 2019 and 2020. Each accession was subject
to the same field management in 2019 and 2020. To eliminate error results caused by
marginal effects, every rice accession was planted in a 5 × 5 block within the 3 m × 3 m
square, and five plants of each accession were randomly chosen from the middle of each
square as the experimental subjects.

LTG measurement
The seeds of each rice accession were collected independently in a nylon bag with
dense nets to air dry seeds for 2 weeks. After that, air-dried seeds were placed in the oven at
50 �C for 7 days to break primary dormancy. A total of 100 plumped seeds of each rice
accession were extracted and spread on a round wet filter paper and kept at 15 �C and
in darkness for germination. The number of germinated seeds was recorded daily from
D6 to D10 with a seed shoot or root exceeding 0.1 cm considered a germinated seed
(Wang et al., 2018c; Akhtamov et al., 2020; Najeeb et al., 2020). Seed germination
rate = germinated seeds/100. LTG was assessed according to the germination rate of each
recorded day.

SNP filter analysis
The genetic variations of 276 rice accessions are available publicly in the 3K-RG database
and the information for all SNPs can be downloaded from the website for free (https://snp-
seek.irri.org/_download.zul). In this study, the set criteria for selecting high-quality
SNPs were based on (1) minor allele frequency (MAF) ≥0.05 and (2) number of accessions
with minor alleles ≥6 (Yang et al., 2014). After filtering, only high-quality SNPs were
retained. A slide window of 1 Mb was adopted to demonstrate the distribution of variants
in all 12 chromosomes to determine the density of the SNPs. The detected SNPs were
annotated and the possible effects were predicted through ANNOVAR (Wang, Li &
Hakonarson, 2010).

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 3/18

https://snp-seek.irri.org/_download.zul
https://snp-seek.irri.org/_download.zul
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Population structure analysis
To analyze the population structure, a principal component analysis (PCA), a neighbor-
joining (NJ) tree and a K value analysis were applied. The phylogenetic tree was
constructed using MEGA7 (version 7.0) (Kumar, Stecher & Tamura, 2016) and the results
were visualized using ggtree (version 1.7.10) (Yu et al., 2017). The PCA was conducted by
PLINK (version v1.90) (Purcell et al., 2007). According to the Bayesian Markov Chain
Monte Carlo (MCMC) Program, the K value, ranging from 2 to 7 in the full population
was inferred using STRUCTURE (version 2.3.4) (Pritchard, Stephens & Donnelly, 2000).
The optimal K value was determined by ΔK (Evanno, Regnaut & Goudet, 2005). The result
was visualized and the relevant Q matrix was generated for further analysis.

Programs for GWAS analysis
Based on the factored spectrally transformed linear mixed model, two programs,
FaST-LMM (version 0.5.1) and GEMMA (version 0.98.1), adding different genetic
similarities to analyze random effects, were applied to perform the GWAS. The validated
number of SNP markers (N) was calculated using the Genetic type I Error Calculator
(GEC) software (Turner, 2014) and suggestive (1/N) P value threshold was adopted as the
standard to control type I error.

Quantitative real-time PCR assay
Ten seeds of each accession were sampled at 15 �C and in darkness. Total RNA was
extracted using the TIANGEN RNAprep Pure kit (#DP441; TIANGEN, Beijing, China)
according to the manufacturer’s protocol. Complementary DNA (cDNA) was synthesized
using a cDNA synthesis kit (#RR047A; Takara, Tokyo, Japan). Quantitative real-time
PCR (qRT-PCR) reaction was conducted using TB Green Premix Ex Taq (#RR820A;
Takara, Tokyo, Japan). The reaction was performed on the CFX Connected Real Time
System (Bio-Rad, Hercules, CA, USA). The expression level was calculated by 2−ΔCt

using the expression level of Ubiquitin as reference. Each sample was tested three times to
fulfill technical replications. Relevant primer sequences are provided in the supplemental
data (Table S1).

RESULTS
Phenotypic variation for LTG in natural rice accessions
A collection of 276 rice germplasms was selected from the 3K-RG project for the LTG test.
Rice accessions in this study were from 17 different regions worldwide (Fig. S1, Table S2).
Previous studies have applied different temperatures ranging from 12 �C to 15 �C to
estimate LTG (Borjas, De Leon & Subudhi, 2015; Fujino et al., 2008; Li et al., 2013; Wang
et al., 2011). Given the effect of secondary dormancy induced in 12 �C (Miura & Araki,
1996), 15 �C was applied to evaluate LTG in this study. Germination was defined as
the seed shoot or root exceeding 0.1 cm from the seed coat (Fig. 1A), and the evaluation of
LTG was based on the germination rate from D6 to D10. The average germination rate on
2019D6 was lower (3.5%) than that (13.6%) on 2020D6 (Fig. 1B, Table 1), suggesting
that environmental factors have an impact on the phenotype of LTG. Furthermore, the

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 4/18

http://dx.doi.org/10.7717/peerj.13407/supp-8
http://dx.doi.org/10.7717/peerj.13407/supp-1
http://dx.doi.org/10.7717/peerj.13407/supp-9
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


total number of germinated accessions was too small to draw any general conclusions
(Fig. S2). The average germination rates were 22% and 31% on 2019D7 and 2020D7,
respectively (Fig. 1B, Table S3). On 2019D7, a total of 129 rice accessions had a
germination rate that exceeded 10% while on 2020D7 this number rose to 161 (Fig. 1C).
From D8 to D10 in both years, the average germination rate almost reached or exceeded

Figure 1 Description of LTG. (A) Variations of low temperature germination in D7. Bar = 200 mm. (B) Germination rate from D6 to D10 for two
different years. (C) Germination rate distribution on D7 in 2019 and 2020. Full-size DOI: 10.7717/peerj.13407/fig-1
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40% (Fig. 1B, Table 1). The investigation of germination rate gaps between two adjacent
days indicated that the gap between D6 and D7 in both years was the largest at 18.5% in
2019 and 17.4% in 2020, respectively (Table 1). In contrast, the smallest germination
gap in 2019 was 13.8% between D8 and D9, while in 2020, the gap between D9 and D10
was the smallest (10.3%) (Table 1). On D10 of both years, all rice accessions had a relatively
high germination rate ranging from 64.7% to 69.4%. Overall, the distribution of
germination rate followed similar trends in both years although the germination rate of D6
and D7 in 2020 was higher than that in 2019 (Fig. 1B, Table 1).

SNP density analysis
The original version of the 3K-RG database contained 32 million SNPs in total. Through
filtering, a total of 497,231 SNPs were detected. After the classification of SNPs, the
density of SNPs in all 12 chromosomes were between 1,033.3/1 Mb and 1,648.94/1 Mb
(Fig. S3, Table S4). This indicated that the filtered SNPs in this study were sufficient and
distributed evenly in 12 chromosomes.

Population structure and kinship
Using the SNPs, we performed a PCA to quantify the population structure of these 276
accessions. The total variance explained by PC1 and PC2 was 35.60% and 16.79%,
respectively (Fig. 2A). Based on the Nei’s genetic distance (Nei, 1972), the NJ tree was
plotted separating the full group into two groups (Fig. 2B). Meanwhile, using
STRUCTURE, the peak of ΔK appeared when K = 2, suggesting that the full population
could be divided into two subgroups (Figs. 2C and 2D). These two subgroups
corresponded to Japonica and Indica (Table S2), which is consistent with the findings of
Wang et al. (2018a).

GWAS for LTG in rice
A total of 136,276 validated SNPs (MAF ≥ 0.05) were used for the GWAS through the
FaST-LMM and GEMMA models. The GEC was used to calculate the indicator P value,
which gave 7.41E−6 as the suggestive P value (−log (p value) = 5.13). According to a
previous study, the distance of two adjacent lead SNPs within 200 kb was considered one
QTL (Lv et al., 2016). A total of 37 QTLs with 54 SNPs were found using FaST-LMM for
LTG from D6 to D10 in both years whereas 107 QTLs with 159 SNPs were detected
using GEMMA (Table 2, Tables S5–S7). Nearly half of the QTLs identified in FaST-LMM

Table 1 Description of germination rate in full population.

Days Germination rate in 2019 Germination rate in 2020

Range Mean ± SD Median Range Mean ± SD Median

D6 0–0.75 0.035 ± 0.100 0 0–1 0.136 ± 0.204 0.04

D7 0–0.99 0.220 ± 0.265 0.1 0–1 0.310 ± 0.285 0.24

D8 0–1 0.399 ± 0.315 0.405 0–1 0.429 ± 0.302 0.39

D9 0–1 0.537 ± 0.311 0.59 0–1 0.544 ± 0.286 0.56

D10 0–1 0.694 ± 0.258 0.77 0.01–1 0.647 ± 0.259 0.71
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(15/37) were also identified in GEMMA, suggesting FaST-LMM had stricter criteria in
controlling false positive association (Table S6).

Using FaST-LMM, there were 26, 8, 5, 4 and 4 QTLs detected from D6 to D10,
respectively, in 2019 and 2020 (Table 2). There were seven QTLs characterized repeatedly
in the total (Table 2). Compared with QTLs reported before, 13 QTLs were co-localized
within the interval of 1 Mb in this study (Table 2). Among these QTLs, 12 QTLs were
associated with LTG, five QTLs were associated with cold tolerance at the seedling stage,
and four QTLs were associated with both LTG and cold tolerance at the seedling stage
(Table 2). These results confirmed that the GWAS results in this study were reliable for
further candidate analysis. The remaining 24 QTLs that had been uncharacterized
before were considered novel QTLs for LTG. Among the novel QTLs, it was notable that
qLTG1-2 was repeatedly detected on D7 in both years using FaST-LMM and GEMMA
(Figs. 3A–3C). Moreover, this QTL was detected on 2020D6 as well using FaST-LMM and
GEMMA (Fig. S4). Therefore, further analysis was focused on qLTG1-2 with this repeated
lead SNP (Chr.1_13340259).

Figure 2 Description of population structure. (A) Principal component analysis. (B) NJ tree based on Nei’s genetic distance. (C) Delta K values
plotted as the number of subgroups. (D) Subgroups inferred using STRUCTURE. Full-size DOI: 10.7717/peerj.13407/fig-2
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Table 2 Summary of detected QTLs using FaST-LMM in the full population.

QTLs Trait ID Chromosome Peak SNP p-value Reported QTLs overlapped

qLTG1-1 2019D6 Chr1 12,153,951 5.51 qCTGERM1-5 (Shakiba et al., 2017)

qLTG1-2 2019D6, 2019D7, 2020D6, 2020D7 Chr1 13,340,259 5.83

qLTG1-3 2020D6 Chr1 19,239,470 6.09 qCTS1-2 (Wang et al., 2016)

qLTG1-4 2019D6 Chr1 22,886,860 6.85 qCTGERM1-6 (Shakiba et al., 2017)

qLTG1-5 2020D6 Chr1 24,833,598 5.60

qLTG1-6 2020D10 Chr1 29,923,602 5.88

qLTG1-7 2019D6 Chr1 35,250,579 5.23 qLTG1b (Fujino et al., 2015)

qLTG2-1 2019D6 Chr2 4,583,247 5.73 OsWRKY71, qCTS2-2 and qLTGS(III)2 (Kim et al.,
2016; Wang et al., 2016; Najeeb et al., 2020)

qLTG2-2 2019D6 Chr2 20,749,806 6.10 qLTG(III)2 (Najeeb et al., 2020)

qLTG2-3 2020D6, 2020D7, 2020D8 Chr2 26,062,949 5.54

qLTG2-4 2019D6 Chr2 30,309,540 7.91 OsMADS57 (Guo et al., 2013)

qLTG2-5 2019D6 Chr2 30,974,975 8.54

qLTG3-1 2019D6 Chr3 24,070,502 6.09

qLTG4-1 2020D10 Chr4 2,756,738 5.28 qCTGERM4-3 (Shakiba et al., 2017)

qLTG4-2 2020D8, 2020D9 Chr4 3,566,435 5.35

qLTG4-3 2020D8, 2020D9, 2020D10 Chr4 4,192,136 6.74

qLTG4-4 2020D6, 2020D7 Chr4 4,527,433 5.14 qLTG(II)4–2 (Najeeb et al., 2020)

qLTG4-5 2019D6 Chr4 20,867,550 5.20

qLTG4-6 2019D6 Chr4 23,131,460 5.27

qLTG6-1 2019D6 Chr6 20,322,237 6.07

qLTG7-1 2020D6 Chr7 1,702,699 6.14 qLTG7 and qCTS7-1 (Fujino et al., 2015; Wang et al.,
2016)

qLTG7-2 2020D7 Chr7 5,701,029 5.25

qLTG7-3 2020D6 Chr7 11,338,200 5.47

qLTG7-4 2020D8 Chr7 13,267,244 5.21 qCTGERM7-2 (Shakiba et al., 2017)

qLTG7-5 2020D6 Chr7 14,587,580 6.83

qLTG7-6 2019D6 Chr7 28,676,190 6.33 qCTS7-5 and qCTGERM7-5 (Wang et al., 2016; Shakiba
et al., 2017)

qLTG8-1 2020D6 Chr8 6,167,751 5.66

qLTG8-2 2020D6 Chr8 7,601,891 5.80

qLTG9-1 2019D6 Chr9 7,410,218 6.22

qLTG10-1 2019D6 Chr10 23,066,742 6.61 qCTGERM10-4 (Shakiba et al., 2017)

qLTG11-1 2020D7, 2020D8 Chr11 1,170,653 5.58

qLTG11-2 2019D6 Chr11 17,712,316 5.55 qCTS11-5 and qCTGERM11-4 (Wang et al., 2016;
Shakiba et al., 2017)

qLTG12-1 2019D6 Chr12 1,512,598 5.40

qLTG12-2 2020D7, 2020D9, 2020D10 Chr12 2,084,623 5.14

qLTG12-3 2019D7 Chr12 10,140,027 5.47

qLTG12-4 2019D7 Chr12 11,182,503 5.93

qLTG12-5 2019D9 Chr12 23,640,519 5.56
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Haplotype and expression analysis of the candidate genes
To further locate the candidate genes of qLTG1-2, two public germination-related
transcriptome datasets (SRP277875, GSE115371) were adopted. Dataset SRP277875

Figure 3 Manhattan plot and Q–Q plot for LTG using 2 programs in D7. (A) A GWAS performed on 2019D7 using FaST-LMM. (B) GWAS
performed on 2020D7 using FaSTL-MM. (C) A GWAS performed on 2019D7 using GEMMA. (D) A GWAS performed on 2020D7 using GEMMA.
An orange arrow represents QTLs detected previously. A black arrow represents novel QTLs detected in this study. A yellow dotted box represents
the repeated identified QTLs. A dashed horizontal line represents the suggestive threshold (P = 7.34 × 10−6, −log10 P = 5.13).

Full-size DOI: 10.7717/peerj.13407/fig-3
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contained the expression data at different time points of two rice accessions for
germination (Yang et al., 2020a) and Dataset GSE115371 provided the expression data of
one rice accession under aerobic conditions for germination at various time points
(Narsai et al., 2017). According to the published transcriptome data, 13 expressed genes
located in the qLTG1-2 interval were found, which were then used for further comparison
analysis of the expression levels in low temperature between high and low germination
accessions (Fig. S5). LOC_Os01g23600, LOC_Os01g23705 and LOC_Os01g23850 failed to
be amplified, suggesting they exhibit very low expression levels in the seeds. Eight genes,
including LOC_Os01g23590, LOC_Os01g23610, LOC_Os01g23630, LOC_Os01g23640,
LOC_Os01g23680, LOC_Os01g23710, LOC_Os01g23740 and LOC_Os01g23870, did not
show obvious differences between high and low germination accessions (Fig. S6).

LOC_Os01g23580 was located 90 kb from the lead SNP and was associated with
abiotic stress in a GO analysis. Furthermore, the homolog of LOC_Os01g23580 in
Arabidopsis has been shown to be involved in the regulation of auxin transport and
response to several abiotic stresses (Li et al., 2005; Wijewardene et al., 2020). One
non-synonymous SNP (Chr.1_13243045, base G-C, amino acid Ser-Thr) and one
upstream SNP (Chr.1_13236390, base A-G) were identified within the sequence of
LOC_Os01g23580, which generated three haplotypes in the full population (Fig. 4A).
Haplotype I of LOC_Os01g23580 displayed better performance for LTG than the left two
haplotypes (Figs. 4A and 4B). Moreover, accessions of high germination rates were usually
ones with G allele whose transcriptional levels were much lower than accessions of low
germination rates with an A allele in the upstream region (Fig. 4C). LOC_Os01g23620,
namely OsSar1a, was located 50 kb from the lead SNP and OsSar1abc RNAi mutants led to
pre-harvest sprouting (Tian et al., 2013). Based on one upstream SNP (Chr.1_13285882
base A-G), the full population was divided into two haplotypes (Fig. 4D). Haplotype I
of OsSar1a showed a higher germination rate than haplotype II which was negatively
associated with transcriptional level (Figs. 4E and 4F).

DISCUSSION
The genetic variation of rice cultivars provides a resource for trait improvement via
breeding (Breseghello & Coelho, 2013). The 3K-RG project provides a foundation for
finding potential candidate genes associated with quantitative traits (Wang et al., 2018a).
Using rice accessions from the 3K-RG project, several genes for crucial agronomic traits
were identified (Anacleto et al., 2019; Kumar et al., 2020; Lu et al., 2021).

LTG is an essential agronomic trait for direct seeding rice in high altitude regions
(Li et al., 2013). In previous studies, LTG was measured using two parameters: low
temperature germination index (LTGI) and low temperature germination potential
(LTGP) (Ji et al., 2009; Wang et al., 2018b). Since germination varies greatly in natural
accessions, LTG was generated according to daily germination rates (Fujino et al.,
2004). Although accessions in both years of this study had similar patterns of germination
rates, a few of them differed in the early days of germination, indicating that
environmental factors could not be ignored (Fig. 1B).
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Figure 4 Candidate genes analysis. (A) Gene structure and haplotype analysis for LOC_Os01g23580. (B) Comparison of germination rate among
LOC_Os01g23580 haplotypes in full population (��p < 0.01; ���p < 0.001). (C) Expression level of LOC_Os01g23580 in contrast accessions after
3 days soaking in water in 15 �C and darkness for germination. Black bars represented expression levels of rice accessions with high germination rate
under low temperature. Grey bars represent the expression levels of rice accessions with low germination rate under low temperature. (D) Gene
structure and haplotype analysis for LOC_Os01g23620. (E) Comparison of germination rate among LOC_Os01g23620 haplotypes in full population
(��p < 0.01). (F) Expression level of LOC_Os01g23620 in contrast accessions after 3 days soaking in water in 15 �C and darkness for germination.

Full-size DOI: 10.7717/peerj.13407/fig-4
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In both study years, four accessions, ‘IRIS_313-7728’, ‘B199’, ‘B077’ and
‘IRIS_313-9886’ showed an extremely high germination rate on D6 in low temperatures.
Thus, these four accessions could be considered potential donors for rice breeding with
regard to LTG.

A GWAS was also performed in Japonica and Indica subgroups, separately, using
FaST-LMM. A total of 21 and 33 QTLs with 49 and 37 SNPs were mapped in Japonica and
Indica, respectively, for LTG in both years (Tables S8–S11). For both subgroups, the
GWAS results for LTG were consistent with those in the full population. In the Japonica
group, 11 QTLs overlapped within the interval of QTLs mapped previously (Fujino et al.,
2015; Najeeb et al., 2020; Shakiba et al., 2017; Wang et al., 2016) (Table 2, Table S10),
of which four QTLs were also detected in the full population. Coincidentally, in the Indica
group, there were also 11 QTLs that had been mapped previously and four of them were
also found in the full population (Table 2, Table S11) (Fujino et al., 2015; Najeeb et al.,
2020; Shakiba et al., 2017;Wang et al., 2016). These analyses confirmed the GWAS results
in the full population in this study.

The repeatedly detected QTL (qLTG1-2) in the full group was also found in the Japonica
(qLTG-1-1-2) and Indica (qLTG-2-1-1) subgroups (Table 2, Tables S10 and S11).
Two candidate genes showed different expression levels in contrast with germination rate
varieties (Figs. 4C and 4F). OsSar1a (LOC_Os01g23620) was functionally identified to be
involved in seed germination (Tian et al., 2013). According to the haplotype analysis,
accessions with a G allele variant located within the 1 kb upstream region of OsSar1a
showed higher germination rates (Table S2). Through a cis-element analysis (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/), accessions with A allele had
complete CAAT-box functions as an enhancer motif in the promoter region (Fig. 4D,
Fig. S7). In agreement with these results, the SNP variant A is associated with high
transcriptional levels (Fig. 4F). These results indicate OsSar1a could be a promising
candidate gene for LTG in rice breeding. So far, few reports have clarified the function of
LOC_Os01g23580, but its homolog in Arabidopsis is involved in the regulation of auxin
transport and confers tolerance to various stresses (Li et al., 2005). Further elucidating the
biological function of LOC_Os01g23580 may be important for rice breeding application.

CONCLUSION
A set of 276 rice accessions from the 3K-RG project with 497 k re-sequenced SNPs was
used for a GWAS to uncover candidate genes regulating LTG. Combined with the
phenotypes from two consecutive years, a total of 37 QTLs were identified in the full
population, co-localizing with 12 QTLs reported before for LTG. Among all QTLs, one
novel QTL, qLTG1-2 was detected repeatedly in both study years by both the FaST-LMM
and GEMMA programs. Based on two published transcriptome datasets, a total of 13
seed-expressed genes were identified for a haplotype analysis and expression analysis.
Eventually, two promising candidate genes, OsSar1a (LOC_Os01g23620) and
LOC_Os01g23580, which both showed differential expression levels in the accessions of
contrast LTG traits, were explored as favorable haplotypes of LTG for rice direct seeding.
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These results may be helpful for further developing rice varieties with high LTG for rice
direct seeding through marker-assisted breeding.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Innovation Program Foundation of Colleges of Jiangsu
Province, China (202110323059Y) and the Natural Science Foundation of Colleges of
Jiangsu Province, China (20KJB210003). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Innovation Program Foundation of Colleges of Jiangsu Province, China: 202110323059Y.
Natural Science Foundation of Colleges of Jiangsu Province, China: 20KJB210003.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Feng Mao performed the experiments, analyzed the data, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Depeng Wu analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Fangfang Lu performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

� Xin Yi performed the experiments, analyzed the data, prepared figures and/or tables, and
approved the final draft.

� Yujuan Gu analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Bin Liu analyzed the data, prepared figures and/or tables, and approved the final draft.
� Fuxia Liu performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.

� Tang Tang performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.

� Jianxin Shi conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Xiangxiang Zhao conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Lei Liu conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

� Lilian Ji conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 13/18

http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The raw data is available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13407#supplemental-information.

REFERENCES
Akhtamov M, Adeva C, Shim KC, Lee HS, Kim SH, Jeon YA, Luong NH, Kang JW, Lee JY,

Ahn SN. 2020. Characterization of quantitative trait loci for germination and coleoptile length
under low-temperature condition using introgression lines derived from an interspecific cross in
rice. Genes (Basel) 11(10):1200 DOI 10.3390/genes11101200.

Anacleto R, Badoni S, Parween S, Butardo JVM, Misra G, Cuevas RP, Kuhlmann M,
Trinidad TP, Mallillin AC, Acuin C, Bird AR, Morell MK, Sreenivasulu N. 2019. Integrating
a genome-wide association study with a large-scale transcriptome analysis to predict genetic
regions influencing the glycaemic index and texture in rice. Plant Biotechnology Journal
17(7):1261–1275 DOI 10.1111/pbi.13051.

Borjas AH, De Leon TB, Subudhi PK. 2015. Genetic analysis of germinating ability and seedling
vigor under cold stress in US weedy rice. Euphytica 208(2):251–264
DOI 10.1007/s10681-015-1584-z.

Breseghello F, Coelho AS. 2013. Traditional and modern plant breeding methods with examples
in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 61(35):8277–8286
DOI 10.1021/jf305531j.

Cheng C, Yun K-Y, RessomHW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG. 2007.An
early response regulatory cluster induced by low temperature and hydrogen peroxide in
seedlings of chilling-tolerant Japonica rice. BMC Genomics 8(1):175
DOI 10.1186/1471-2164-8-175.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the
software STRUCTURE: a simulation study. Molecular Ecology 14(8):2611–2620
DOI 10.1111/j.1365-294X.2005.02553.x.

Fujino K, Matsuda Y. 2010. Genome-wide analysis of genes targeted by qLTG3-1 controlling
low-temperature germinability in rice. Plant Molecular Biology 72(1–2):137–152
DOI 10.1007/s11103-009-9559-x.

Fujino K, Obara M, Shimizu T, Koyanagi KO, Ikegaya T. 2015. Genome-wide association
mapping focusing on a rice population derived from rice breeding programs in a region.
Breeding Science 65(5):403–410 DOI 10.1270/jsbbs.65.403.

Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. 2008.Molecular identification
of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice.
Proceedings of the National Academy of Sciences of the United States of America
105(34):12623–12628 DOI 10.1073/pnas.0805303105.

Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M.
2004. Mapping of quantitative trait loci controlling low-temperature germinability in rice
(Oryza sativa L.). Theoretical and Applied Genetics 108(5):794–799
DOI 10.1007/s00122-003-1509-4.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 14/18

http://dx.doi.org/10.7717/peerj.13407#supplemental-information
http://dx.doi.org/10.7717/peerj.13407#supplemental-information
http://dx.doi.org/10.7717/peerj.13407#supplemental-information
http://dx.doi.org/10.3390/genes11101200
http://dx.doi.org/10.1111/pbi.13051
http://dx.doi.org/10.1007/s10681-015-1584-z
http://dx.doi.org/10.1021/jf305531j
http://dx.doi.org/10.1186/1471-2164-8-175
http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
http://dx.doi.org/10.1007/s11103-009-9559-x
http://dx.doi.org/10.1270/jsbbs.65.403
http://dx.doi.org/10.1073/pnas.0805303105
http://dx.doi.org/10.1007/s00122-003-1509-4
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K. 2013. The interaction
between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature
Communications 4:1566 DOI 10.1038/ncomms2542.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D,
Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y,
Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B. 2010. Genome-wide association
studies of 14 agronomic traits in rice landraces. Nature Genetics 42(11):961–967
DOI 10.1038/ng.695.

Ji S, Jiang L, Wang Y, Liu S, Liu X, Zhai H, Yoshimura A, Wan J. 2008.QTL and epistasis for low
temperature germinability in rice. Acta Agronomica Sinica 34(4):551–556
DOI 10.1016/s1875-2780(08)60021-8.

Ji S, Jiang L, Wang Y, ZhangW, Liu X, Liu S, Chen L, Zhai H,Wan J. 2009.Quantitative trait loci
mapping and stability for low temperature germination ability of rice. Plant Breeding
128(4):387–392 DOI 10.1111/j.1439-0523.2008.01533.x.

Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J. 2006. Analysis of QTLs for seed low
temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops
Research 98(1):68–75 DOI 10.1016/j.fcr.2005.12.015.

Jiang N, Shi S, Shi H, Khanzada H, Wassan GM, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J,
Hu L, Xu J, Ouyang L, Sun X, Zhou D, He H, Bian J. 2017. Mapping QTL for seed
germinability under low temperature using a new high-density genetic map of rice. Frontiers in
Plant Science 8:1223 DOI 10.3389/fpls.2017.01223.

Khush GS. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular
Biology 59(1):1–6 DOI 10.1007/s11103-005-2159-5.

Kim C, Vo K, Nguyen C, Jeong D, Lee S, Kumar M, Kim S, Park S, Kim J, Jeon J. 2016.
Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology
Reports 10:13–23 DOI 10.1007/s11816-015-0383-2.

Kumar A, Daware A, Kumar V, Gopala Krishnan S, Mondal S, Patra BC, Singh AK, Tyagi AK,
Parida SK, Thakur JK. 2020. Genome-wide analysis of polymorphisms identified
domestication-associated long low-diversity region carrying important rice grain size/weight
quantitative trait loci. Plant Journal 103(4):1525–1547 DOI 10.1111/tpj.14845.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis 7.0 for
bigger datasets. Molecular Biology and Evolution 33(7):1870–1874
DOI 10.1093/molbev/msw054.

Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B,
Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R.
2005. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science
310(5745):121–125 DOI 10.1126/science.1115711.

Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q, Wang W, Yang C, Lu B, Liu S, Chen L, Jiang L, Wan J.
2013. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza
sativa L.). Theoretical and Applied Genetics 126(9):2313–2322 DOI 10.1007/s00122-013-2137-2.

Lu J, Wang C, Zeng D, Li J, Shi X, Shi Y, Zhou Y. 2021. Genome-wide association study dissects
resistance loci against bacterial blight in a diverse rice panel from the 3000 rice genomes project.
Rice 14(1):22 DOI 10.1186/s12284-021-00462-3.

Lv Y, Guo Z, Li X, Ye H, Xiong L. 2016. New insights into the genetic basis of natural chilling and
cold shock tolerance in rice by genome-wide association analysis. Plant Cell & Environment
39(3):556–570 DOI 10.1111/pce.12635.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 15/18

http://dx.doi.org/10.1038/ncomms2542
http://dx.doi.org/10.1038/ng.695
http://dx.doi.org/10.1016/s1875-2780(08)60021-8
http://dx.doi.org/10.1111/j.1439-0523.2008.01533.x
http://dx.doi.org/10.1016/j.fcr.2005.12.015
http://dx.doi.org/10.3389/fpls.2017.01223
http://dx.doi.org/10.1007/s11103-005-2159-5
http://dx.doi.org/10.1007/s11816-015-0383-2
http://dx.doi.org/10.1111/tpj.14845
http://dx.doi.org/10.1093/molbev/msw054
http://dx.doi.org/10.1126/science.1115711
http://dx.doi.org/10.1007/s00122-013-2137-2
http://dx.doi.org/10.1186/s12284-021-00462-3
http://dx.doi.org/10.1111/pce.12635
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X,
Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. 2015. COLD1
confers chilling tolerance in rice. Cell 160(6):1209–1221 DOI 10.1016/j.cell.2015.01.046.

Miura K, Araki H. 1996. Low temperature treatment during the imbibition period for the
induction of secondary dormancy in rice seeds (Oryza sativa L.). Japanese Journal of Breeding
46(3):235–239 DOI 10.1270/jsbbs1951.46.235.

Miura K, Lin SY, Yano M, Nagamine T. 2001. Mapping quantitative trait loci controlling low
temperature germinability in rice (Oryza sativa L.). Breeding Science 51(4):293–299
DOI 10.1270/jsbbs.51.293.

Najeeb S, Ali J, Mahender A, Pang YL, Zilhas J, Murugaiyan V, Vemireddy LR, Li Z. 2020.
Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance
germination- and early seedling vigor-related traits in rice (Oryza sativa L.).Molecular Breeding
40(1):10 DOI 10.1007/s11032-019-1090-4.

Narsai R, Secco D, Schultz MD, Ecker JR, Lister R, Whelan J. 2017. Dynamic and rapid changes
in the transcriptome and epigenome during germination and in developing rice (Oryza sativa)
coleoptiles under anoxia and re-oxygenation. Plant Journal 89(4):805–824
DOI 10.1111/tpj.13418.

Nei M. 1972. Genetic distance between populations. The American Naturalist 106(949):283–292
DOI 10.1086/282771.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus
genotype data. Genetics 155(2):945–959 DOI 10.1093/genetics/155.2.945.

Purcell S, Neale B, Todd BK, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI,
Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and
population-based linkage analyses. American Journal of Human Genetics 81(3):559–575
DOI 10.1086/519795.

Ranawake AL, Manangkil OE, Yoshida S, Ishii T, Mori N, Nakamura C. 2014. Mapping QTLs
for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.).
Biotechnology & Biotechnological Equipment 28(6):989–998
DOI 10.1080/13102818.2014.978539.

Sales E, Viruel J, Domingo C, Marques L. 2017. Genome wide association analysis of cold
tolerance at germination in temperate Japonica rice (Oryza sativa L.) varieties. PLOS ONE
12(8):e0183416 DOI 10.1371/journal.pone.0183416.

Satoh T, Tezuka K, Kawamoto T, Matsumoto S, Satoh-Nagasawa N, Ueda K, Sakurai K,
Watanabe A, Takahashi H, Akagi H. 2015. Identification of QTLs controlling low-temperature
germination of the East European rice (Oryza sativa L.) variety Maratteli. Euphytica
207(2):245–254 DOI 10.1007/s10681-015-1531-z.

Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P, McCouch SR, Eizenga GC.
2017. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high
resolution genome-wide analysis. PLOS ONE 12(3):e0172133
DOI 10.1371/journal.pone.0172133.

Song J, Li J, Sun J, Hu T, Wu A, Liu S, Wang W, Ma D, Zhao M. 2018. Genome-wide association
mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using
high-density single nucleotide polymorphism markers from specific-locus amplified fragment
sequencing. Frontiers in Plant Science 9:875 DOI 10.3389/fpls.2018.00875.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 16/18

http://dx.doi.org/10.1016/j.cell.2015.01.046
http://dx.doi.org/10.1270/jsbbs1951.46.235
http://dx.doi.org/10.1270/jsbbs.51.293
http://dx.doi.org/10.1007/s11032-019-1090-4
http://dx.doi.org/10.1111/tpj.13418
http://dx.doi.org/10.1086/282771
http://dx.doi.org/10.1093/genetics/155.2.945
http://dx.doi.org/10.1086/519795
http://dx.doi.org/10.1080/13102818.2014.978539
http://dx.doi.org/10.1371/journal.pone.0183416
http://dx.doi.org/10.1007/s10681-015-1531-z
http://dx.doi.org/10.1371/journal.pone.0172133
http://dx.doi.org/10.3389/fpls.2018.00875
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Sreenivasulu N, Pasion E, Kohli A. 2021. Idealizing inflorescence architecture to enhance rice
yield potential for feeding nine billion people in 2050. Molecular Plant 14(6):861–863
DOI 10.1016/j.molp.2021.05.003.

Tian L, Dai L, Yin Z, Fukuda M, Kumamaru T, Dong X, Xu X, Qu L. 2013. Small GTPase Sar1 is
crucial for proglutelin and alpha-globulin export from the endoplasmic reticulum in rice
endosperm. Journal of Experimental Botany 64(10):2831–2845 DOI 10.1093/jxb/ert128.

Turner SD. 2014. qqman: an R package for visualizing GWAS results using Q-Q and manhattan
plots. BioRxiv DOI 10.1101/005165.

Wang D, Liu J, Li C, Kang H, Wang Y, Tan X, Liu M, Deng Y, Wang Z, Liu Y, Zhang D, Xiao Y,
Wang GL. 2016. Genome-wide association mapping of cold tolerance genes at the seedling stage
in rice. Rice 9(1):61 DOI 10.1186/s12284-016-0133-2.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from
high-throughput sequencing data. Nucleic Acids Research 38(16):e164 DOI 10.1093/nar/gkq603.

Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F,
Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X,
Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C,
Li R, Jia B, Lu J, He X, Dong Z, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, HuW, Poliakov A,
Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Gao Q, Niu Y, Yue Z, Naredo MEB,
Talag J, Wang X, Fang X, Yin Y, Glaszmann JC, Zhang J, Hamilton RS, Wing RA, Ruan J,
Zhang G, Wei C, Alexandrov N, McNally KL, Leung H. 2018a. Genomic variation in 3,010
diverse accessions of Asian cultivated rice. Nature 557(7703):43–49
DOI 10.1038/s41586-018-0063-9.

Wang X, Zou B, Shao Q, Cui Y, Lu S, Zhang Y, Huang Q, Huang J, Hua J. 2018b. Natural
variation reveals that OsSAP16 controls low-temperature germination in rice. Journal of
Experimental Botany 69(3):413–421 DOI 10.1093/jxb/erx413.

Wang Y, Cui Y, Hu G, Wang X, Chen H, Shi Q, Xiang J, Zhang Y, Zhu D. 2018c. Reduced
bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar
consumption and low seed germination rates. Plant Physiology and Biochemistry 133(2):1–10
DOI 10.1016/j.plaphy.2018.10.020.

Wang Z, Wang F, Zhou R, Wang J, Zhang H. 2011. Identification of quantitative trait loci for cold
tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica
181:405–413 DOI 10.1007/s10681-011-0469-z.

Wijewardene I, Mishra N, Sun L, Smith J, Zhu X, Payton P, Shen G, Zhang H. 2020. Improving
drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis
vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Plant Science
296:110499 DOI 10.1016/j.plantsci.2020.110499.

Yang J, Su L, Li D, Luo L, Sun K, Yang M, Gu F, Xia A, Liu Y, Wang H, Chen Z, Guo T. 2020a.
Dynamic transcriptome and metabolome analyses of two types of rice during the seed
germination and young seedling growth stages. BMC Genomics 21(1):603
DOI 10.1186/s12864-020-07024-9.

Yang J, Yang M, Su L, Zhou D, Huang C, Wang H, Guo T, Chen Z. 2020b. Genome-wide
association study reveals novel genetic loci contributing to cold tolerance at the germination
stage in Indica rice. Plant Science 301:110669 DOI 10.1016/j.plantsci.2020.110669.

Yang T, Zhou L, Zhao J, Dong J, Liu Q, Fu H, Mao X, Yang W, Ma Y, Chen L, Wang J, Bai S,
Zhang S, Liu B. 2020c. The candidate genes underlying a stably expressed QTL for low
temperature germinability in rice (Oryza sativa L.). Rice 13(1):74
DOI 10.1186/s12284-020-00434-z.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 17/18

http://dx.doi.org/10.1016/j.molp.2021.05.003
http://dx.doi.org/10.1093/jxb/ert128
http://dx.doi.org/10.1101/005165
http://dx.doi.org/10.1186/s12284-016-0133-2
http://dx.doi.org/10.1093/nar/gkq603
http://dx.doi.org/10.1038/s41586-018-0063-9
http://dx.doi.org/10.1093/jxb/erx413
http://dx.doi.org/10.1016/j.plaphy.2018.10.020
http://dx.doi.org/10.1007/s10681-011-0469-z
http://dx.doi.org/10.1016/j.plantsci.2020.110499
http://dx.doi.org/10.1186/s12864-020-07024-9
http://dx.doi.org/10.1016/j.plantsci.2020.110669
http://dx.doi.org/10.1186/s12284-020-00434-z
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/


Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G,
Luo Q, Zhang Q, Liu Q, Xiong L. 2014. Combining high-throughput phenotyping and
genome-wide association studies to reveal natural genetic variation in rice. Nature
Communications 5(1):27 DOI 10.1038/ncomms6087.

Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for visualization and
annotation of phylogenetic trees with their covariates and other associated data. Methods in
Ecology & Evolution 8(1):28–36 DOI 10.1111/2041210x.12628.

Mao et al. (2022), PeerJ, DOI 10.7717/peerj.13407 18/18

http://dx.doi.org/10.1038/ncomms6087
http://dx.doi.org/10.1111/2041210x.12628
http://dx.doi.org/10.7717/peerj.13407
https://peerj.com/

	QTL mapping and candidate gene analysis of low temperature germination in rice (Oryza sativa L.) using a genome wide association study ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


