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ABSTRACT

We previously conducted an in vitro selection experi-
ment for RNA-cleaving deoxyribozymes, using a
combinatorial DNA library containing 80 random nuc-
leotides. Ultimately, 110 different sequence classes
were isolated, but the vast majority contained a short
14-15 nt catalytic DNA motif commonly known as
8-17. Herein, we report extensive truncation experi-
ments conducted on multiple sequence classes to
confirm the suspected catalytic role played by 8-17
and to determine the effect of excess sequence ele-
ments on the activity of this motif and the outcome of
selection. Although we observed beneficial, detri-
mental and neutral consequences for activity, the
magnitude of the effect rarely exceeded 2-fold.
These deoxyribozymes appear to have survived
increasing selection pressure despite the presence
of additional sequence elements, rather than because
of them. A new deoxyribozyme with comparable activ-
ity, called G15-30, was ~2.5-fold larger and experi-
enced a ~4-fold greater inhibitory effect from exc-
ess sequence elements than the average 8-17 motif.
Our results suggest that 8—17 may be less susceptible
to the potential inhibitory effects of excess arbitrary
sequence than larger motifs, which represents a pre-
viously unappreciated selective advantage that may
contribute to its widespread recurrence.

INTRODUCTION

Invitro selection or SELEX (1-3), is based on the fundamental
assumption that functional DNA or RNA molecules can be
found in a pool of random nucleic acid sequences. This

assumption has been experimentally validated on numerous
occasions since 1990, with the isolation of hundreds of
deoxyribozyme, ribozyme and aptamer sequences. However,
there are still unanswered questions regarding the distribution
of functional nucleic acids in sequence space, and more
importantly, how best to access them.

Every new in vitro selection experiment begins with a com-
binatorial library of single-stranded DNA molecules. The pre-
vailing view supported by several theoretical studies is that
longer libraries offer greater access to larger modular motifs
with greater structural complexity (4—6), which in turn may be
correlated with greater functional activity (7). However, the
tangible benefits of longer random libraries are somewhat
ambiguous given the fact that both long and short libraries
(from >200 nt to <30 nt; nt: nucleotide) have yielded func-
tional molecules. Assessing the true merits of longer random
libraries is made even more difficult by the presence of excess
sequence elements that often mask a shorter functional motif,
often with equal or greater activity than the full-length pre-
cursor. Examples of this scenario are abundant in the literature,
suggesting that this is both a significant and general phe-
nomenon that applies to different types of reactions for
both functional DNA (8-13) and RNA (14-26).

The presence of excess sequence elements has been espe-
cially relevant to the selection of one very well known RNA-
cleaving deoxyribozyme, called 8—17. The 8—17 motif meas-
ures just 14—15 nt in length, but has been repeatedly isolated in
several independent selection experiments using random
libraries greater than or equal to 40 nt (27-32). Previously,
we conducted an in vitro selection experiment using a DNA
library that featured the longest random-sequence domain
(80 nt) ever used for the isolation of RNA-cleaving deoxyri-
bozymes (33). Our primary motivation for choosing this length
was to increase the probability of isolating a diverse collection
of deoxyribozymes. For the same reason, we used several
reaction times during the course of selection (from as long
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as 5 h to as short as 5 s) to promote phenotypic heterogeneity
across different generations, and sequenced many clones from
these different generations in an effort to thoroughly assess
the population diversity. Ultimately, 110 different sequence
classes were identified, but >90% of these contained variants
of the 8—17 motif, which we suspected might be responsible
for the observed catalytic activity. Peracchi (31) has previ-
ously demonstrated that catalysis in the Mg5 RNA-cleaving
deoxyribozyme is likely supported by an 8—17 motif, contrary
to the much larger secondary structure originally proposed by
Famulok and colleagues (29).

While the mere presence of the 8—17 motif is highly sug-
gestive given its recurrence in other studies, we wondered if it
might represent just one module within a larger, more soph-
isticated structure. For instance, Silverman and colleagues (13)
re-isolated the catalytic core of a short RNA ligase deoxyri-
bozyme whose activity benefited by more than an order of
magnitude from the presence of ~20 additional nucleotides.
Our objective in this study was 3-fold. We wanted to (i) sub-
stantiate the suspected catalytic role played by the 8-17
motifs, (ii) determine how their activity was affected by excess
sequence elements and (iii) determine what kind of impact this
had on the outcome of selection. This knowledge could have
general implications for the effective design and implementa-
tion of future in vitro selection efforts.

MATERIALS AND METHODS
Oligonucleotides and reagents

Oligonucleotides were prepared by automated DNA synthesis
using cyanoethylphosphoramidite chemistry (Keck Biotech-
nology Resource Laboratory, Yale University; Mobix Central
Facility, McMaster University). DNA and RNA oligonuc-
leotides were purified by 10% preparative denaturing (8 M
urea) PAGE and their concentrations were determined by
spectroscopic methods.

Nucleoside 5'-triphosphates and [y-*P]JATP were pur-
chased from Amersham Pharmacia. T4 DNA ligase, T4 poly-
nucleotide kinase (PNK), calf intestine alkaline phosphatase
and T7 RNA polymerase were purchased from MBI Fer-
mentas. All chemical reagents were purchased from Sigma.
The 50 nt RNA substrate (S) was produced by in vitro tran-
scription using T7 RNA polymerase and an appropriate
double-stranded DNA template generated by PCR as
described previously (33), and standard in vitro transcription
protocols were used with pairs of complementary synthetic
DNA oligos to produce the 26 nt SS substrate, and 18 nt
ST substrate. Nucleotide sequences of RNA substrates are
as follows: 50 nt S = 5'-ggagagagaugggugcguuacguaaac-
uuacaucuacgaaucagguucga; 26 nt SS = 5’-ggagagagaugggug-
cguuacguaaa; 18 nt ST substrate = 5'-gggagagaugggugcguu.

Construction of substrate-deoxyribozyme cis constructs

The 50 nt or 26 nt RNA substrates were first ligated to 14 nt Al
(5'-ggaaactagacaga) in a separate large-scale ligation reaction.
Typically, 2500 pmol of RNA substrate was combined with
2750 pmol ligation template (5'-tctctctectetgtctag) and 3000
pmol of Al, heated for 30 s at 90°C and allowed to cool at
room temperature for ~10 min. After cooling, 10 pl of 10x

ligase buffer (supplied by Fermentas) and 10 pl of T4 DNA
ligase (5 Weiss U/ul) were added to initiate the ligation reac-
tion. The reaction mixture (100 pl, total volume) was incub-
ated at room temperature for 4 h or overnight. The ligated
A1-RNA substrate was recovered by standard ethanol precip-
itation and purified by 10% denaturing PAGE. The A1-RNA
substrate construct was 5'->2P-labelled with PNK, extracted
twice with phenol/chloroform/isoamyl alcohol (25:24:1), and
ethanol precipitated before being used in separate small-scale
ligation reactions with specific deoxyribozymes. Thirty pmol
of Al-substrate was combined with 90 pmol of 5'-phos-
phorylated deoxyribozyme, 36 pmol of ligation template
(5'-gegtacgtgtcgaacctgatteg), and 45 pmol of substrate cleav-
age blocker (5'-tttacgtaacgcacccatctetctectetgtetag), heated at
90°C for 30 s and allowed to cool at room temperature for
~5-10 min. The substrate cleavage blocker is synthetic DNA
complementary to a section of the RNA substrate surrounding
the cleavage site, and was used to prevent deoxyribozyme-
mediated cleavage during ligation. After cooling, 1.25 ul of
10x ligase buffer (supplied by Fermentas), 4 pl of T4 DNA
ligase (5 Weiss U/ul) and DEPC treated H,O were added to a
final volume of 25 pl. The reaction was incubated at 37°C for
1 h, then ethanol precipitated and purified by 10% denaturing
PAGE.

Kinetic analyses of cis-cleaving deoxyribozymes

A typical intramolecular self-cleavage assay consisted of the
following steps: (i) heat denaturation of the deoxyribozyme-
substrate construct in water for 30 s at 90°C, followed by slow
cooling at room temperature for ~10 min, (ii) the addition of
selection buffer (final concentration, 400 mM NaCl, 100 mM
KCl, 7.5 mM MgCl,, 7.5 mM MnCl,, 50 mM HEPES, pH 7.0
at 23°C) and incubation at room temperature for a designated
period of time, (iii) addition of EDTA to 30 mM to stop the
reaction, (iv) separation of cleavage products by denaturing
10% PAGE and (v) quantitation using a Phosphorlmager and
ImageQuant software. Time courses for each deoxyribozyme
were conducted at least twice using 13-16 different time
points for each. The experimental data was fit to either a single,
Y = Y, (1 — eV or double, Y = Y e (1 — e Fom19) 4
Yomaxa(l — e o2ty exponential equation using non-linear
regression analysis in GraphPad Prism 4, from which the
observed rate constant (k.,s) and maximum cleavage yield
(Ymax) Were determined.

Kinetic analyses of trans-cleaving deoxyribozymes

For single turnover experiments, a 100-fold excess of deoxyri-
bozyme was mixed with 5'-**P-labelled substrate. Substrate
and deoxyribozyme were heated together at 90°C for 30 s, and
allowed to cool at room temperature for ~10 min. A 2X
selection buffer was added to initiate the reaction giving a
final concentration of 1.66 UM deoxyribozyme to 0.0166
UM substrate. The reaction was terminated after a designated
period of time by the addition of EDTA to 30 mM. The rate
constant was determined from at least two independent experi-
ments that differed by <10%. Each time course consisted of 16
time points. A graph of fraction cleaved versus time was
plotted, and the experimental data fit to a single or double
exponential equation using non-linear regression analysis in
GraphPad Prism 4.



RESULTS

Selection, identification and confirmation of the 8§-17
catalytic motif

We previously conducted an in vitro selection experiment to
isolate RNA-cleaving deoxyribozymes (33), using the library
design illustrated in Figure 1A. In addition to 80 random
deoxyribonucleotides, this library featured an RNA substrate
composed of 50 fixed-sequence ribonucleotides. After per-
forming sixteen rounds of selection, ~50 clones were
sequenced from each of generations 7, 8, 10, 13 and 15,
which were subjected to increasing selection pressure in the
form of decreasing reaction times of 5 h, 30 min, 5 min, 30 s
and 5 s, respectively. From a total sample set of 245 sequenced
clones, 110 unique sequence classes were identified. On aver-
age, different classes shared only ~30% nucleotide identity,
but clones within the same class boasted >90% identity.
Further analysis revealed the presence of the 8—17 motif in
~94% of all classes. For simplicity, we use the term 8-17 to
describe both the canonical motif (32) and all related sequence
variants.

The discovery of a motif as simple and well defined as 8—17,
in so many different sequences, provided a unique opportunity
to gain further insight into the role of excess sequence ele-
ments during in vitro selection. Toward this end, 11 sequence
classes were characterized in greater detail. All eight classes
identified in the terminal G15 population were investigated,
including one that does not contain 817 or any other previ-
ously characterized motif. These deoxyribozymes presumably
represent the best catalysts, because they survived under the
most stringent selection time. For comparison, we also selec-
ted three classes that were observed only transiently in the
preceding generations 8, 10 or 13. Figure 1B shows the
sequence of a specific clone from each of the ten 8-17 con-
taining classes that were examined, as well as the frequency

A1 RNA substrate P1
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and generation from which they were isolated (the non-8—17
class is addressed separately in a subsequent section). The
8—17 motif has been studied extensively (27,30-32,34,35),
and is readily identifiable near the 5’ end by its characteristic
sequence requirements.

The secondary structure and sequence requirements of the
8—17 motif are summarized in Figure 2A. The nucleotide
numbering system used in Figure 2A is analogous to the sys-
tem originally proposed for the hammerhead ribozyme (36),
and subsequently adopted for the 8-17 deoxyribozyme
(31,34). The canonical 8—17 motif as first described by Santoro
and Joyce (32), was composed of 1415 nt (plus 7-8 nt binding
arms on either side) and characterized by a G-T wobble base
pair at the cleavage site, a 3 bp stem of which at least two were
G-C base pairs, an invariant A¢G;C triloop, and a single-
stranded region of sequence WC;3G4,R (W = A or T; R =
A or G or AA). Subsequent studies have suggested that the
sequence requirements of 8—17 are far more versatile. A study
by Cruz et al. (30) reported that only four residues are strictly
conserved (Ag and G in the triloop, C;3 and G4 in the single-
stranded turn region), the triloop region can also accept a
tetraloop, the 3 bp stem can accommodate up to 1 or 2 mis-
matches and/or single-nucleotide bulges, and the single-
stranded region has a more relaxed sequence requirement
for positions W and R. Most recently, Peracchi et al. (34)
have conducted a comprehensive mutational analysis to
show the effect of different mutations on the catalytic activity
of 8—17. From the results of Peracchi’s study, the approximate
relative activity at different nucleotide positions (in Mn**
buffer) is predicted to be as follows: T, ;>A>>G,C;
Ce>T>>G,A; T1:>G>A>>C; Aj5A15.0>A>T>C>G. The mag-
nitude and relative order of activities vary depending on the
type and concentration of metal ion cofactors used. Further-
more, the composition of the 3 bp stem is also associated with
varying levels of activity. The magnitudes of these effects are

Deoxyribozyme Domain P2 P3

142 [NGGRsOIN o 15 | 15

G15-1

G15-16
G15-39
G15-35
G15-47
G15-48

ATTTCCAGCGGATCGATTCTCTTTCCCGTCGTAGGTATGACCAGGGAAGAATAGGTGGACATARATTGATGGTGTCGGG (15)
ACTTCCAGCGGATCGAAATCTTGAACGCAGCTAGGTCTCGGGTGTGGCGGTGAGTTGGCGTAGGCCATGCCTTCCGCTGG  (14)
ACTGCTAGCAGCTCGAAATCGCTCTCTCAATATGGGCTTTCGGGGAAGACGGTAATAGGAGAAATGGTGCCTTGTCCGTG (8B)
ACTGCCAGCGGCGCGAGGCTCTTGATCGGGCGCAGGAGGGGACCGGTGATATCGGCATCCTCGATGTTAGACTGGATGGT  (4)
ACTGCCAGTGGCGCGAATTCTCTGGGAGATCTGTATAGGGTTGCCTGCGAGTTGACAGGGATGGTGTGCAGTTTGTGTGG (1)
ACTGCCAGCGGCGCGATTCACTGTCGGAGACTAGTTGTTGCCTTCGGCTTGGAAGGACAAAACTTTTGTCATAGCGTGGG (1)

G15-49
G13-20
G10-47

TACTCTCAGTGAGGCGAAATCTTCTCTCTGCGGGAACAATCGGGGGCGCAGTGATCAAGGGTGGARATGGGGATGGGTG (1)
ACTGCCAGCGGCGCGATTCTGTTTCGGCGTGGTTATACAGCTTGAGTGGTGGCACTCTTGCCAGCCTRAGTGTTGGGGTG (3)
ACTGCCAGCGGCGCGATTTGGCTCTACCGTTCATTCGGCTGTGTTGCCCTAGGTAGGGTTCAGCAGTGATTTTGGTGGGG (1)

G8-1 ACTGTGAGCCGACACGAATCTCTGAGTCTTCGGTCGAGAGCCTGCTATTCAGCATTAGGAGGCGCGCTCTCGGCTGGTGG (6)

Figure 1. (A) Library design. Numbers indicate the nucleotide length of each section. Al is a piece of DNA used to facilitate the separation of cleaved and
non-cleaved molecules in our gel-based selection method. The total length of the RNA substrate is 50 nt (see Materials and Methods for nucleotide sequence), and
cleavage occurs at the 5’ GGy, junction. P1, P2 and P3 represent primer binding sites. P1 was used from G0-G16, P2 was used from G0-G7, and P3 was used from
G8-G16. The putative deoxyribozyme domain contains 80 random nucleotides. (B) Sequences of specific clones from selected deoxyribozymes classes. Only the
random sequence domain is shown. Each sequence is preceded by a numeric designation that indicates the generation from which it was taken (i.e. G#), and the
specific clone number. Bracketed numbers at the far right of each sequence indicate the number of clones observed in that generation.
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Figure 2. (A) Graphical summary of the 8—17 secondary structure and sequence
requirements. The 8—17 motif is characterized by a G-T wobble base pair (black
dot) at the cleavage site, a 3 base pair stem, a tri-loop and a 4-5 nt single-
stranded turn region. Two general binding arms on either side of the 8—17 motif
(thick black lines) engage the substrate strand (thick grey lines) through
Watson—Crick base pairs (indicated by thin black lines). Underlined nucleotides
are strictly conserved, while mutations at other positions are acceptable but
associated with different catalytic activity. The approximate relative activity (in
Mn?* buffer) at different positions is indicated. The magnitude and relative
order of activities may vary depending on the type of metal ion cofactors used.
Cleavage occurs at the G-G junction indicated by the arrow, although it has been
previously shown that 8—17 variants can collectively cleave 14 of 16 possible
dinucleotide junctions. (B) Proposed secondary structure interaction between
the deoxyribozyme domain (black letters) and the RNA substrate domain (grey
line/letters) of each sequence class. The outlined letters correspond to P1 and the
outlined box corresponds to Al. For simplicity, only the 8—17 containing sec-
tion of the deoxyribozyme domain is shown. (C) Evidence to support a catalytic
role by 8-17. The autoradiogram depicts the results of self-cleavage assays for
truncated versions of each sequence class. The positive control (+) refers to the
truncated sequence shown in (B) with a truncated RNA substrate lacking 24 nt
from the 3" end (30 min reaction time). Mutants having either a G7 to T or C3 to
T mutation are denoted by G and C, respectively (12 h reaction time). Cleavage
products (Clv) were separated from the uncleaved precursor substrate (Pre) by
10% denaturing PAGE.

omitted since the assay conditions in reference (34) are not
directly comparable to our own.

The suspected secondary structure interaction between the
8—17 containing DNA domain and the RNA substrate are
illustrated in Figure 2B for each class. Approximately 91%
of all the observed 8—17 motifs were located at the 5’ end of the
DNA domain, which allowed them to exploit the 5’ primer-
binding site (P1) as one binding arm. This unintentional
sequence complementarity likely favoured the selection of
catalysts that cleave the adjacent G-G dinucleotide junction.
Although the observed 8-17 motifs satisfy the sequence
requirements established by previous studies, formation of
the 8—17 motif is not predicted to be the most energetically
favourable according to secondary structure prediction soft-
ware, such as mfold (37). This discrepancy is maintained even
when full-length molecules are truncated to remove excess
sequence elements. Therefore, we synthesized 3’ truncated
enzymes corresponding to the nucleotide sequences shown
in Figure 2B (containing only the suspected 8—17 motif and
8-10 nt binding arms), and ligated them to a truncated RNA
substrate lacking 24 consecutive nucleotides from the 3’ end
(corresponding to the loop region that is not expected to inter-
act with the deoxyribozyme domain). Figure 2C indicates that
these truncation derivatives are still catalytically active, but
the same constructs containing either a G5 to T substitution, or
a Cy5 to T substitution are completely inactive. These experi-
mental results are consistent with theoretical expectations
(both G; and C;3 are known to be invariant nucleotides),
and strongly support a catalytic role for the embedded 8-17
motif.

To assess the effect of excess sequence elements on the
activity of the 8-17 motif, four different constructs were
made for each sequence class, which are depicted in
Figure 3. These constructs include: (i) the full-length enzyme,
denoted by ‘L’, (ii) a 3’ truncated enzyme containing only the
8—17 motif and an 8-10 nt 3’ substrate binding arm (corres-
ponding to the sequences shown in Figure 2B), denoted by ‘S’
(iii) the same truncated enzyme from part ii with a truncated

PBA [ ESGoE== =3 wllﬂll

Figure 3. Schematic diagram of different truncation constructs that were
assayed. Dotted arrows define truncation regions. L corresponds to the original
full-length molecule. S corresponds to a 3 truncated construct containing only
the 8-17 motif and an 8-10 nt 3’ binding arm. SS corresponds to the same
construct as S, but attached to a truncated RNA substrate lacking 24 contiguous
nucleotides from the 3’ end. PBA corresponds to the same construct as S, but
with an optimized 3’ substrate binding arm in which mismatches and bulges
were replaced with Watson—Crick base pairs.
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Table 2. Y,,.x and Y ,ax rer Values of different truncation derivatives for each
sequence class

Deoxyribozyme ko (min~") kel Deoxyribozyme Y ax (%) Y max.rel
S SS PBA PBAA S/L SS/S PBAA/S L S SS PBA PBAA S/L SS/S PBAA/S

Gl15-1 1.0 0.83 0.76 0.10 065 08 09 0.8 G15-1 72 66 45 49 66 09 0.7 1.0
G15-16 2.1 1.5 27 33 — 07 18 22 G15-16 78 75 60 83 — 1.0 0.8 1.1
G15-39 1.7 21 18 20 — 1.3 0.8 09 G15-39 74 76 62 85 — 1.0 0.8 1.1
G15-35* 0.87 090 1.2 0.06 072 1.0 1.3 0.8 G15-35% 70 66 61 42 63 09 09 1.0
G15-47 0.76 0.38 0.46 0.69 — 05 12 1.8 G15-47 55 62 58 83 — 1.1 09 1.3
G15-48* 0.61/0.024 0.73 090 0.06 0.72 1.2 1.2 1.0 G15-48* 26/34 58 59 42 63 1.0 1.0 1.1
G15-49 0.56 0.57 092 1.2 — 1.0 1.6 2.1 G15-49 65 21 20 76 — 03 1.0 3.7
G13-20* 0.36/0.025 0.31 0.86 0.06 0.72 09 28 23 G13-20* 35/32 67 76 42 63 1.0 1.1 0.9
G10-47* 0.24 0.36 045 0.06 072 15 1.2 20 G10-47* 66 66 69 42 63 1.0 1.0 1.0
G8-1 0.14 0.20 0.20 0.24 — 14 1.0 12 G8-1 59 58 57 55 — 1.0 1.0 0.9
Average 1.0 14 15 Average 09 09 1.3
Median 1.0 1.2 15 Median 1.0 1.0 1.0
Maximum 1.5 28 23 Maximun 1.1 1.1 3.7
Minimum 0.5 08 0.8 Minimum 03 0.7 0.9

Data are the average of at least two independent trials, which typically differed
by <20%. k. is defined as the activity of one construct (numerator) relative to
another construct (denominator), as indicated in the table. All values have been
rounded for clarity, with k. values calculated prior to rounding. G15-48 and
G13-20 displayed biphasic kinetics and therefore have two different &, values
representing the first and second phase, respectively. Deoxyribozymes denoted
with an asterisk contain the same 8—17 catalytic core. PBAA represents the same
construct as PBA, but with an extra adenosine residue in the A5 position of the
single-stranded turn region. Values in the PBAA/S column were determined
from either the PBAA or PBA column. Reaction conditions: 400 mM NaCl,
100 mM KCl, 7.5 mM MnCl,, 7.5 mM MgCl,, 50 mM HEPES (pH 7.0, at
23°C) at room temperature.

RNA substrate lacking 24 nt from the 3’ end, denoted by ‘SS’
and (iv) a 3’ truncated enzyme containing only the 8—17 motif
and a perfect 3’ binding arm containing 10 consecutive
Watson—Crick base pairs, denoted by ‘PBA’. All rates were
obtained using single-turnover cis constructs. However, each
class is also active in a bimolecular trans format (Supplemen-
tary Figure 1). Table 1 summarizes the results of these trun-
cation experiments in terms of their effect on the catalytic rate
constant, kop,s. Since a deoxyribozyme’s ability to fold into an
active conformation is critical for function, we have also sum-
marized the results of the truncation experiments in terms of
their effect on the maximum cleavage yield, denoted by Y .«
in Table 2.

Genotype to phenotype relationship

The results shown in Table 1 indicate that the catalytic rate of
each class closely parallels its abundance in the population.
For instance, classes such as G15-1, G15-16 and G15-39 that
boast the fastest rates also represent the largest fraction of the
G15 population (see Figure 1B for class frequency). In con-
trast, the classes that died out in earlier generations (i.e.
G13-20, G10-47 and G8-1), not surprisingly, have the lowest
rates. Similarly, the most abundant classes may benefit from
a slight folding advantage over others, as reflected by the
higher Y,,.x values shown in Table 2. The relative activity
of the different 8—17 motifs is also consistent with previous
reports (34).

The effect of excess sequence elements

The average effect of the excess 3’ sequence in the deoxyri-
bozyme domain is neutral, although an even distribution of

Data are the average of at least two independent trials, which typically differed
by less than 5%. Y .« is defined as the maximum cleavage yield as determined
from the best-fit curve using GraphPad Prism 4. Y.« e is defined as the
maximum cleavage of one construct (numerator) relative to another construct
(denominator), asindicated in the table. All values have been rounded for clarity,
Wwith Y ax re1 Values calculated prior to rounding. G15-48 and G13-20 displayed
biphasic kinetics and therefore have two different Y ., values representing the
amplitude of the first and second phase, respectively. Deoxyribozymes denoted
with an asterisk contain the same 8-17 catalytic core.

both beneficial and detrimental effects is observed (Table 1,
column S/L). The magnitude of these effects, however, is
relatively modest with a 50% increase or decrease in activity
representing the maximum change. This modest change in
activity suggests that the excess 3’ sequence is acting only
to mediate the stability of 8—17’s active fold, likely through the
formation of the 3’ substrate-binding arm. The average effect
of deleting excess sequence from the RNA substrate domain is
a40% increase in activity (Table 1, column SS/S). The activity
of seven classes were inhibited by the excess ribonucleotides
in varying amounts, one was neutral (G8-1), and the remainder
were associated with a slightly beneficial effect (G15-1, G15-
39). This variation between classes is noteworthy, since the
RNA sequence is constant and presumably can form the same
5’ substrate-binding arm with P1 in each class. Therefore, the
magnitude of the effect is likely influenced by downstream
elements including the stability of the 3’ substrate-binding arm
and perhaps even the type of 8-17 motif. On average, the
activity of the G15 classes appear to be less affected by the
presence of excess sequence elements in both the deoxyri-
bozyme and substrate domains, than classes that died out in
earlier generations (krey s/1..G15ave = 0.9 V8. krel s/ <G15ave = 1.3;
krer,ss/5.G15ave = 1.3 V8. kretss/s.<Gisave = 1.7). This effect
closely parallels the greater stability associated with the 3’
substrate binding arm of G15 classes (ke pass,Gisave = 1.4
Versus kel pBA/S,<G15ave = 1.8).

As expected, optimized 3’ binding arms resulted in an aver-
age increase in catalytic activity (~50%), although three
classes (G15-1, G15-39 and G15-35) actually decreased
in activity (~10-20%), contrary to expectations (Table 1,
column PBAA/S). This decrease can probably be attributed
in part to experimental error, but also to the peculiarities
associated with G15-1 and G15-35 (and related classes
G15-48, G13-20 and G10-47). These classes have only a sin-
gle adenosine residue in the terminal A;s position of the
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Figure 4. Kinetic analysis of G13-20 and G15-48. The fraction of substrate cleaved was plotted versus time, and the experimental data fit to either single or double
exponential equations using non-linear regression analysis in GraphPad Prism 4. Two independent trials were conducted (trial 1, white circles; trial 2, black triangles),
and the correlation coefficient (R?) for the average of both trials is indicated. (A) G13-20L. The data are best described by a curve fit to a double exponential equation
(solid black line) rather than a single exponential equation (dotted black line). (B) G13-20S. The data are best described by a curve fit to a single exponential equation.
(C) G15-48L. The data are best described by a curve fit to a double exponential equation (solid black line) rather than a single exponential equation (dotted black line).
(D) G15-48S. The data are best described by a curve fit to a single exponential equation.

single-stranded bulge region, which may base pair with the
uridine residue immediately 5’ to the GG cleavage site. The
extra stability conferred by the additional downstream base
pairs in the perfect binding arm (PBA construct), may promote
the A-U base pair to form and thereby constrain the 8—17 motif
into a sub-optimal fold. Consistent with this theory, the ori-
ginal weaker binding arm (S construct) is associated with
higher activity in these classes. Moreover, the insertion of
another A residue adjacent to the existing one in the perfect
binding arm (PBAA column in Tables 1 and 2) nearly restores
activity to wild-type level.

Interestingly, the excess sequence elements in both the
DNA and RNA domains do not seem to have a significant
impact on the maximum cleavage yield. The general effect
appears to be neutral, and the minor changes that are observed
are likely due to inherent experimental variation. However,
one class (G15-49) experiences a 70% decrease in Y . after
deletion of its excess 3’ DNA sequence, the magnitude of
which cannot be explained by simple experimental variation.
Instead, we suspect the disruptive effect of the two T bulges in
the 5" and 3’ binding arms is attenuated by the presence of the
downstream DNA sequence, and intensified in its absence. The
downstream sequence elements may form additional stabiliz-
ing contacts with Al. Consistent with this theory, Y .x is
~3.7-fold larger when both T bulges are removed in
G15-49 PBA.

Characterization of the global 817 population

We wondered if the results of our 10 deoxyribozyme sample
set were representative of the global 8—17 population from our
selection experiment. On average, a neutral or modest inhib-
itory effect was observed with excess sequence elements in
the deoxyribozyme and substrate domains, respectively.

However, we might expect that the G15 classes would have
been selected, in part, for their ability to minimize any neg-
ative effect associated with excess sequence elements. To
address this issue, we looked for the six different 8—17 variants
from G15 (G15-35 and G15-48 have the same 8-17 core
motif) in the other ~100 sequence classes that were eliminated
during earlier generations under more permissive selection
conditions. Most of these fast 8—17 variants were unique,
and not observed in other generations. However, the 8-17
catalytic core from G15-1 was also present in G13-E78,
and G15-35 shares the same core motif with G15-48, G13-
20, G10-47 and G7-E33. We determined that the full-length
G13-E78 deoxyribozyme has a kg of 1.09 min~', and a Y max
of 66%. Therefore, G13-E78 was not eliminated because of an
uncharacteristically large inhibitory effect from excess
sequence elements. We suspect G13-E78’s absence from
the generation 15 population may be due to sampling error,
PCR bias, sub-sampling effects or some combination thereof.

Classes G15-35 and G15-48 are 2-3 times faster than
G13-20 and G10-47 even though they contain the same
8—17 catalytic core. The disparity between their rates, how-
ever, can be explained by the difference in their 3’ substrate
binding arms. Both G13-20 and G10-47 have relatively poor
3’ substrate binding arms as reflected by the ~2-fold higher
activity observed upon optimization (Table 1, PBAA/S col-
umn). This contrasts with G15-35 and G15-48, which experi-
ence an approximately neutral effect upon optimization of
their 3’ substrate binding arms. It should be noted that
G15-48 and G13-20 appear to follow biphasic kinetics,
which are characterized by a fast initial phase followed by
a slower second phase. Though not particularly common,
biphasic kinetics have been observed previously in other
deoxyribozymes (38), and ribozymes like the hairpin
(39,40) in which it was attributed to the formation of
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Figure 5. (A) Sequence of G15-30 and the corresponding k. values for various truncation derivatives. The numbers on top indicate the nucleotide length of various
truncated versions, and the corresponding ks value is depicted below the sequence. Each &, value is the average of two independent trials, which typically differed
by <20%. For simplicity, primer-binding sites are depicted as boxes. The underlined region shows some resemblance to an 8-17 motif, but does not satisfy all
sequence requirements. (B) Relative activity of truncated deoxyribozymes. The activity of the 119 nt deoxyribozyme is taken as 1. Construct 59SS represents the 59 nt
deoxyribozyme attached to the same truncated RNA substrate described previously. (C) Design of a shorter, trans-acting version of the G15-30 deoxyribozyme
(G15-30T), and a shorter 18 nt RNA substrate (ST). (D) Kinetic analysis of G15-30T under single-turnover conditions (deoxyribozyme:substrate ratio of 100:1). The
black line represents the non-linear least-squares fit to the experimental data using a double exponential equation (R*> = 0.997). Two independent trials were
conducted (trial 1, black circles; trial 2, white triangles), which differed by <10%. The rate constants kop; and kqpso refer to the first and second phases, respectively.
(E) Autoradiogram of trans cleavage assay for G15-30T conducted under multiple turnover conditions. A 100 fold excess of 5 -32P_Jabelled substrate was incubated
with G15-30T. Reaction conditions; 1 UM substrate, 10 nM enzyme and 50 mM HEPES (pH 7.0, at 23°C), 400 mM NacCl, 100 mM KCl, 7.5 mM MnCl,, 7.5 mM
MgCl,, at room temperature; sampled at 0, 1, 2, 5, 10, 30 and 60 min. Cleavage products (Clv) were separated from the uncleaved precursor substrate (Pre) by

electrophoresis in a denaturing 10% polyacrylamide gel.

alternative conformations. Interestingly, the 3’-truncated ver-
sions of each deoxyribozyme exhibit monophasic kinetics,
which suggests that the extra nucleotides may facilitate the
formation of alternative structures and the observed biphasic
kinetics (Figure 4).

The 8-17 motifs of all sequence classes are listed in
Supplementary Figure 2, and are grouped into four primary
phenotypic classes (based on the relative activity scheme
described in Figure 2A). Although we have listed 22 other
8—17 variants in the same general phenotypic class as G15-1,
G15-16 and G15-39, it should be noted that these classes are
still likely to be diverse in activity, and further subdivision has
not been attempted due to insufficient mutational data. How-
ever, we do not expect that any of these classes died out due to
an uncharacteristically large inhibitory effect from excess
sequence elements. We identified two classes (G7-E129 and
G10-E36.2) that closely resemble the fastest characterized
8—17 variant (i.e. identical to G15-16 but lacking one of the
terminal adenosine residues and containing a different
3’ substrate-binding arm), yet died out in generation 7 and

10, respectively. The full-length version of G7-E129 was
assayed for self-cleavage yielding a kops of 0.58 min~' and
Y max of 61%, which provides further evidence that the results
from our sample set are likely representative of the general
population. At this time, we can only speculate as to why
G7-E129 was eliminated so early in the selection, despite hav-
ing catalytic properties comparable to G15-49 (k,,s = 0.56
min~ ', Y max = 65%). Other factors, such as PCR amplification
bias, random genetic drift, and sampling error may have
contributed to the loss of this sequence class. We have previ-
ously initiated an investigation into the population dynamics
of in vitro selection, and expect future reports to yield even
greater insight into the significance of these factors on the
outcome of selection (41).

Characterization of a non-8—-17 motif

From a total of 110 sequence classes isolated in our previous
selection experiment, only seven did not appear to contain the
8—17 motif or any other previously reported RNA-cleaving
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deoxyribozyme motif. Five of these classes were eliminated by
generation 8, and another class was observed as a single clone
in G13. Only one class (G15-30) survived the stringent 5 s
selection pressure applied in G15, and represented ~10% of
the population (from a sample of 49 clones). G15-30 was
therefore selected for further examination. It should be
noted that this class does possess some of the characteristic
sequence requirements of 8—17 near the 5" end, but lacks the
strictly conserved Gy, residue from the single-stranded turn
region described in Figure 2A. Despite this discrepancy we
originally suggested that catalysis in G15-30 [referred to
previously as DZ4 in reference (33)], might still be supported
by an unusual 8-17 variant. However, subsequent evidence
from a more rigorous investigation supports the contrary. Mul-
tiple truncation tests were carried out to determine the minimal
sequence requirements and the effect of excess sequence
elements on G15-30. Figure 5A shows the nucleotide sequence
of G15-30 and the catalytic rate constant associated with
different truncated versions. The full-length molecule pos-
sesses a kops of 0.48 min~', but deleting 60 nt from the
3’ end leads to a kops Of 1.4 min~'. Further deletion causes
areduction in activity, with no activity being observed after an
additional 10 nt are removed. The relative activity of the
various deletion constructs are illustrated in Figure 5B.
Point mutations were also introduced into the 59 nt version
at positions expected to be crucial for activity, if 8-17 was
indeed responsible for catalysis. However, a 5 G22T mutant
exhibited a kyps of 1.1 min ™', and a 5 C29T mutant exhibited a
kops Of 0.28 min ™", indicating that G15-30 does not utilize an
8—17 motif. Remarkably, the 59 nt version of G15-30 in con-
junction with a truncated RNA substrate (59SS) is about 6-fold
more active than the original 119 nt version. We used mfold to
facilitate the design of a trans-acting version, called G15-30T,
that engages a shortened RNA substrate through the formation
of two duplex stems flanking the cleavage site (Figure 5C).
The P1 primer-binding site is predicted to act as part of the 5’
substrate-binding arm of G15-30T, thereby defining the
boundaries of the minimal catalytic core. Nevertheless, addi-
tional confirmatory deletion tests were conducted on the 5’ end
of this trans-acting deoxyribozyme, and the results were con-
sistent with the proposed structure model (data not shown).
Under single-turnover conditions, G15-30T exhibits biphasic
kinetics with a kyps of 2.48 min ! (Yimax = 52%) in the first
phase, and 0.11 min~! (Ymax = 24%) in the second phase
(Figure 5D). G15-30T is also capable of multiple substrate
turnovers. Over a 60 min incubation period, in the presence of
10 nM deoxyribozyme and 1 uM substrate, ~41% of substrate
was cleaved corresponding to 41 turnovers (Figure 5E).
Further characterization and optimization of GI15-30T
represents a future objective.

DISCUSSION

Herein, we have investigated the effects of excess sequence
elements on a sample of RNA-cleaving deoxyribozymes isol-
ated from a prior in vitro selection experiment. Despite an
overall length of ~119 nt, we have provided evidence indic-
ating that catalysis in 10 of these long deoxyribozymes is
supported by the short 8—17 motif. Presumably, this finding
is also true for ~94% of the 110 sequence classes previously

isolated, which also contain variants of the 817 motif. More-
over, we have demonstrated that excess sequence elements in
both the deoxyribozyme and substrate domains have only a
minimal effect on activity (positive or negative), suggesting
that these 8—17 motifs survived increasing selection pressure
despite the presence of excess sequence elements, rather than
because of them. In contrast, only a few new deoxyribozymes
were identified, and only one of these (G15-30) could compete
with 8—17 under stringent time pressure. A minimized version
of this deoxyribozyme is ~2.5 times larger than 8-17, and
experienced a ~4-fold greater inhibitory effect from excess
sequence elements than the average 8—17 motif. Collectively,
these results suggest that 8—17 may be less susceptible to the
potential inhibitory effect of excess sequence elements than
larger motifs, which could help to account for its widespread
recurrence. However, a more systematic study is necessary to
confirm this hypothesis. It remains possible that the minimal
effects observed herein could be an artifact of the relative
location of the 817 motifs, all of which were found at the
5’ end of the DNA domain. Additional factors including a large
catalytic rate, a compact size, loose sequence requirements,
substrate cleavage versatility and metal ion cofactor versatil-
ity, make 8—17 arguably one of the best solutions to deoxyri-
bozyme mediated RNA-cleavage during in vitro selection. For
these reasons, we suspect this motif will continue to ‘hijack’
future in vitro selection experiments, and hinder the discovery
of novel RNA-cleaving deoxyribozymes. Not unlike 8-17,
other simple functional motifs, such as the isoleucine RNA
aptamer (42,43), ATP binding DNA aptamer (44), hammer-
head ribozyme (45,46) and a small RNA ligase deoxyri-
bozyme (13) have also been isolated on more than one
occasion through in vitro selection. The general factors that
influence the likelihood of recurrence have been addressed
elsewhere (47).

The work presented herein complements the results of a
previous study that also sought to characterize the effect of
excess arbitrary sequence, using RNA ligase ribozymes as a
model system (6). Our results provide additional support to
indicate that the potential inhibitory effect of excess arbitrary
sequence does not represent a significant deterrent against the
use of longer random libraries. However, we were not able to
reconcile the purported theoretical advantage of longer ran-
dom libraries with our experimental outcome, in which a
majority of small catalysts were isolated that did not signific-
antly utilize additional nucleotides to their benefit. To date, 18
other in vitro selection experiments have been conducted for
the purpose of isolating RNA-cleaving deoxyribozymes, and
the average length of the random-sequence domain has been
~46 nt (10,11,27,28,30,32,38,48-58). By exploiting a library
with ~30 additional random-sequence nucleotides, we origin-
ally expected a higher degree of structural diversity in the
resulting population of catalysts. The recurrence of 8—17 in
this study and elsewhere, alludes to the rarity of novel RNA-
cleaving motifs (with comparable or higher activity) and/or
reflects the limitations in our ability to access them through
invitro selection. A recent computational study that used graph
theory to characterize the distribution of possible secondary
structure motifs associated with various library lengths, has
shown that typical library sizes strongly favour simple topo-
logical structures (59). Although structural complexity was
shown to increase with library length, the actual benefit



was very small even for libraries as long as 100 nt. The
prevalence of 8—17 in our study is consistent with these find-
ings, and suggests that 80 random nucleotides may still
represent a sub-optimal length for finding new, complex, and
more efficient RNA-cleaving deoxyribozymes. Of course,
the benefits of increasing the length of the random-sequence
domain may be irrelevant, if the limiting factor is actually the
relatively permissive reaction time (>5 s) that can be imposed
as a selection constraint by conventional manual quenching
techniques, and/or the small fraction of sequence space that
can be searched in any single experiment. These constraints
could potentially be overcome as automated SELEX (60-63)
and continuous evolution (64) strategies become more widely
applicable. In the meantime, case studies such as this one will
continue to provide significant clues to the global distribution
of deoxyribozymes in sequence space and underscore the
current limitations in accessing them.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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