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Abstract

Background: While porcine seems to be superior to bovine surfactants in terms of respiratory outcomes, it is
unclear if a surfactant can improve extra-pulmonary outcomes in preterm neonates with respiratory distress
syndrome and if there is any physiopathological/biological mechanism linking surfactant therapy to these
outcomes. We aim to fill these knowledge gaps.

Methods: Systematic and pragmatic review coupled with meta-analysis of randomized controlled trials of bovine or
porcine surfactants administered to treat RDS in preterm neonates; common extra-pulmonary neonatal intensive
care outcomes were considered. As additional analysis, animal or human translational studies about mechanisms
linking surfactant replacement to extra-pulmonary neonatal outcomes were also systematically reviewed.

Results: Porcine surfactant is associated with lower incidence of patent ductus arteriosus (OR:0.655; 95%CI:0.460–
0.931); p = 0.018; 12 trials; 1472 patients); prenatal steroids (coeff.:-0.009, 95%CI:-0.03–0.009, p = 0.323) and gestational
age (coeff.:0.079, 95%CI:-0.18–0.34, p = 0.554) did not influence this effect size. No significant differences were found
between porcine and bovine surfactants on neonatal intensive care unit length of stay (mean difference (days):-
2.977; 95%CI:-6.659–0.705; p = 0.113; 8 trials; 855 patients), intra-ventricular hemorrhage of any grade (OR:0.860;
95%CI:0.648–1.139); p = 0.293; 15 trials; 1703 patients), severe intra-ventricular hemorrhage (OR:0.852; 95%CI:0.624–
1.163); p = 0.313; 15 trials; 1672 patients), necrotizing entero-colitis (OR:1.190; 95%CI:0.785–1.803); p = 0.412; 9 trials;
1097 patients) and retinopathy of prematurity (OR:0.801; 95%CI:0.480–1.337); p = 0.396; 10 trials; 962 patients).

Conclusions: Physiopathological mechanisms explaining the effect of surfactant have been found for patent ductus
arteriosus only, while they are lacking for all other endpoints. Porcine surfactant is associated with lower incidence
of PDA than bovine surfactants. As there are no differences in terms of other extra-pulmonary outcomes and no
physiopathological plausibility, these endpoints should not be used in future trials.

Registration: PROSPERO n.CRD42018100906.
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Introduction
Respiratory distress syndrome (RDS) represents the
main cause of respiratory failure in preterm neonates
and is associated with an increasing burden of care [1].
Since RDS is caused by primary surfactant deficiency,
the availability of exogenous surfactants allows an effect-
ive replacement therapy, which is recommended by
current international guidelines, in neonates failing con-
tinuous positive airway pressure (CPAP) [2, 3]. The
combined use of CPAP early from birth and surfactant
replacement has provided significant benefits in terms of
mortality and broncho-pulmonary dysplasia (BPD) [4].
Meta-analyses have demonstrated that surfactant re-
placement is more effective if performed: 1) within the
first 2-3 h of life [5], and 2) with current animal-derived
surfactants preparations, rather than with older syn-
thetic, protein-free surfactants [6]. Moreover, our recent
meta-analysis demonstrated the superiority of high dose
poractant-α over bovine surfactants at their licensed dose
in terms of respiratory outcomes, using a pragmatic de-
sign [7]. This has been possible because earlier meta-
analysis showed clinical equivalence between bovine sur-
factants [8] and this has a strong biological plausibility
given their similar biochemical composition and
pharmacological features [7, 9, 10]. The biochemical and
pharmacological characteristics of different surfactant
preparations are detailed in our previous work [7]. The
beneficial effect of surfactant replacement on BPD and
other respiratory outcomes is physiopathologically
sound, as surfactant increases compliance and alveolar
recruitment reducing the need for distending pressure
and invasive mechanical ventilation, which is a main
pro-inflammatory trigger involved in BPD development
[11]. Surfactant replacement also stimulates the en-
dogenous surfactant production [12] and reduces the in-
cidence of air leaks [13], since the improved compliance
allows an efficacious ventilation with a lower transpul-
monary pressure.
However, it is not clear if surfactant can actually have

any effect on extra-pulmonary outcomes [14, 15]. Trials
published so far have reported the more common com-
plications of prematurity as secondary outcomes and,
subsequently, these have been taken into account by
meta-analyses. Nonetheless, these were mere statistical
investigations without any focus on the physiopathologi-
cal or biological plausibility of their results. In our opin-
ion, it is extremely important to couple data coming
from randomized trials with the relevant biological and
physiopathological knowledge in order to reduce misin-
terpretations and to avoid creating hopes that can hardly
be confirmed. Given the clinical equivalence of bovine
surfactants of different extraction method (minced or
lung lavage) [8], and their similar biochemical/pharma-
cological features [7, 9], we decided to perform a

pragmatic meta-analyses of porcine versus bovine sur-
factants with regard to extra-pulmonary outcomes, fol-
lowing the same pragmatic design adopted for the
analysis of respiratory outcomes [7]. To provide more
useful data we also comprehensively reviewed the avail-
able physiopathological informations regarding the pos-
sible links between surfactant replacement and neonatal
non-respiratory outcomes.

Methods
Protocol
Prior to commencing the search, a systematic review
protocol was agreed to determine the databases to be
searched, search modality, eligibility criteria, data extrac-
tion/aggregation methodology, timing of meetings and
methods for dispute resolution in case of disagreement.
Following the agreement, this review was registered in the
international prospective register of systematic review
(PROSPERO n.CRD42018100906). Regular meetings be-
tween the authors were scheduled and the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines were followed through the
entire project [16]. This study has no funding.

Eligibility criteria
The systematic review included randomized controlled tri-
als fulfilling the following criteria: 1) published as full arti-
cles; 2) enrolled preterm neonates (gestational age < 37
weeks) with clinical and/or radiological evidence of RDS;
3) compared porcine and bovine surfactants (irrespective
of their preparation method), and 4) reported at least one
of the selected extra-pulmonary outcomes (see below).
Studies were included in the meta-analysis, if they com-
pared surfactants internationally available on the market.
Since early selective surfactant treatment is currently ad-
vised by international guidelines [2, 3], we did not con-
sider trials on surfactant prophylaxis. No language or year
restrictions were applied. We excluded “grey” literature,
unpublished or non-peer reviewed reports.

Information sources, search strategy and study selection
These details are reported in the Additional file 1.

Data collection process
We used a data extraction sheet based on the Cochrane
Consumers and Communication Review Group’s data
extraction template that had been already used in our
previous work [7]. Data from included trials were ex-
tracted independently by the two authors and then
cross-verified. Discrepancies were resolved through dis-
cussion between the two reviewers. Where further clari-
fications were needed or when data could not be
statistically aggregated authors were contacted to
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provide clarification and/or raw data. At least two emails
were sent to authors 2 weeks apart.

Data items
Data collected included study design, number of enrolled
patients, prenatal steroid, mean gestational age, inclusion
and exclusion criteria, surfactant type and doses, out-
comes, and variables used to assess study quality. The
extra-pulmonary outcomes were: 1) length of stay in neo-
natal intensive care units (NICU); 2) hemodynamically sig-
nificant patent ductus arteriosus (PDA), defined with any
of the previously published criteria [17]; 3) intra-
ventricular hemorrhage (IVH) of any grade according to
Papile’s classification [18]; 4) Grade III-IV IVH according
to Papile’s classification [18]; 5) necrotizing entero-colitis
(NEC) of any stage, according to Bell’s classification [19];
6) retinopathy of prematurity (ROP) of any stage accord-
ing to current international classification [20]; The choice
of focusing on newborn outcomes mainly irrespective of
their stage/grade was pragmatic. In fact, these are rela-
tively rare outcomes and trials seldom report them homo-
genously, reflecting real life differences in their bedside
definition and management. Thus, our pragmatic choice
allowed to have larger datasets to analyze.

Assessment of risk of Bias
The Cochrane Risk of Bias assessment tool was used to
evaluate quality of reviewed studies [21]. Two reviewers
(DDL, SF) independently assessed the risk of bias for
each trial, including: 1) selection bias (inadequate ran-
dom sequence generation, failure to conceal treatment
allocation); 2) performance bias (inadequate blinding of
patients and investigators/personnel); 3) detection bias
(failure to adequately blind the outcome assessors); 4)
attrition bias (incomplete outcome data evaluation and
failure to follow intention-to-treat analysis); 5) reporting
bias (selective outcome reporting); 6) any other bias and
any potential conflict of interest. Each item was assessed
as at “low” or “high risk” of bias, or unclear (when the
authors were unable to determine, on the basis of the
available information). Discrepancies were resolved
through discussion between the two reviewers. The pres-
ence of publication bias was explored, as recently sug-
gested [22], through multiple methods including visual
assessment of Funnel plot, Egger regression and the
searching in trials’ registries and conference proceedings,
as described above. More details are available in the
Additional file 1.

Summary measures and synthesis of results
Our previous meta-analysis about respiratory outcomes
demonstrated similar results when we compared 100
mg/kg bovine surfactants versus 200 mg/kg or versus
any dose of poractant-α (i.e.: pooling the data from all

study arms in which poractant-α was administered, irre-
spective of the dosage used) [7]. Results of these com-
parisons were similar because only three trials
randomized small newborn populations to receive a
lower poractant-α dose: thus, these trials had a minor
impact on the analyses. Moreover, non-respiratory out-
comes are not always reported in each trial and this may
reduce the sample size. Therefore, we pragmatically de-
cided here to compare 100mg/kg bovine surfactants ver-
sus any dose of poractant-α in order to have larger
datasets. For the same reasons we did not perform a
meta-analysis comparing 100 mg/kg poractant-α versus
100 mg/kg bovine surfactants, as this would have been
unreliable, given the low number of patients. Outcomes
were analyzed using weighted average odds ratios (OR)
or mean difference and 95% confidence interval (95%
CI), as appropriate. We used the DerSimonian-Laird
random-effects or the continuous random-effects
models, for binary and continuous outcomes, respect-
ively. Such approach is more conservative than the
fixed-effects model, as it assumes the presence of hetero-
geneity among aggregated studies, based on the assump-
tion that the studies considered are estimating different
underlying effect sizes [23]. Consistency across the stud-
ies was evaluated using the I2 statistic (variation in ORs
attributable to heterogeneity) and performing a χ2 test
for heterogeneity; an I2 value greater than 50% was con-
sidered as indicative of substantial heterogeneity. When
no significant heterogeneity was found, we also repeated
the analysis using fixed-effects or continuous fixed-
effects inverse variance method, for binary and continu-
ous outcomes, respectively.

Additional analyses
Prenatal steroid prophylaxis and gestational age (GA)
can be confounders, as they might influence the inci-
dence of some of our outcomes [24]. Furthermore, since
trials have been published across several years (from
1995 to 2017), steroids have been variously administered
in the enrolled populations. Thus, when results of the
meta-analysis were statistically significant, we performed
two random-effects model meta-regressions [25] and we
inserted as covariates: 1) prenatal steroids (as % of neo-
nates treated in each study), and 2) the mean GA (in
weeks) of each study population. We only used one co-
variate for each model to reduce false positive conclu-
sions and we expressed results using coefficients (and
95%CI) [25]. All statistics were performed with Open-
MetaAnalyst 10.1 [26] and Meta-essentials [27].
Finally, as further additional analysis, we aimed to

understand why, from a physiopathological standpoint,
surfactant replacement therapy (with any surfactant)
would be able to improve extra-pulmonary outcomes, as
this is actually debated [14, 15]. Thus, we performed a

Foligno and Luca Respiratory Research            (2020) 21:8 Page 3 of 10



comprehensive review of possible physiopathological and
biological mechanisms by which surfactant could influ-
ence extra-pulmonary outcomes. To do this, we
searched information in the studies identified through
the search strategy described above. Additionally, we
also searched PubMed, using key words and/or MeSH
terms as described in the Additional file 1, looking for
animal or human translational investigations on these
mechanisms.

Results
Fig.1 illustrates the project flow-chart: we included 17
studies in the systematic review [28–45] and we ex-
cluded two papers from the meta-analysis, as they inves-
tigated two non-internationally marketed porcine
surfactants [43, 44]. Compared to our previous meta-
analysis on respiratory endpoints, there was one more
study reporting on the extra-pulmonary outcomes [45].
This study did not report the exact dose of surfactant
[45]. Moreover, Fujii et al. reported hemodynamically
significant PDA in one paper and other extra-pulmonary
outcomes in a second manuscript [30, 31]. Data were ex-
tracted from these two distinct papers, as appropriate:
since the enrolled population was the same, they were

considered as a single study and 15 studies were finally
included in the meta-analysis. The other trials have been
already described [7] and their characteristics are sum-
marized in the Additional file 1. A total of 1721 neonates
were enrolled in the 15 trials. Evaluation of biases is re-
ported in the Additional file 1. The studies performed
mostly well in completeness of outcome analysis and
reporting, but generally suffered from performance bias
due to imperfect blinding for interventions and outcome
assessments (apart from one [40]). The methods of
randomization and allocation concealment were unclear
for the majority of studies. There seemed to be no sig-
nificant Funnel plot asymmetry and, consistently, we
found no unpublished project focusing on our extra-
pulmonary outcomes in any trial registries. Fig.2 shows
that there is no significant difference between poractant-
α and bovine surfactants in terms of NICU stay (p =
0.113). Heterogeneity is at the border of significance.
We also repeated the analysis using continuous fixed-
effects model and found similar results (mean difference
(days): -2.07; 95%CI: − 4.51-0.36; p = 0.094). Poractant-α
is associated with significantly lower incidence of
hemodynamically significant PDA (Fig.3: p = 0.018) and
studies showed a statistically significant heterogeneity.

Fig. 1 Flow chart of the review and meta-analysis. Randomized controlled trials published as full articles, enrolling preterm neonates (gestational
age < 37 weeks) with clinical and/or radiological evidence of RDS, comparing porcine and bovine surfactants (irrespective of their preparation
method) and reporting at least one extra-pulmonary outcomes were included in the systematic review. The excluded studies were two full text
duplicates reporting the same data with major methodological flaws and one conference abstract which did not respect the eligibility criteria.
Details of excluded studies are available in [7]
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We performed meta-regressions as additional analyses
and the effect size of poractant-α on PDA did not result
significantly associated neither with gestational age (co-
efficient: 0.079, 95%CI:-0.18–0.34, p = 0.554), nor with
prenatal steroids (coefficient: -0.009, 95%CI: − 0.03-
0.009, p = 0.323). There are no significant differences be-
tween poractant-α and bovine surfactants in terms of
IVH of any grade (Fig.4a: p = 0.293) or grade III-IV IVH
(Fig.4b: p = 0.313), or in terms of NEC (Fig.4c: p = 0.412)
and ROP (Fig.4d: p = 0.396). There is a significant het-
erogeneity only for ROP. We repeated the meta-analyses
for IVH and NEC using fixed effects-inverse variance
method obtaining similar results (IVH any grade: OR:
0.86, 95%CI: 0.65–1.14, p = 0.293; grade III-IV IVH: OR:
0.85, 95%CI: 0.62–1.16, p = 0.313; NEC: OR: 1.19,

95%CI: 0.78–1.80, p = 0.412). Table 1 shows possible
mechanisms by which surfactant could influence extra-
pulmonary outcomes [34, 46–69]. Of note, a physiopath-
ological link between surfactant administration and non-
respiratory neonatal outcomes could have been demon-
strated only for hemodynamically significant PDA.

Discussion
Summary of evidence
Our meta-analysis compared for the first time the effects
of poractant-α with all bovine surfactants on extra-
pulmonary outcomes, using an aggregate sample larger
than the ones used in previous meta-analyses [8, 70].
This has been possible by including recently published
studies and using a particular data aggregation. This

Fig. 2 Comparisons poractant-α vs bovine surfactants for NICU length of stay. The panel (855 patients) illustrates meta-analyses of any dose of
poractant-α vs bovine surfactants with random-effects model. Poractant-α and bovine surfactants are considered as treatment and control arm,
respectively; mean differences (95%CI) in NICU stay are reported (in days). Squares and horizontal lines represent mean differences in NICU stay
(expressed in days) and their 95%CI, respectively. The location of the diamond and its width represent the pooled estimated effect size and its
95%CI, respectively

Fig. 3 Comparisons poractant-α vs bovine surfactants for PDA. The panel (1472 patients) illustrates meta-analyses of any dose of poractant-α vs
bovine surfactants with random-effects model. Poractant-α and bovine surfactants are considered as treatment (Trt) and control (Ctrl) arm,
respectively; events (Ev) per arm and odds ratio (95%CI) are reported. Squares and horizontal lines represent odds ratios and their 95%CI,
respectively. The location of the diamond and its width represent the pooled estimated effect size and its 95%CI, respectively
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latter is fully justified by the previously demonstrated
clinical equivalence of different bovine surfactants and
their similar biochemical and pharmacological features
[7–10]. To summarize, our results show a significantly
reduced incidence of hemodynamically significant PDA
in neonates treated with poractant-α, compared to those

treated with bovine surfactants. The effect size of
poractant-α on PDA is not influenced by antenatal ste-
roids or gestational age. The clinical relevance of PDA in
preterm neonates is currently debated, thus it is not
clear if the surfactant effect on PDA incidence can actu-
ally represent a clinically important benefit. All other
outcomes (NICU stay, NEC, ROP and IVH) are similar
between patients treated with poractant-α and other sur-
factants. Heterogeneity is significant for PDA, ROP and
nearly significant for NICU stay. This is likely due to: 1)
the different criteria used in the studies for the diagnosis
of hemodynamically significant PDA [17]; 2) the differ-
ent screening policies for ROP, and PDA [17, 71]; 3) the
influence of several different factors on NICU stay. This
is an extremely complex variable that may be affected
also by clinical problems occurring much later than sur-
factant administration, as well as logistic, social and psy-
chological factors. However, all these issues contribute
to actual NICU care and we aimed to perform a prag-
matic meta-analysis focusing on the available data in the
context of the real NICU care, rather than in a con-
trolled experimental setting.
These results are only partially similar to those of the

earlier Cochrane meta-analysis [8] but they are also stron-
ger. In fact, compared to the previous work we: 1) included
five more trials (accounting for ≈600 neonates); 2) used a
trials aggregation based on the current best knowledge, that
is, on the clinical equivalence of bovine surfactant [8]; 3)
analyzed the effect of possible confounders, such as

Fig. 4 Comparisons poractant-α vs bovine surfactants for IVH (a-b), NEC(c) and ROP (d). a and b illustrate meta-analyses of any dose of poractant-
α vs bovine surfactants for IVH of any grade (1703 neonates) and for grade III-IV IVH (1672 neonates), respectively. c and d illustrate NEC and ROP
of any stage (1097 and 962 neonates, respectively). Poractant-α and bovine surfactants are considered as treatment (Trt) and control (Ctrl) arm,
respectively; events (Ev) per arm and odds ratio (95%CI) are reported. Squares and horizontal lines represent odds ratios and their 95%CI,
respectively. The location of the diamond and its width represent the pooled estimated effect size and its 95%CI, respectively. All analyses have
been performed with random-effects model

Table 1 Mechanisms linking surfactant replacement to non-
respiratory neonatal outcomes, as per animal or human
translational investigations

Physiopathological
mechanisms

Hypothesized Confirmed

PDA ↓ oxygen and ROS exposure [46–49]

↓ Prostaglandins synthesis [50, 51]

↓ PVR [46, 47,
52–54]

IVH ↓ PaCO2 and CBF [55–57]

↓ PDA [53, 54]

Better peripheral perfusion [34, 42]

Improved cerebral oxygenation [58]

ROP ↓ oxygen and ROS exposure [49, 59–63]

NEC ↓ oxygen and ROS exposure [49, 64]

Better peripheral perfusion [34, 42]

Earlier progression to full enteral
feeding

[65–68]

More details in the text. Abbreviations: ROS Reactive oxygen species, PVR
Pulmonary vascular resistances, CBF Cerebral blood flow, PaCO2 Arterial partial
pressure of CO2, PDA Patent ductus arteriosus, IVH Intraventricular hemorrhage,
ROP Retinopathy of prematurity, NEC Necrotizing enterocolitis
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antenatal steroids or gestational age, and finally, 4) reviewed
the possible physiopathological mechanisms linking surfac-
tant replacement and extra-pulmonary outcomes. In fact,
ours was intended to be not only a statistical work but also
a multidisciplinary project coupling clinical outcomes with
their physiopathological plausibility.
Interestingly, a convincing physiopathological link

seems evident only between PDA and the choice of a
particular surfactant. A surfactant more efficient from a
biophysical point of view may be able to increase lung
compliance and recruit alveoli more quickly, thus allow-
ing to reduce supplemental oxygen. The oxygen expos-
ure is important for the PDA closure [72] and the
reduction in circulating reactive oxygen species may
crosstalk with the inflammation pathway and contribute
to reduce the synthesis of prostaglandins, which are also
crucial for ductal patency [72]. Finally, a more efficient
surfactant may quickly lower pulmonary vascular resist-
ance through the alveolar recruitment and the increment
in alveolar oxygen tension: this will facilitate the inver-
sion of blood flow through the ductus arteriosus [73].
We cannot clarify if the effect of poractant-α on PDA in-
cidence is due to his different phospholipid/protein pro-
file or to the higher concentration allowing the use of
higher doses, as already specified in our previous work
on respiratory outcomes [7]. However, from a clinically
pragmatic point of view this question is useless because:
1) pharmacokinetic and clinical data show that the high
dose poractant-α has to be preferred over the low dose
regimen, as it provides longer half-life, less re-treatments,
better response in terms of oxygenation and improved re-
spiratory outcomes [7, 74, 75]; 2) high dose regimens are
unfeasible with bovine surfactants given their lower con-
centration and higher viscosity [9, 10]. These characteris-
tics of bovine surfactants might negatively impact on
hemodynamics and peripheral perfusion, yet a low doses
regimen [34], while larger doses could cause tube occlu-
sions, ventilation troubles and lung edema, potentially in-
creasing the need for more aggressive ventilation.
Conversely, there are no convincing physiopathological

data allowing to assume that one surfactant should be
better than others in reducing the incidence of extra-
pulmonary outcomes other than PDA. Some mecha-
nisms have been hypothesized (Table 1) but they have
not been confirmed for several reasons. For instance,
surfactant administration and IVH incidence could the-
oretically be linked by the reduction of cerebral blood
flow due to improved oxygenation and lower level of
PaCO2. However, significant hypercarbia and hypoxia
are rarely seen in the natural course of RDS (especially if
antenatal steroids are given and early CPAP is efficiently
provided) [76]: thus, when CPAP fails and surfactant is
optimally administered, a significant change of PaCO2 is
unlikely to be observed [76]. A reduced incidence of

hemodynamically significant PDA could also theoretic-
ally influence the occurrence of IVH, but there are no
convincing data linking PDA to IVH occurrence [77].
The achievement of a better peripheral perfusion in the
peri-administration period has also been linked to IVH
and NEC reduced incidence, however available data are
not consistent and not all variables related to peripheral
perfusion coherently change during surfactant dosing
[34, 42]. A reduction in oxidative damage has been hy-
pothesized as link between surfactant replacement and re-
duced incidence of ROP and NEC. However, all these
disorders are often developing well after the early neonatal
period, following genetic predisposition, long oxygen ex-
posure and/or several cofactors (nutritional troubles, in-
fections, transfusions, other pro-inflammatory triggers)
[78, 79]. Therefore, it seems unlikely that a single drug ad-
ministration, performed several days/weeks earlier, in an-
other organ, could interfere with such a complex
physiopathology. It is important to remind that the inci-
dence of these extra-pulmonary neonatal outcomes have
never been changed with the use of any surfactant,
neither in the early trials conducted decades ago [80,
81], nor in the more recent ones, as acknowledged
by the American Academy of Pediatrics both in 2008
and 2014 guidelines [3, 59]. Moreover, these out-
comes were not changed when comparing surfactant
therapy with prophylaxis and surfactant replacement
increases survival rates without a change in the inci-
dence of long-term neuro-developmental injury [45,
59]. Therefore, the lack of clear physiopathological
plausibility and the preponderance of evidence sug-
gest that the incidence of these outcomes is not sig-
nificantly affected by any type of surfactant therapy.
This is an important information in order to avoid
false hopes and to help designing more physiopatho-
logically solid trials. In fact, other questions remain
open about surfactant replacement therapy and fu-
ture investigation plans should concentrate on these,
rather than asking surfactants to magically reduce
various complications of prematurity.

Limitations
We have chosen outcomes easily defined to allow
data aggregation, albeit there are differences in out-
comes’ diagnostic criteria amongst trials. However,
we decided to use this pragmatic approach, as differ-
ences reflect the reality of NICU care. This approach
helps to have larger patient populations and, when it
obtains any positive results, they are very likely to be
robust and generalizable [82]. Thus, the pragmatic
design is known to be more appropriate when evalu-
ating interventions which are refinements of current
care [83]: as surfactant is already a cornerstone of
neonatal critical care, this seemed the best strategy
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to apply. Studied populations were relatively small
and the quality of the studies varied: potentially rele-
vant biases were detected in almost every trial and
this can impact on our findings, although they repre-
sent the best currently available evidence on the
topic. We did not perform an individual patient
meta-analysis, but rather meta-regressions and there-
fore some results might be subjected to the limita-
tions of this technique or some confounders may
have been missed. Finally, since the majority of studies inves-
tigated poractant-α at 200mg/kg, we cannot draw any con-
clusion about the low dose poractant-α regimen. However,
given the known clinical and pharmacokinetic advantages of
200mg/kg dose of poractant-α [7, 74, 75], it seems unethical
to design a trial only to verify if the higher dose or the bio-
chemical composition is responsible for the clinical effects.
Conversely, trials with high doses of bovine surfactant would
be almost technically impossible [9, 10, 34]. In fact, as bovine
surfactants are less concentrated and more viscous, higher
doses can cause lung edema requiring more aggressive venti-
lation. Also, hemodynamic impairment has already been de-
scribed with usual doses of bovine surfactants [33]. For these
reasons, also the more recent animal studies only investi-
gated bovine surfactants at their licensed dose [57].

Conclusions
Poractant-α is associated with lower incidence of
hemodynamically significant PDA than bovine surfac-
tants; this effect is not influenced by gestational age or
the use of prenatal steroids. There are no differences be-
tween porcine and bovine surfactants in terms of other
extra-pulmonary outcomes. Since there is no physio-
pathological plausibility linking surfactant replacement
to non-respiratory outcomes other than PDA, these end-
points should not be used in future trials.
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