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Abstract

Background: Continuous telemonitoring of vital signs in a clinical or home setting may lead to improved knowledge of patients’
baseline vital signs and earlier detection of patient deterioration, and it may also facilitate the migration of care toward home.
Little is known about the performance of available wearable sensors, especially during daily life activities, although accurate
technology is critical for clinical decision-making.

Objective: The aim of this study is to assess the data availability, accuracy, and concurrent validity of vital sign data measured
with wearable sensors in volunteers during various daily life activities in a simulated free-living environment.

Methods: Volunteers were equipped with 4 wearable sensors (Everion placed on the left and right arms, VitalPatch, and Fitbit
Charge 3) and 2 reference devices (Oxycon Mobile and iButton) to obtain continuous measurements of heart rate (HR), respiratory
rate (RR), oxygen saturation (SpO2), and temperature. Participants performed standardized activities, including resting, walking,
metronome breathing, chores, stationary cycling, and recovery afterward. Data availability was measured as the percentage of
missing data. Accuracy was evaluated by the median absolute percentage error (MAPE) and concurrent validity using the
Bland-Altman plot with mean difference and 95% limits of agreement (LoA).

Results: A total of 20 volunteers (median age 64 years, range 20-74 years) were included. Data availability was high for all
vital signs measured by VitalPatch and for HR and temperature measured by Everion. Data availability for HR was the lowest
for Fitbit (4807/13,680, 35.14% missing data points). For SpO2 measured by Everion, median percentages of missing data of up
to 100% were noted. The overall accuracy of HR was high for all wearable sensors, except during walking. For RR, an overall
MAPE of 8.6% was noted for VitalPatch and that of 18.9% for Everion, with a higher MAPE noted during physical activity (up
to 27.1%) for both sensors. The accuracy of temperature was high for VitalPatch (MAPE up to 1.7%), and it decreased for Everion
(MAPE from 6.3% to 9%). Bland-Altman analyses showed small mean differences of VitalPatch for HR (0.1 beats/min [bpm]),
RR (−0.1 breaths/min), and temperature (0.5 °C). Everion and Fitbit underestimated HR up to 5.3 (LoA of −39.0 to 28.3) bpm
and 11.4 (LoA of −53.8 to 30.9) bpm, respectively. Everion had a small mean difference with large LoA (−10.8 to 10.4 breaths/min)
for RR, underestimated SpO2 (>1%), and overestimated temperature up to 2.9 °C.
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Conclusions: Data availability, accuracy, and concurrent validity of the studied wearable sensors varied and differed according
to activity. In this study, the accuracy of all sensors decreased with physical activity. Of the tested sensors, VitalPatch was found
to be the most accurate and valid for vital signs monitoring.

(JMIR Form Res 2022;6(1):e30863) doi: 10.2196/30863
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Introduction

Background
Continuous telemonitoring of vital signs in daily life may lead
to earlier detection of patient deterioration [1-3] and facilitate
the migration of care toward home. In chronic diseases,
telemonitoring is associated with improved clinical outcomes
and cost-effectiveness of care [4,5]. It is expected that
telemonitoring may also be of added value in other settings,
such as the perioperative trajectory to monitor postoperative
recovery in a ward or home setting. Preoperative monitoring at
home may improve the knowledge of patients’ baseline vital
signs. Especially since the COVID-19 pandemic, the demand
for remote monitoring of vital signs has grown [6].

Several wearable sensors are available for telemonitoring of
patients both in hospital and at home [1,7], which mainly differ
in the location of placement, being reusable or disposable,
battery life, and data transmission. According to legislation,
sensors must be certified as a medical device and be safe and
beneficial in their intended use. However, wearable sensors
should be accurate and reliable as well before implementation
in health care [1]. Accurate technology for telemonitoring is
essential when used for clinical decision-making, although little
is known about the accuracy and reliability of current generation
wearable sensors, especially during daily life activities.
Wearable sensors for continuous monitoring of vital signs are
often evaluated in the in-patient setting [7] using patches (ie,
Sensium Vitals, Sensium), mattress sensors (ie, EarlySense,
EarlySense Inc), or more extensive sensors worn on the arm
(ie, Radius-7, Masimo) [8]. Results from in-patient settings
cannot directly be translated to the home environment when
performing daily activities with less supervision, and research
using wearable sensors for vital sign monitoring at home is
lacking.

Objectives
Information about the performance of wearable sensors in daily
life is scarce and should be available before using these sensors
for clinical decision-making. The aim of this study is to assess
the data availability, accuracy, and concurrent validity of vital
signs measured with currently available wearable sensors during
daily life activities in a simulated living environment. We

selected 3 types of recently available wearable sensors:
arm-worn, chest-worn, and wrist-worn. This study investigates
the technical performance of wearable sensors during daily life
activities in volunteers to gain insight into their potential for
telemonitoring.

Methods

Design
For this prospective observational validation study, experiments
were performed at the eHealth House of the University of
Twente, a simulated living environment (furnished apartment)
used for research purposes [9]. The protocol was approved by
the ethical committee of the University Medical Center
Groningen and was executed according to the Declaration of
Helsinki. Written consent was received from all participants for
study participation and data use.

Participants
Volunteers aged >18 years were included, with at least half of
the participants aged >60 years, to reflect a general patient
population. Interested volunteers were contacted by one of the
researchers (RV) to assess their eligibility for study participation.
The exclusion criteria were having a medical condition
uncontrolled with medication that interferes with the execution
of the protocol (ie, cardiovascular diseases, neuromuscular
diseases, immobility, or cognitive disorders), pacemaker, or
plaster allergy. Because of the lack of preliminary data for power
calculation, a sample size of 20 was chosen on the basis of
previous experience in quite similar validation studies for
wearable devices associated with vital sign monitoring in
volunteers [10-13].

Devices
A total of 3 wearable sensors of interest for continuous and
noninvasive measurement of vital signs were used: Everion
(Biovotion AG), VitalPatch (MediBioSense), and Fitbit Charge
3 (Fitbit Inc). The VitalPatch is intended for the collection of
physiological data in a health care setting, whereas Everion and
Fitbit are intended to monitor fitness and general wellness only.
These sensors differ in measurement location and techniques
and have the potential to be used in clinical settings. All the
used sensors are depicted in Figure 1.
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Figure 1. (A) Schematic overview of wearable sensors and reference devices and their placement on the participant’s body (B) during application and
(C) during the experiment. Details: (1) Everion placed on the (a) right arm and (b) left arm; (2) VitalPatch; (3) Fitbit Charge 3; (4) Oxycon Mobile (a)
4 electrocardiography electrodes, (b) oxygen saturation probe, and (c) face mask; (5) iButton placed on the (a) right arm, (b) left arm, and (c) chest.

Everion is a Conformity European (CE) class 2a–certified sensor
worn on the upper arm that measures heart rate (HR), respiratory
rate (RR), and blood oxygen saturation (SpO2) by
photoplethysmography (PPG) and skin temperature using a
negative temperature coefficient thermistor. The vital signs were
stored every 10 seconds. VitalPatch is a CE class 2a–certified
and Food and Drug Administration 510(k)–cleared disposable
patch worn on the chest to measure HR and RR by
electrocardiography (ECG) and temperature by a thermistor
with a sample storage frequency of once per 4 seconds. The
Fitbit Charge 3 is a commercially available activity tracker worn
at the wrist and measures HR using PPG with a sample storage
frequency of once per second during exercise and once per 5
seconds at all other times [14].

A total of 2 devices were used as gold standard reference
devices. Oxycon Mobile (CareFusion Germany 234 GmbH) is
a portable metabolic measurement system certified as a CE class
2a medical product and has been used as the gold standard in
several studies [15,16]. Oxycon Mobile used ECG and expired
volume measurements to monitor HR and RR, respectively.
Volume measurement is a reliable method for RR calculation
compared with other measurement principles that derive RR
from impedance, ECG, or waveform modulation, such as in
other wearable devices. In addition, SpO2 was measured using

a PPG sensor that was positioned using an ear probe instead of
a finger probe to enable free hand movement during the
experiment. If ECG was missing, HR was determined from the
SpO2 curve as reference. For all vital signs, a storage frequency
of once per 5 seconds was used. The Thermochron iButton
(Maxim Integrated), a validated wireless skin temperature logger
[17], was used as a reference device for monitoring temperature
with a sample storage frequency of once per 10 seconds and a
resolution of 0.5 °C. The iButtons enabled wireless temperature
measurements right above the relevant wearable sensors.

Protocol
Before the start of the experiment, the protocol was explained
and demographic data of participants were obtained and stored
in Research Electronic Data Capture (REDCap; Vanderbilt
University) version 10.0.23, including age, gender, BMI,
occupation, physical activity lifestyle [18], and relevant medical
history. The standardized protocol existed for 17 different tasks
subsequently performed by participants with a total duration of
57 minutes. The detailed protocol, including task descriptions
and durations, is provided in Multimedia Appendix 1. The task
durations varied from 2 to 10 minutes and were performed in
6 activity clusters: resting, walking, metronome breathing, daily
household activities (chores), stationary cycling on an exercise
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bike, and recovery. Transition periods were present between all
tasks, which were not included in the data analysis. For more
intensive tasks, a transition period of several minutes was
included in the protocol for physiological stabilization between
tasks. Resting included lying in several positions, sitting, and
standing. Walking included walking at normal and slow speeds
and stair climbing. Metronome breathing comprised breathing
at 6, 15, 20, and 24 breaths per minute (brpm) and was guided
by a metronome app. Chores were performed in the kitchen,
where the participant was instructed to do various household
tasks such as preparing food and cleaning. Cycling was
performed on an ergometer with increasing load and rotation
until a HR of at least 120 beats per minute (bpm) was reached.
Thereafter, the participants recovered in an armchair or on a

couch. During each experiment, 2 researchers were present, of
whom 1 instructed the participant, and the other logged the start
time of each task.

All sensors were synchronized with the computer time before
the start of the experiment. During the experiment, vital signs
were simultaneously recorded by the 4 wearable sensors and 2
reference devices. The placement of all the sensors is shown in
Figure 1 and Table 1. A total of 2 Everion sensors were placed
on the left and right arm, respectively, aiming to investigate the
performance for different sensor placements. The data
availability of real-time measurements was monitored regularly
during the protocol, and technical issues were dissolved if
needed.

Table 1. The 12 combinations of wearable sensors and reference devices to measure vital signs and their location on the participants’ body.

Reference device (location)Vital sign and wearable sensor (location)

Heart rate

Oxycon Mobile (4-lead ECGa/left ear lobe)Everion (right upper arm)

Oxycon Mobile (4-lead ECG/left ear lobe)Everion (left upper arm)

Oxycon Mobile (4-lead ECG/left ear lobe)VitalPatch (below left clavicular bone)

Oxycon Mobile (4-lead ECG/left ear lobe)Fitbit (right wrist)

Respiratory rate

Oxycon Mobile (facemask)Everion (right upper arm)

Oxycon Mobile (facemask)Everion (left upper arm)

Oxycon Mobile (facemask)VitalPatch (below left clavicular bone)

Oxygen saturation

Oxycon Mobile (left ear lobe)Everion (right upper arm)

Oxycon Mobile (left ear lobe)Everion (left upper arm)

Skin temperature

iButton (right upper arm)Everion (right upper arm)

iButton (left upper arm)Everion (left upper arm)

iButton (below left clavicular bone)VitalPatch (below left clavicular bone)

aECG: electrocardiography.

Data Collection and Analysis
Data from all devices were exported from separate databases
and processed in MATLAB R2018b (MathWorks, Inc) and
SPSS Statistics 23 (IBM Corp). The logged start time and
predefined duration of the respective tasks were used to select
the data-recording windows for each task. Subsequently,
nearest-neighbor resampling was used to pair wearable sensor
data with the nearest data of reference devices for the
combinations of sensors, as shown in Table 1. As the lowest
data storage frequency was once per 10 seconds (for Everion
and iButton), the maximum time shift between data points of
the wearable sensor and reference device was 5 seconds. Data
analysis was performed for each activity cluster and over the
complete experiment (for all tasks).

Statistical Analysis

Data Availability
The data availability of each sensor was assessed by the
percentage of missing data points out of the expected data points
per activity cluster and over all tasks per vital sign. In addition,
the number and duration of missing data periods (epochs), for
example, where the time between subsequent data points
exceeded the expected sample period, was assessed.

Vital Sign Agreement
Agreement in vital sign data between wearable sensors and
reference devices was inspected visually over all tasks. The
measured values and variability of each sensor were described
using the median and median absolute deviation (MAD)
calculated per minute for all sensors and all participants. The
median and IQR of the median and MAD of all participants
were calculated per activity cluster and over all tasks to compare
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the (differences in) measured values and variability between
activities and sensors. Furthermore, the median absolute
percentage error (MAPE) was calculated per minute per vital
sign to evaluate the accuracy of each wearable sensor.

Concurrent Validity
Concurrent validity was assessed using the data samples in a
preselected activity cluster, with the aim of obtaining a large
range of physiological variation with the least variation in
position or task to minimize movement artifacts. Accordingly,
the concurrent validity of HR was obtained in the cycling cluster,
RR in the breathing cluster, and SpO2 and temperature in the
recovery cluster after cycling. As the VitalPatch and Everion
had an averaging duration of 45 and 60 seconds, respectively,
to compute RR, measurements during the first minute of each
breathing activity were not considered in the validity analysis.
Before data selection, data of reference devices during the
selected activity clusters were visually analyzed per participant
to exclude physiologically implausible reference data by 2
researchers (MEH and MCVR). If needed, periods with
unexpected scattering, variation, or drops were excluded from

further analysis. Concurrent validity was assessed using
Bland-Altman analyses to evaluate the mean differences (bias)
and 95% limits of agreement (LoA). Bland-Altman analyses
were corrected for repeated measurements, where the variance
between measurement pairs was the sum of between- and
within-subject variances [19,20]. The root mean square error
(RMSE) was calculated to obtain insights into the amplitude of
deviations. Bland-Altman plots, mean differences, LoA, and
RMSEs were also assessed using median values per minute
during the same predefined activity cluster. The results of both
Bland-Altman analyses were compared to evaluate the influence
of averaging on the concurrent validity of the wearable sensors.

Results

Overview
Between September 2020 and October 2020, 20 volunteers were
included in the study. A total of 2 experiments were redone
because of incomplete data from the reference devices because
of recording failure. Data from 20 participants were analyzed,
and the participant characteristics are shown in Table 2.

Table 2. Participant characteristics (N=20).

ValuesCharacteristics

64 (20-74)Age (years), median (range)

Age (years), n (%)

4 (20)20-40

4 (20)40-60

7 (35)60-70

5 (25)70-80

Gender, n (%)

11 (55)Male

9 (45)Female

23.4 (20.1-28.4)BMI (kg/m2), median (range)

Physical activity lifestyle, n (%)

10 (50)Sedentary or light activity

10 (50)Active or moderately active

Relevant medical history, n (%)

14 (70)No relevant medical history

2 (10)Chronic obstructive pulmonary disease

1 (5)Atrial fibrillation

3 (15)Orthopedic surgery

Data Availability
Percentages of missing samples are shown in boxplots per vital
sign for the different activity clusters and all tasks in Figure 2.
HR data measured by Everion was available 99.83%
(13,657/13,680) of the time, where only 4% (1/23) of missing
epochs was >30 seconds. VitalPatch measured HR 99.64%
(17,039/17,100) of the time, with a maximum duration for

missing epochs of 24 seconds. Data availability for VitalPatch
was the same for all measured parameters; for example, data of
all vital signs were available or none at all. Fitbit had the most
missing data samples for HR based on the
minimum-sample-storage frequency of once per 5 seconds; the
median percentage of missing samples per participant was
35.7%. However, in 99.93% (2918/2920) of the missing epochs,
the duration was ≤10 seconds.
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Figure 2. Boxplot (median, IQR, range, and outliers) of the percentages of missing samples per participant per activity cluster and over all tasks for
each sensor based on its expected storage frequency per vital sign.

For RR, Everion had the most available data during the breathing
activity (2865/2880, 99.48%) and most missing data points
during the more active clusters, walking and cycling, with
median percentages of missing data of 8.3% to 26.4%. Of the
missing RR epochs for both Everions, 51.4% (95/185) lasted
>10 seconds, and 15.1% (28/185) lasted >1 minute up to 4
minutes.

SpO2 data by Everion were available 31.44% (4301/13,680) of
the time (1960/6840, 28.66% at the left arm and 2341/6840,
34.23% at the right arm). Most SpO2 data of the Everions were
recorded during recovery (753/1200, 62.75% of the time) and
least during walking and chores activities, with a median
percentage of missing data of 100%. Of all the missing SpO2

epochs for both Everions, 83% (93/112) lasted >10 seconds,
and 16.1% (18/112) lasted >1 minute up to 9 minutes.

Temperature measurements of Everion were present 99.9%
(13,669/13,680) of the time.

Vital Sign Agreement
In most cases, wearable sensors showed similar trends compared
with those of reference devices when measuring HR, RR, and
temperature. Trends in vital signs during the complete
experiment are shown in Figure 3 for 1 participant as an
example. In half of the participants (10/20, 50%), an unexpected
drop or low agreement in HR during cycling could be seen for
Fitbit (9/10, 90%) and Everion (3/10, 30%), as illustrated in
Multimedia Appendix 2, and also in the Oxycon Mobile (1/10,
10%).

The median values and MAD per minute for each vital sign and
sensor over all tasks are shown in Table 3. Variability in terms
of MAD per minute was generally low for all devices and vital
signs.
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Figure 3. Measured data of all sensors for one study participant, classified by vital sign. White boxes represent the tasks, and the grey boxes the
transition periods between tasks.
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Table 3. Median and median absolute deviation (MAD) per minute values of all participants for all sensors per vital sign over all tasks.

Sensor, median (IQR)Parameters

iButton
(chest)

iButton (left)iButton
(right)

Oxycon MobileFitbitVitalPatchEverion (left)Everion
(right)

Median

N/AN/AN/Ac80.5 (67.4-
101.1)

76 (67-90)79 (68-96)78.5 (68-93)78.5 (68-94)HRa (bpmb)

N/AN/AN/A19.5 (15.0-23.5)N/A18 (15-22)18 (14.0-22.5)17.5 (14-22)RRd (brpme)

N/AN/AN/A99 (99-100)N/AN/A98 (96.9-99)98 (96-99)SpO2
f (%)

33.6 (33.1-
34.1)

30.6 (29.6-
31.6)

30.6 (29.6-
31.6)

N/AN/A34 (33.4-34.6)33 (32.2-33.9)32.8 (31.9-
33.8)

Temperature (°C)

MAD

N/AN/AN/A1.5 (1.0-3.5)1 (1-2)1 (1-2)1 (0.5-2.0)1 (0.5-2.0)HR (bpm)

N/AN/AN/A1 (0.5-2.0)N/A1 (0-1)0.5 (0-1)0.5 (0-1)RR (brpm)

N/AN/AN/A0 (0-0)N/AN/A0 (0-0.5)0 (0-0.5)SpO2 (%)

0 (0-0)0 (0-0)0 (0-0)N/AN/A0 (0-0)0 (0-0)0 (0-0)Temperature (°C)

aHR: heart rate.
bbpm: beats per minute.
cN/A: not applicable.
dRR: respiratory rate.
ebrpm: breaths per minute.
fSpO2: oxygen saturation.

The median MAPE of each wearable sensor as compared with
the reference device per activity cluster per vital sign is shown
in Table 4. For HR, all wearable sensors had an overall low
median MAPE (2.3%-3.9%), with the highest MAPE for Fitbit.
All sensors had the highest median MAPE during the walking
cluster for HR (13.4%-23.4%). For RR, VitalPatch had the
lowest median MAPE during the breathing and cycling cluster,

whereas the Everion median MAPE was higher, especially
during walking and cycling. The median MAPE of SpO2

measured by Everion was maximally 3.8% (during walking).
The median MAPE for temperature of VitalPatch was very low
(1%-1.7%). The lowest median MAPE for temperature of
Everion was during the first activity cluster (resting: mean 6.3%)
and the highest during the last cluster (recovery: mean 9%).
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Table 4. Median absolute percentage error (MAPE) with IQR of all participants for all wearable sensors as compared with reference devices per vital

sign during each activity cluster and overall tasksa.

Sensor (%), MAPE (IQR)Vital signs

FitbitVitalPatchEverion (left)Everion (right)

HRb

1.6 (0.6-4.1)1.6 (0.7-4.8)1.6 (0.7-4.4)1.6 (0.7-4)Resting

20.2 (8-34.4)13.4 (3-32.6)23.4 (3.1-35.2)16 (2.8-33.3)Walking

3.2 (1.4-10.9)2.7 (0.9-8.9)2.2 (0.7-8.2)2.1 (0.7-8.2)Breathing

6.2 (2.4-11.2)1.7 (0.8-5.8)2.6 (0.7-6.7)2.1 (0.7-5.6)Chores

6.1 (2.4-14.8)2.3 (1-4.9)2.9 (0.8-6.7)3 (1-6.2)Cycling

1.6 (0.1-3.4)1.3 (0-3.2)1.1 (0.6-2.9)1.1 (0.6-3.1)Recovery

3.9 (1.3-12)2.3 (0.8-6.7)2.3 (0.7-7.4)2.3 (0.7-6.8)All

N/AdRRc

8.3 (4.8-14.3)13.6 (6.5-22.6)12.5 (6.1-21.9)Resting

8.3 (4.2-15.7)22.7 (9.7-41.7)22.9 (10-46.7)Walking

6.7 (2.6-19.5)20 (6.7-43.3)20 (7.5-41.7)Breathing

15.9 (6.8-23.5)22 (11.9-34.6)19 (8.3-38.1)Chores

6.7 (3.6-11.9)26.8 (13.2-42.6)27.1 (13.2-42.8)Cycling

7.7 (4.1-17.2)14.6 (4.9-27.4)12.5 (5.7-27.6)Recovery

8.6 (4.2-17.3)18.9 (7.7-35)17.5 (7.7-35.1)All

N/AN/ASpO2
e

2 (1-4)2 (1-3.8)Resting

3 (1.5-4.5)3.8 (2.5-6)Walking

2 (1-3)2 (1-2)Breathing

1 (1-2)2.5 (1-3)Chores

1.3 (0.5-2)1.5 (0.5-3)Cycling

1 (0.5-2.1)1 (0.5-2.5)Recovery

2 (1-3)2 (1-3)All

N/ATemperature

1.1 (0.6-2)6.7 (5.8-8.2)5.9 (4.3-8)Resting

1.2 (0.5-2.5)8.8 (7.6-9.9)7.8 (6.2-9.9)Walking

1 (0.5-1.7)7.9 (6.2-9.6)7.1 (5.9-9.5)Breathing

1.2 (0.7-2)8.7 (6.9-10.4)8.4 (6.5-10)Chores

1.7 (0.8-2.6)9.1 (7-10.3)8.2 (6.5-10.3)Cycling

1.7 (0.7-3.1)9.4 (7.6-11.4)8.6 (6.7-10.7)Recovery

1.2 (0.6-2.3)8.1 (6.5-9.9)7.3 (5.9-9.6)All

aMedian values per minute are used to calculate median absolute percentage error.
bHR: heart rate.
cRR: respiratory rate.
dN/A: not applicable.
eSpO2: oxygen saturation.

Concurrent Validity
Figure 4 shows Bland-Altman plots for individual samples,
whereas plots for median values per minute are shown in Figure

5. Table 5 shows mean differences and LoA from Bland-Atman
analyses and RMSE per vital sign for the 2 methods for each
wearable sensor compared with their reference devices.
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Figure 4. Bland-Altman plots for the 12 combinations of vital signs measured by the wearable sensors and reference devices for individual samples
during the preselected activity cluster, where the x-axis represents the mean of and the y-axis the difference (Δ) between both sensors. Dotted lines
represent the mean difference and limits of agreement for repeated measurements. bpm: beats per minute; brpm: breaths per minute; HR: heart rate;
RR: respiratory rate; SpO2: oxygen saturation; T: temperature.

Figure 5. Bland-Altman plots for the 12 combinations of vital signs measured by the wearable sensors and reference devices of median data per minute
during the preselected activity cluster, where the x-axis represents the mean of and the y-axis represents the difference (Δ) between both sensors. Dotted
lines represent the bias and limits of agreement for the repeated measurements. bpm: beats per minute; brpm: breaths per minute; HR: heart rate; RR:
respiratory rate; SpO2: oxygen saturation; T: temperature.
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Table 5. Mean differences and 95% limits of agreement (LoA) from Bland-Altman analysis for repeated measurements of each wearable sensor
compared with its reference device per vital sign using both individual samples and median values per minute during the preselected activity cluster.

FitbitVitalPatchEverion (left)Everion (right)Vital signs

MinuteSamplesMinuteSamplesMinuteSamplesMinuteSamples

HRa (activity cluster: cycling)

1791490180263918010761801077Number of data
pairs

1818181818181818Number of partici-
pants

−11.8
(−53.9 to
30.4)

−11.4 (−53.8
to 30.9)

0 (−12.4 to
12.5)

0.1 (−13.3 to
13.5)

−5.4 (−38.9
to 28.1)

−5.3 (−39 to
28.3)

−4.3 (−31.8
to 23.2)

−4.2 (−32.2 to
23.9)

Mean difference

(LoA; bpmb)

24.124.16.36.817.617.714.514.7RMSEc (bpm)

N/AN/AeRRd (activity cluster: breathing)

160372016021021602220Number of data
pairs

202020202020Number of partici-
pants

−0.5 (−5 to
4.1)

−0.1 (−7.6 to
7.3)

−0.3 (−9.1 to
8.6)

0.1 (−9.3 to
9.4)

−0.5 (−9.1 to
8.0)

−0.4 (−10.6 to
9.8)

Mean difference

(LoA; brpmf)

4.03.55.45.65.15.5RMSE (brpm)

N/AN/AN/AN/ASpO2
g (activity cluster: recovery)

6535169354Number of data
pairs

17171717Number of partici-
pants

−1.4 (−4.6 to
1.9)

−1.3 (−4.5 to
1.9)

−1 (−4.3 to
2.3)

−1.1 (−4.6 to
2.5)

Mean difference
(LoA; %)

2.12.12.02.1RMSE (%)

N/AN/ATemperature (activity cluster: recovery)

1001478100595100598Number of data
pairs

202020202020Number of partici-
pants

0.5 (−0.7 to
1.7)

0.5 (−0.7 to
1.7)

2.9 (1.1 to
4.6)

2.9 (1.1 to 4.6)2.7 (1.4 to
4.0)

2.7 (1.4 to 4.0)Mean difference
(LoA; °C)

0.80.83.03.02.82.8RMSE (°C)

aHR: heart rate.
bbpm: beats per minute.
cRMSE: root mean square error.
dRR: respiratory rate.
eN/A: not applicable.
fbrpm: breaths per minute.
gSpO2: oxygen saturation.

For HR measured by VitalPatch, the mean difference was 0
bpm (LoA −13.3 to 13.5 bpm). Everion worn at the right or left
arm underestimated HR with 4.2 bpm and 5.3 bpm (overall LoA
−39.0 bpm to 28.3 bpm), and Fitbit underestimated HR with
11.4 bpm (LoA −53.8 bpm to 30.9 bpm).

Mean differences for RR were low with large LoA for both
VitalPatch (LoA −7.6 brpm to 7.3 brpm) and Everion (LoA
−10.6 brpm to 9.8 brpm). In addition, Figures 4 and 5 show
higher differences for RR by Everion at the lowest breathing
frequency (overestimation) and highest breathing frequency
(underestimation).
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SpO2 was underestimated, with mean differences of over 1%
by Everion and LoA of −4.6% to 2.5%. For temperature,
VitalPatch had a small overestimation of 0.5 °C. Everion
overestimated temperature with a mean difference of 2.8 °C,
with slightly higher differences at lower temperature and vice
versa. The mean differences and LoA for median values per
minute were similar to those for the individual samples.

Discussion

Principal Findings
Telemonitoring requires vital sign data from wearable sensors
to be available, accurate, and valid when used for clinical
decision-making, as well as during daily activities. Our results
showed variable data availability and accuracy of vital signs
measured for the evaluated wearable sensors during different
daily life activities in a simulated free-living environment.
VitalPatch is accurate and the least vulnerable to movement
during daily activities. With regard to Everion, the mean
difference, lower accuracy during physical activity, and limited
data availability for RR and SpO2 must be considered when
interpreting its measurements for diagnostic aims. Our results
showed no relevant differences in performance between the left
and right Everion because of sensor placement. Fitbit had a
large mean difference and an activity-dependent storage
frequency for HR.

Different results for the tested wearable sensors may be
explained by differences in the underlying measurement
technologies, processing algorithms, and sensor placement sites.
Relevant findings and points of consideration will be discussed
in the context of each sensor.

Our study showed low availability of Everion RR during the
more active clusters and SpO2 data, which might be because of
the placement site of the Everions. The upper arm is a
nontraditional and uncommon site for measuring PPG signals,
for which its accuracy has not yet been established [21,22].
Everion calculates an accuracy metric per vital sign, which
prevents data with an accuracy <50% from being stored. This
accuracy metric could be low when the measurement of vital
signs is affected by movement, which is a general limitation of
PPG signals [22,23]. On the other hand, the fact that Everion
is PPG-based creates the ability to monitor multiple vital signs
(HR, RR, and SpO2) with only 1 sensor [24]. There is an
increasing demand for such devices, as patients are becoming
multimorbid.

We reported an underestimation of HR by Everion. Only Barrios
et al [13] evaluated HR measured by Everion in 6 healthy
volunteers compared with ECG Holter measurements during
different activities and found a mean difference for HR of −0.2
bpm (LoA of −6.3 bpm to 6.0 bpm) during cycling. These results
imply better accuracy compared with those of our study, which
could be related to the small number and young age of their
participants. Finally, our study showed unexpected drops in HR
by Everion during the rapid increase of HR while cycling
without extensive arm movement, which is expected to be
because of the algorithms of the sensors.

In our study, VitalPatch measured all vital signs with the highest
accuracy and validity. No previous studies have been reported
on the performance of VitalPatch. Only similar patches have
been studied previously, including the Sensium Vitals patch
(Sensium) [25] and HealthPatch (VitalConnect) [26].

For Fitbit, our study showed the lowest data availability of HR,
which might be related to its irregular storage frequency.
Although the sensor specification [14] stated that the sample
storage frequency should be once per second to once per 5
seconds, depending on the level of activity, data were collected
at much lower frequencies between once per 5 seconds and once
per 15 seconds in our study.

Our results showed high errors and mean differences for Fitbit
compared with the reference device. Earlier validation of the
Fitbit Charge HR (Fitbit Inc) for HR showed higher accuracy
during walking or running on a treadmill and lower accuracy
during daily activities, with a MAPE of 8.4% and 10.1%,
respectively [27]. A second validation study using Fitbit Charge
HR showed an even higher underestimation of HR of 16 bpm
during moderate-to-vigorous physical activity compared with
Polar H6 HR monitor in 10 healthy participants during daily
life activities [28].

In general, our results showed that the mean difference and LoA
did not improve using median values per minute instead of
individual data samples. This was unexpected, as using median
values minimizes the influence of potential outliers. Breteler et
al [26] found an improvement in the mean difference and LoA
of HR and RR when applying a median filter per 15 minutes,
although this might be more relevant for long-term
measurements. In addition, averaging rigorously decreases the
number of data points.

Strengths and Limitations
A strength of this study is that we evaluated the sensor
performance during daily life activities in a general population
with mixed characteristics. In addition, the study was performed
in a simulated home environment, which is as close as possible
to the target setting while enabling well-controlled study
measurements. Accordingly, the current results give more insight
into the sensor performance as compared with typically
performed validation protocols that only include young, healthy
participants and measurements at rest.

A limitation is that we assessed the wearable sensor performance
over a relatively short period. A second limitation is the limited
translatability of our results to patients because of the
measurement of vital signs in volunteers without
pathophysiological abnormalities. Other limitations are related
to the reference devices; we had to redo 1 volunteer because of
the recording failure of Oxycon Mobile, and the resolution of
the iButtons was set at 0.5 °C. This might have influenced the
bias of Everion and VitalPatch in temperature. Although Oxycon
Mobile has been used as the gold standard for portable
monitoring of vital signs before [15,16], validation studies have
so far focused on its measurement of metabolic capacity [29-33].
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Implications
Wearable sensors could assist in various areas of health care,
such as detection of deviant values of vital signs to alarm health
care professionals, trend analysis to monitor recovery or
deterioration, and decision-making to operate or visit the
hospital. Applications of vital sign telemonitoring are diverse,
from trend monitoring to acute alarms, based on the clinical
goal and which medical actions follow. The required accuracy
of the sensor measurements depends on this. Sensor performance
for patient monitoring still needs evaluation in specific patient
groups, at home or in hospital, during longer periods, and on
its diagnostic ability, which are the next steps toward clinical
applicability. Patient acceptance and actual use (adherence) are
important for clinical use [34]. Therefore, this should be the
subject of future work. However, the potential of our tested
wearable sensors for patient monitoring will be discussed in the
context of the following technical factors to consider: (1) the
vital signs to monitor, (2) a sensors’ accuracy and trending
ability, (3) data storage frequency or filtering, and (4)
confounding factors such as movement during daily activities.

First, the vital signs that need to be monitored depend on the
aforementioned application. For example, for in-hospital
monitoring, detection of cardiac events might require ECG
monitoring [35], whereas for detection of postoperative
deterioration, all vital signs used in the modified early warning
score might be preferred [2], which are HR, RR, temperature,
SpO2, and blood pressure. In many cases, it is still unknown
which parameters to monitor at home and how to interpret
long-term measurements obtained in a remote setting, as current
common practice is often that a patient returns to or contacts
the hospital in case of (increasing) symptoms without further
monitoring [7,36]. The ability of the tested sensors to measure
the available parameters is discussed per vital sign.

VitalPatch and Everion both monitor multiple vital signs,
whereas VitalPatch can also monitor raw ECG. HR is the most
commonly measured vital sign and is often measured accurately
[7,8,13]. Owing to its large mean difference and unexpected
drops during rapidly increasing HR, Fitbit is the least suitable
for HR monitoring in patients.

Everion measurements for RR were less accurate <15 brpm or
>20 brpm, according to our Bland-Altman analyses. However,
these ranges are especially important for the detection of
deterioration and predicting cardiac arrest [37,38]. Algorithms
for ECG and PPG can use the same techniques to derive RR,
such as amplitude and frequency modulation, although
algorithms based on ECG perform better than those based on
PPG [39]. Respiratory-synchronized variations are subtle, and
proximity to the chest improves the measurement of RR (less
susceptible to vasoconstriction) [40,41]. Therefore, VitalPatch
may be preferred for monitoring RR.

SpO2 is less commonly measured [7,8,13]. Available wearable
SpO2 sensors are generally commercially available fingertip

sensors, and few meet the International Organization for
Standardization 80601-2-61 accuracy standards [42]. Fingertip
probes are not ideal for long-term monitoring of SpO2 at home,
although this enables transmission mode PPG with higher
perfusion compared with more convenient measurement sites
that require reflection mode PPG [41,42]. The low variability
in SpO2 levels of volunteers precludes insight into the accuracy
of Everion for monitoring SpO2 levels in patients. However,
because of its limited data availability and underestimation of
SpO2, our results indicate that Everion is not suitable for
(high-frequency) clinical monitoring of SpO2.

Most available wearable sensors measure skin temperature
(including Everion and VitalPatch), whereas core temperature
may be clinically more relevant because of its current use in
clinical practice. Nevertheless, the clinical relevance of skin
temperature monitoring should be evaluated in future research
[2].

Second, it is important to define what performance and trending
ability are acceptable for clinical use. Currently, no criteria are
available for MAPE, mean differences, and LoA of wearable
sensors. Although all wearable sensors in our study followed
similar trends compared with those followed by the reference
devices for HR, RR, and temperature, their trending ability and
diagnostic ability to detect clinically relevant changes should
be assessed during longer assessments in patients.

A challenge for validation studies for vital sign monitoring is
choosing the right reference devices to use as gold standard
devices [43]. We experienced that ECG cables and electrodes
used for the HR reference measurements are susceptible to
movement as well, as also described by Barrios et al [13] using
ECG Holter. The Oxycon Mobile reference device enabled
ambulatory expired volume analysis, which is the best available
solution to monitor RR wireless and continuously. Accordingly,
the RR validation results are expected to be more accurate as
compared with those of clinical validation studies that use
intermittent nurse assessments as reference, which is often
poorly reported or inaccurate [1].

Third, optimal filtering strategies and data storage frequencies
should be investigated. Fourth, further reduction of movement
artifacts, for example, using information from the present
accelerometer [42], is essential for optimizing measurements
at sites that enable long-term monitoring, such as the upper arm.

Conclusions
To use wearable sensors for clinical decision-making,
information about their performance in daily life is needed. Of
the tested sensors, VitalPatch was found to be the most accurate
and valid for vital sign monitoring. For all sensors, movement
during daily activities should be considered. Longer assessments
of wearable sensors are needed to evaluate the technical
performance and trending ability to work toward the clinical
applicability of wearable sensors in patients.
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Multimedia Appendix 1
Measurement protocol with the activity clusters, task descriptions and task durations and cumulative time of the 17 tasks included
in the analysis.
[PDF File (Adobe PDF File), 195 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Measured data of all sensors for one study participant, classified by vital sign. White boxes represent the tasks, and the grey boxes
the transition periods between tasks.
[PNG File , 224 KB-Multimedia Appendix 2]
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