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Abstract
Neoantigens are mutation-containing immunogenic peptides from tumor cells. Neoantigen intrinsic features are neoantigens’ sequence-
associated features characterized by different amino acid descriptors and physical–chemical properties, which have a crucial function in
prioritization of neoantigens with immunogenic potentials and predicting patients with better survival. Different intrinsic features might have
functions to varying degrees in evaluating neoantigens’ potentials of immunogenicity. Identification and comparison of intrinsic features among
neoantigens are particularly important for developing neoantigen-based personalized immunotherapy. However, there is still no public reposi-
tory to host the intrinsic features of neoantigens. Therefore, we developed GNIFdb, a glioma neoantigen intrinsic feature database specifically
designed for hosting, exploring and visualizing neoantigen and intrinsic features. The database provides a comprehensive repository of com-
putationally predicted Human leukocyte antigen class I (HLA-I) restricted neoantigens and their intrinsic features; a systematic annotation
of neoantigens including sequence, neoantigen-associated mutation, gene expression, glioma prognosis, HLA-I subtype and binding affinity
between neoantigens and HLA-I; and a genome browser to visualize them in an interactive manner. It represents a valuable resource for the
neoantigen research community and is publicly available at http://www.oncoimmunobank.cn/index.php.

Database URL: http://www.oncoimmunobank.cn/index.php

Key Points

• GNIFdb contained comprehensive neoantigen intrin-
sic features for glioma and other tumors.

• Intrinsic features in GNIFdb can be exploited to
prioritize neoantigens with immunogenic potential.

• HLA-I restricted neoantigen peptide sequence,
neoantigen intrinsic features, neoantigen associated
mutation, gene expression, HLA-I subtype and
binding affinity between neoantigens and HLA-I
were integrated in GNIFdb.

• A freely available and full functional website was
built to search, browse and download all data in
GNIFdb.

Introduction
Nonsynonymous coding mutations may generate immuno-
genic peptides, neoantigens, that are presented to CD8+ T
cells on restricted Human leukocyte antigen class I (HLA-I)
subtype in selected tumor types such as melanoma (1), lung
cancer (2), colorectal tumors (3) and Isocitrate Dehydroge-
nase (IDH) wild-type glioblastoma (GBM) (4). Neoantigens
play pivotal roles in personalized immunotherapies, promot-
ing tumor-specific T-cell responses and affecting antitumor
immune responses in a number of preclinical models (5, 6).
According to our previous study (4, 7, 8), it is found
that neoantigen-based classifiers stratifies GBM patients with
more favorable clinical outcome, but tumor neoantigen bur-
den from a quantitative model fails to predict survival of
GBM patients, suggesting that the underlying the intrin-
sic features of neoantigens may be distinct in patients with
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different prognosis. The intrinsic features refer to the neoanti-
gens’ sequence-associated features characterized by amino
Acid descriptors and physical–chemical properties. There-
fore, studying intrinsic features may extend the knowledge
of immunogenicity of neoantigens in different subtypes of
glioma.

Glioma is a type of brain tumor consisting of multiple
subtypes with few benefits achieved despite extensive treat-
ment regiments during the last two decades (9–12). The
tumor microenvironment dominated by mostly blood-derived
macrophages and resident microglia actively operating to
exclude T lymphocytes and undermine their functions limits a
productive anti-tumor immunity in glioma (13–17). As higher
mutation load is associated with increased tumor aggres-
siveness (18), mutation-generated neoantigens as inducer of
immunogenic responses in glioma lies in their quality but
not quantity (4, 19). There are multiple ways of evaluating
the neoantigen qualities, including binding affinity between
neoantigens and their corresponding restricted HLA-I sub-
types, neoantigen intrinsic features and the expression levels
of genes harboring the mutations generating neoantigens (4).
Over the past years, several neoantigen-related databases
(20–23) have been developed for cancers. However, none
of these databases were designed to support glioma stud-
ies by integrating neoantigen intrinsic features in different
glioma subtypes. Specifically, dbPepNeo (21) and NEPdb
(24) focused on neoantigens manually curated from experi-
mentally supported human tumor neoantigens. Immune Epi-
tope Database (IEDB) (22), a gateway to global immune
epitope information, was designed for general research pur-
poses, mainly providing experimentally validated informa-
tion of immune epitopes. TSNAdb (23) deposits neoantigens
predicted by NetMHCpan based on somatic mutations of
The Cancer Genome Atlas (TCGA) tumor samples and their
restricted HLA subtypes in The Cancer Immunome Atlas
(TCIA) (20). There is also a great need in glioma to build
a specialized database that contains comprehensive neoanti-
gen intrinsic features in all pathology, molecular genetics
and epigenetics-based glioma classification subtypes with the
aim to exploit the full potential of neoantigen intrinsic fea-
tures for better evaluating the immunogenicity of neoantigen
candidates.

Here, we develop GNIFdb (http://www.oncoimmuno
bank.cn/index.php), a database of HLA-I restricted neoanti-
gen intrinsic features that integrates the genome-wide neoanti-
gens of glioma covering all 20 subtypes according to
up-to-date pathology, molecular genetics and epigenetics-
based classification. GNIFdb also contains neoantigen
intrinsic features for other four cancer types including lung
cancer, melanoma, bladder cancer, and head and neck squa-
mous cell carcinoma. Unlike existing databases, GNIFdb
first includes intrinsic features of neoantigens from multi-
ple sources and incorporates HLA-I restricted neoantigen
peptide sequence, neoantigen intrinsic features, neoantigen-
associated mutation, gene expression, HLA-I subtype and
binding affinity between neoantigens and HLA-I. With these
resources, this database facilitates systematic integrative
investigation of immunogenicity of neoantigens in glioma and
other cancer type and provides a configurable and interac-
tive browser to visualize neoantigens as well as other related
data.

Materials and methods
Data collection and preprocessing in glioma
Based on histological, molecular or both classifications, there
are a total of 20 glioma subtypes, including GBM, astro-
cytoma, oligodendroglioma, oligoastrocytoma, co-deletion
(1p and 19q), IDH mutant, IDH mutant co-deletion, IDH
mutant non-co-deletion, G-CIMP high, G-CIMP low, IDH
wild, classic, mesenchymal, neural, proneural, classic like,
mesenchymal like, PA like, LGm6 GBM and primary GBM.
In our previous study (4), we generated predicted neoantigens
for the 20 glioma subtypes using whole exome sequencing
data from TCGA with all the subtypes, mutation and survival
information retrieved from the publication of our collab-
orator (Cohort 1) (25), and inferred neoantigens for IDH
wild-type primary GBM from Asian population (Cohort 2)
(4, 8). Specifically, missense mutation were used to generate
all possible 9-mer peptides, with binding affinity of mutant
and corresponding wild-type 9-mer peptides, relevant to the
patient’s HLA-I alleles, predicted by netMHCpan-4.0. High-
and low-affinity binders were defined as having IC50 equal or
<500 nM or having IC50 >500nM, respectively. Neoantigens
were determined based on more stringent criteria, the mutant
IC50 was <500 nM and IC50 of the corresponding wild-type
binder, relevant to all HLA-I alleles of the patient, more than
500nM (4). All neoantigens were categorized into different
prognostic groups (<6 months, 6–12months, 1–3 years, 3–5
years and >5 years) based on the survival of glioma patients.
We also collected neoantigens of GBMs receiving anti-PD-1
immunotherapy treatment from our collaborator at Columbia
University (Cohort 3) (26).

Collection of neoantigens in other tumors
Additionally, we collected neoantigens publicly available in
lung cancer, melanoma, bladder cancer and head and neck
squamous cell carcinoma (Cohort 4) (27). Similarly, all
neoantigens were categorized into different prognostic groups
(<6 months, 6–12months, 1–3 years, 3–5 years and >5 years)
based on the survival of glioma patients. All genomic data
were obtained from RefSeq and GenBank databases of NCBI
and the UCSC genome browser.

Collection of non-antigens
The non-antigens were determined by BLAST protein
sequences randomly selected from Viral Bioinformatics
Resource Center against hundreds of antigens we manually
curated from the literature containing tested immunogenic
protein data. A total of 48 210 9-mer peptides designated
as false neoantigens were derived from 100 non-antigens by
9-mer sliding window with the step size of one amino acid.

Calculation of neoantigen intrinsic features derived
from AA descriptors
To calculate the neoantigen intrinsic features derived from
Amino Acid (AA) descriptors, we used well-known methods
including protFP (28, 29), blosum Indice (30), crucianiProp-
erties (31), FASGAI (32), MS-WHIM (28, 29), kideraFactor
(33), stScales (34), T-scale (32), zScales (35) and VHSE
(36). The above neoantigens’ AA descriptors were computed
based on the four conditions, respectively, including the
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complete sequence, the site of mutation along with each anti-
gen and the dipeptides/tripeptides related to the mutation site,
each absolute position along each antigen and related dipep-
tide/tripeptide composition, and the difference of each feature
in the mutated versus reference antigen.

Calculation of neoantigen intrinsic features derived
from physical–chemical properties
To compute the intrinsic features derived from physical–
chemical properties (37), R package ‘Peptides’(v2.4.2) was
used to obtain features of auto-correlation, auto-covariance,
Boman index, cross-covariance, hydrophobic moment,
hydrophobicity, theoretical net charge, instability, and molec-
ular weight. The above neoantigens’ physical–chemical prop-
erties were derived under the four conditions, respectively,
including the complete sequence, the site of mutation along
with each antigen and the dipeptides/tripeptides related to
the mutation site, each absolute position along each antigen
and related dipeptide/tripeptide composition, and the differ-
ence of each feature in the mutated versus reference antigen.
In addition, we used the R command named ‘aaComp’ to
retrieve features of Tiny, Small, Aliphatic, Aromatic, Non-
polar, Polar, Basic, Acidic, which were derived based on
whether the presence (1) or absence (0) of each feature under
the same conditions.

Calculation of neoantigen intrinsic features derived
from Shannon entropy
Shannon entropy is an important index to measure the com-
plexity at protein and residue levels. We calculated the Shan-
non entropy of a neoantigen using the following formula (37):

HS=−
20∑
i=1

pilog2pi

HRi =−pilog2pi
where HS is Shannon entropy of a protein sequence andHRi is
entropy of a residue type i. pi is the probability of the existence
of a given amino acid in the sequence. We calculated the Shan-
non entropy of each neoantigen and its corresponding wild-
type peptide. Cancer is characterized by the accumulation of
mutations, so the analysis of mutant positions is valid. There-
fore, the Shannon entropy of the dipeptides/tripeptides related
to the mutation site and the entropy difference of mutations
process were performed. The entropy of a residue type was
also calculated for each neoantigen and its corresponding
wild-type peptide.

Calculation of neoantigen intrinsic features derived
from mutations (AA properties)
The features describing overall content of mutant amino acid
composition were also important. Based on mutation position
and amino acid changes at mutation position, we calculated
the intrinsic features derived from the number of times each
amino acid appeared in the mutant peptide (noted as AA
properties). Specifically, the AA property features were con-
structed in the way that the mutant amino acid demonstrating
presence (1) or absence (0) of each amino acid type following,
including the first or last three amino acid residues or mid-
dle residues of each neoantigen, the first or last amino acid

residues of each neoantigen, the first or last two amino acid
residues or middle residues of each neoantigen.

Calculation of differential agretopicity index for
neoantigens
Differential agretopicity index (DAI), which has been con-
firmed at a survival predictor in melanoma and non-small cell
lung cancer (38), was proposed as a more accurate indicator
of peptide immunogenicity (39, 40). We calculated DAI for
each neoantigen by the difference in binding affinity between
any neoantigen and its corresponding wild-type peptide.

Summary of total data content
The current version of GNIFdb contains three independent
glioma cohorts: Cohort 1 has 733 glioma patients includ-
ing 20 pathological or molecular subtypes; Cohort 2 has 46
GBMs and Cohort 3 has 13 GBMs 2928 intrinsic features
derived from amino acid descriptors, and physical–chemical
properties were calculated for each neoantigen, resulting in
12 865 632 intrinsic features of 4394 neoantigens in three
glioma cohorts combined (4091, 206 and 97 neoantigens
for Cohorts 1, 2 and 3, respectively). GNIFdb also provides
intrinsic features derived from neoantigens publicly available
for four solid tumors in Cohort 4, including lung cancer (2619
neoantigens), melanoma (21 108 neoantigens), bladder cancer
(1250 neoantigens) and head and neck squamous cell car-
cinoma (313 neoantigens) (Table 1). The intrinsic features
of 48 210 9-mer peptides from non-antigens are incorpo-
rated in GNIFdb. Additionally, the binding affinity between
each neoantigens and the corresponding restricted HLA was
deposited in GNIFdb. DAI score was calculated and included
in GNIFdb for all neoantigens of glioma cohorts and other
tumor cohorts.

Web interface implementation
GNIFdb has been implemented with the use of MySQL
(http://www.mysql.org), a free relational database manage-
ment system, PHP, a popular general-purpose scripting lan-
guage especially suited to web development, and Apache2
(http://httpd.apache.org/) on an Ubuntu Linux Server, follow-
ing the Model-View-Controller architecture with the Model
and View components being independent and loosely cou-
pled for parallel development and simplification of updating
and integrating new databases (Figure 1). Thus, GNIFdb is
of good scalability, flexibility and extensibility. The Model
component handles data derived from multiple sources from
MySQL databases and flat experimental data files, which is
the core functionality of the system including retrieving the
intrinsic features of neoantigens, performing statistical anal-
ysis and generating visualization plots. The View component
provides heterogeneous and synchronized views to present the
information and interact with the users, which is the primary
user interface component. The front-end template engine of
Bootstrap combinedwithHTML and JavaScript provide great
visibility and usability of our functionality, therefore enhanc-
ing browsing and searching abilities. The Controller compo-
nent, a mediator between the Model and View components,
deals with the application logic, which is tightly coupled with
the independent components. GNIFdb is freely available at
http://www.oncoimmunobank.cn/index.php.

http://www.mysql.org
http://httpd.apache.org/
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Table 1. GNIFdb data content and statistics

AA features Number of samples

Cohort Subtype Neoantigens AA descriptors AA properties Phys–chem prop Expr data Neoantigen data

Glioma (Cohort 1) Glioma 4091 8910 198 122880 2413 690 662 733
Gbm 2223 4841 694 355680 1311 570 152 285
Astr 768 1 672 704 122880 453120 167 148
Oligo 569 1239 282 91040 335710 171 145
Oligoastr 342 744876 54720 201780 114 97
1p19q Co-del 519 1 130 382 83040 306210 172 149
IDHmut 1392 3031 776 222720 821280 422 379
IDHmut Co-del 515 1 121 670 82400 303850 168 147
IDHmut Non-
codel

878 1 912 284 140480 518020 254 232

G-CIMP High 752 1637 856 120320 443680 232 210
G-CIMP Low 114 248292 18240 67260 17 18
IDHwt 2649 5769 522 423840 1562 910 228 346
Classic 913 1 988 514 146080 538670 85 112
Mesenchymal 834 1 816 452 133440 492060 96 116
Neural 460 1 001 880 73600 271400 110 97
Proneural 1049 2 284 722 167840 618910 236 230
Classic Like 973 2 119 194 155680 574070 68 120
Mesenchymal
Like

1134 2469 852 181440 669060 98 156

PA Like 129 280962 20640 76110 25 14
LGm6 Like 121 263538 19360 71390 11 17
IDHwt PriGbm 2132 4643 496 341120 1257 880 135 262

Glioma (Cohort 2) IDHwt PriGbm 206 448668 32960 121540 – 46
Glioma (Cohort 3) Gbm 97 211266 15520 57230 – 12
Other tumors (Cohort 4) Lung Cancer 2619 5704 182 419040 1545 210 – 57

Melanoma 21108 45973 224 3377 280 12 453720 – 151
Bladder 1250 2722 500 200000 737500 – 27
HNSCC 313 681714 50080 184670 – 12

Gbm: glioblastoma, Astr: astrocytoma, Oligo: oligodendrocyte, Oligoastr: oligoastrocytoma, IDHmut: IDH mutant, IDHmut Co-del: IDH mutant, 1p19q
co-deletion, IDHmut non-codel: IDH mutant, 1p19q non-co-deletion, IDHwt: IDH wild-type, IDHwt PriGBM: IDH wild-type primary glioblastoma.

Results
User-friendly browsing
GNIFdb collects 12 865 632 neoantigen intrinsic features and
dedicates to store, browser and visualize intrinsic features
derived from amino acid descriptors and physical–chemical
properties of neoantigens in 20 glioma subtypes. GNIFdb also
contains intrinsic features derived from neoantigens publicly
available in lung cancer, melanoma, bladder cancer and head
and neck squamous cell carcinoma and 9-mer peptides from
non-antigens. The home page provides general information
about GNIFdb. Interactive images displayed on browse page
(http://www.oncoimmunobank.cn/item/browse), which pro-
vided quick links to access neoantigen intrinsic feature data,
neoantigen peptide sequence, neoantigen-associated muta-
tion information, gene expression, human leukocyte antigen
(HLA) and HLA-binding affinity (Figure 2). Specifically, by
clicking Cohort 1 (Figure 2A), users will be guided to select the
glioma subtype they may have interests in (Figure 2B). Mov-
ing their cursor further down to ‘Neoantigen’ in ‘Summary
of Glioma (TCGA) Different Subtypes’, the users can also
examine the neoantigen quantity distribution among differ-
ent glioma subtypes and compare the number of neoantigens
among different survival subgroups in a specified glioma sub-
type (Figure 2C). By clicking ‘HLA’, users can review the
number of neoantigens, the corresponding HLA-I subtypes
and the number of patients with the selected HLA-I sub-
type among different glioma subtypes (Figure 2D). Users can
also check the binding affinity score between neoantigens and

their corresponding HLA subtypes among glioma subtypes
by selecting ‘MT Score’ (Figure 2E). Similarly, DAI score dis-
tribution of neoantigens in different glioma subtypes can be
shown in ‘DAI Score (Figure 2F). After selecting a cohort
(glioma subtype for Cohort 1), users can access the relation-
ship between genes harboring neoantigens and corresponding
HLA-I subtypes in the selected glioma subtype (Figure 2G).
They can also review the nucleotide or amino acid changes
among mutations generating neoantigens (Figure 2H). By
clicking a gene symbol, users can retrieve detailed neoantigen
and associated intrinsic feature information (Figure 2I).

Visualization page
To visualize neoantigens and associated information, GNIFdb
deploys an interactive and user-friendly neoantigen browser
built on JBrowse (41) (Figure 3). For each glioma subtype,
the neoantigen browser has a variety of data tracks including
Reference Sequence, Gene Annotation, PolyA Feature Anno-
tation, LncRNA Gene Annotation, 2-wa Consensus (retro-
transposed) Pseudogenes (predicted by the Yale and UCSC
pipelines), tRNA Genes Predicted by tRNAscan-SE, Gene
Expression and Neoantigens. Users are allowed to choose
tracks of their interests and to zoom and scroll any region
along the genome. The neoantigen browser is of great use-
fulness to investigate neoantigens of specific genes or regions
across different glioma subtypes by taking account of multiple
relevant data tracks (Figure 3A). For example, ATF6 regu-
lates the expression of several pro-oncogenic proteins such

http://www.oncoimmunobank.cn/item/browse
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Figure 1. Schematic overview of data collection, data processing and key functionality of GNIFdb. (A) GNIFdb collects neoantigens from three
independent glioma cohorts including 20 pathological or molecular subtypes in Cohort 1 from TCGA, 46 GBMs in Cohort 2 and 13 GBMs in Cohort 3.
Cohort 4 includes four other solid tumors (lung cancer, melanoma, HNSCC and bladder cancer) as extendable data. (B) Intrinsic features of neoantigens
in all the four cohorts were calculated using amino acid descriptors of protFP (28, 29), blosum Indice (30), crucianiProperties (31), FASGAI (32),
MS-WHIM (28, 29), kideraFactor (33), stScales (34), T-scale (32), zScales (35), and VHSE (36), physical-chemical properties (37) of Tiny, Small, Aliphatic,
Aromatic, Non-polar, Polar, Basic, Acidic, auto-correlation, auto-covariance, Boman index, crosscovariance, hydrophobic moment, hydrophobicity,
theoretical net charge, instability, and molecular weight and AA properties. NES method and neoDL we previously developed are also included. (C) We
implemented the GNIFdb following the Model-View-Controller architecture. The Model component handles data derived from multiple sources in
MySQL databases and flat experimental data files, calculating the intrinsic features of neoantigens, performing statistical analysis and generating
visualization plots. The View component provides heterogeneous and synchronized views to present the information and interact with the users.
The front-end template engine of Bootstrap combined with HTML and JavaScript provide better visibility and usability of our functionality. The Controller
component, a mediator between the Model and View components, deals with the application logic.

as GRP78 and Notch1 and plays important roles in tumor
growth and resistance to radiotherapy in GBM (42). If a
user wants to examine the information associated with ATF6,
by selecting ‘ATF6’ on the gene track, all detailed informa-
tion of ATF6 will be displayed (Figure 3B), as well as for
the information on other tracks (Figure 3A). Additionally,

when a SNV is selected on the ‘Neoantigen’ track, the cor-
responding detailed information will be displayed including
the amino acid sequence of neoantigen, the mutation gener-
ating this neoantigen and the survival of the patient having
this mutation (Figure 3C and D). Similarly, the detailed infor-
mation of the gene will be displayed as it is selected on the
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Figure 2. Browse page in GNIFdb showing information of neoantigens and their intrinsic features. (A) All cohorts. (B) The glioma subtypes in Cohort 1.
(C) Neoantigens’ quantity of different glioma subtypes with five survival periods in Cohort 1. (D) The frequency of neoantigens and their corresponding
HLA-I subtypes in different glioma subtypes of Cohort 1. (E) The distribution of neoantigens’ binding affinity score with their corresponding HLA-I
subtypes in different glioma subtypes of Cohort 1. (F) The distribution of neoantigens’ DAI score in different glioma subtypes of Cohort 1. (G) The
relationship between genes generating neoantigens and the HLA-I interacting with neoantigens. (H) The distribution of nucleotide or amino acid
changes at mutated site in the neoantigens. (I) The list of genes harboring neoantigens, associated mutation site, the corresponding HLA-I subtypes
interacting with the neoantigens and the survival time periods. (J) The intrinsic features of neoantigens associated with each gene.
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Figure 3. Visualization interfaces in GNIFdb. (A) Overview of the tracks corresponding to gene, mutation and neoantigens in a specified glioma subtype
(IDH wild-type, Cohort 1 in this example). (B) The gene information includes gene symbol, gene length, location and gene type. (C) Zoomed-in tracks of
mutation and gene expression shows the details of mutations and corresponding neoantigens (D) and gene expression (E).

‘Gene expression’ track (Figure 3C and E). Therefore, it is
of high utility to investigate neoantigens of glioma subtype
within specific genes or regions.

Advanced search
To support information search and exploration, GNIFdb pro-
vides user-friendly web interfaces to search a diversity of
information for a specific gene or genomic region in step-
by-step manner (Figure 4). In addition to gene name search-
ing, GNIFdb also supports searching by neoantigen pep-
tide sequence, chromosome and the region associated with
neoantigens. By specifying a disease and subtype in step 1
(Figure 4A), selecting gene name option at step 2 (Figure 4B)
and inputting a chromosome number at step 3 (Figure 4C),
users can obtain its mutation location, mutant and reference
nucleotide, restricted HLA, neoantigens and survival time of
the patient harboring this mutation (Figure 4D). By select-
ing the gene symbol, users can access to full information
associated with this gene (Figure 4E), including the expres-
sion levels of this gene among patients with specified disease
subtype (Figure 4F), all neoantigens detected in this gene
and associated 12 major intrinsic feature categories (protFP,

biosumIndice, crucianiProperties, FASGAI, MSWHIM, kider-
aFactor, stScales, tScales, zScales, VHSE, AA Properties and
Physical-Chemical Properties) covering 2928 intrinsic feature
types (Figure 4G).

Intrinsic feature calculation tools
To help advanced users investigate their own neoantigens,
GNIFdb provides ‘Tools’ that can be downloaded to cal-
culate the intrinsic features of neoantigens. There are a
total of 12 tools for calculating the neoantigen intrinsic
features in the drop-down menus, including protFP, blo-
sumIndice, crucianiProperties, FASGAI, MSWHIM, kider-
aFactor, stScales, T-scale, zScales, VHSE, AA Distribution
and Physical-Chemical properties (Figure 4H). We also pro-
vide neoDL (a novel neoantigen intrinsic feature-based deep
learning model) developed by our team (43) to download
(Figure 4I). neoDL was built with three hidden layers includ-
ing two LSTM layers and one fully connected layer, with
each layer containing 128, 32 and 8 nodes, respectively. Sig-
moid function was chosen as neuron activation function for
fully connected layers, mean square error as the loss func-
tion and Adam as the iterative optimizer. Users can apply
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Figure 4. Information query and tools in GNIFdb. An example demonstrates that querying glioma (Cohort 1) (A), chromosome category (B) and
chromosome 1 (C) generates the list of information associated gene, mutation, neoantigen, corresponding HLA-I subtype and survival time period (D) in
the genomic region of interests. The query results also provide the summary of information availability (E) and detailed gene expression (F) and the full
list of neoantigen intrinsic features (G). (H) Tools provide codes for calculating neoantigen intrinsic feature calculations, neoDL (I) and downloading of
neoantigen and gene expression data for all cohorts (J).

the neoDL to identify patients with better prognosis who
will most likely benefit from neoantigen-based personalized
immunotherapy. In addition, we also provide a tool named
NES (normalized enrichment score) (4) for download, which
is used to estimate the probability that the expression of a gene
in the gene set is greater than the expression of a gene out-
side this set. In addition, each tool page has detailed manual.

Users can optionally download these tools for their own
good.

Data download and help
GNIFdb provides a download page in Tools to quickly retrieve
neoantigen and gene expression data of the desired glioma
subtypes and other solid tumors. The download page shows
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the list of glioma subtypes and tumor types in a table manner
(Figure 4J). For each glioma subtype or tumor type, two links
are provided to download the entire data as a CSV file. The
help page of GNIFdb in Documentation contains an extensive
and detailed manual to aid new users in understanding the
intrinsic features of neoantigens and layout of the website.
Various sections of the page describe each feature of GNIFdb
in detail and also provide information on how to use them.

The utility of GNIFdb
Neoantigen intrinsic features, characterized by different
amino acid descriptors and physical–chemical properties,
play crucial roles in prioritizing neoantigens with potential
immunogenicity and predicting patients with better survival.
GNIFdb features integration and visualization of neoanti-
gen intrinsic features as well as other related data, enabling
identification of neoantigens with immunogenicity in differ-
ent glioma subtypes and accordingly providing an important
resource for development of neoantigen-based personalized
immunotherapy. The utility of GNIFdb is further highlighted
in the following use cases:

Case study 1: good prognostic GBMs having
neoantigens with protective intrinsic features
Typically, GBM has a low mutation load (44, 45) and
immunologically cold tumor microenvironment (46). The
popular models including both neoantigen quantity and DAI
model (difference between binding affinity of wild-type and
mutant-type peptides) failed to predict the overall survival
of IDH wild-type GBMs and 16 different glioma subgroups
(4, 43). However, our previous study has shown a preferential
enrichment of protective intrinsic features in IDH wild-type
GBMs with the longest survival characterized by development
and cell cycle associated with Gene Ontology pathways (43).
This preference can also be observed in other glioma subtypes
including GBM, Classical-like, Mesenchymal-like and Classi-
cal. Additionally, IDH wild-type GBMs in Asian population
were also found having enrichment of protective intrinsic
features. Twelve intrinsic features in categories of the molec-
ular weight and molecular size/volume of the position 3,4
composed-dipeptide, and molecular electrostatic of the posi-
tion 2–4 composed-tripeptide were protective factors in both
TCGA cohort and GBMs in Asian. These prognostic intrin-
sic features of the neonatigens can be manipulated to identify
neoantigens with high potential of immunogenicity.

Case study 2: neoantigen intrinsic features-based
deep learning model predicting good prognostic
GBMs
We have previously observed the enrichment of protec-
tive intrinsic features in IDH wild-type GBMs with good
overall survival (43). Currently, the vast majority of deep
learning models (such as DeepLearning Model (47) and PAS-
Net (48)) are based on gene expression, clinical informa-
tion and medical image data, without direct help in finding
patients who may benefit from neoantigen-based personal-
ized immunotherapy. To identify GBMs with good prog-
nosis and enriched protective intrinsic features, we con-
structed an intrinsic feature-based deep learningmodel includ-
ing three hidden layers of two LSTM layers and one fully

connected layer with 128, 32 and 8 nodes, respectively.
The model was demonstrated to successfully stratify IDH
wild-type GBMs into two subgroups with significantly dif-
ferent survival in two independent cohorts including TCGA
cohort and a cohort of Asian population, even in some
other high-grade glioma subtypes (43). The intrinsic feature-
based deep learning model can be therapeutically exploited
to identify IDH wild-type GBM with good prognosis who
will most likely benefit from neoantigen-based personalized
immunotherapy.

Discussion
Different from extant databases, GNIFdb features (i) inte-
grating neoantigen intrinsic features of full glioma subtypes
including pathology and molecular-based classification; (ii)
storing large amounts of neoantigens and mutations identified
in glioma; (iii) interconnectingmultiple related omics data and
building a neoantigen browser for visualization of all types of
data in a genomic context and (iv) allowing the online query
of neoantigen intrinsic features, neoantigens and expression
profiles for a given region or gene. Taken together, GNIFdb
integrates and visualizes neoantigen intrinsic features as well
as gene expression profiles and survival category, enabling
identification of potential neoantigens in different glioma sub-
types and providing an important resource for developing
immune therapies.

GNIFdb is committed to integrating neoantigens and
their intrinsic features in different glioma subtypes. There-
fore, future developments for GNIFdb include incorpora-
tion of neoantigens and their intrinsic features from differ-
ent tumors. Accordingly, GNIFdb will continue to integrate
related types of data including expression profiles and SNP
from different resources and add more neoantigen-related
analysis tools. Considering the increasing number of neoanti-
gens and their intrinsic features, it is also important to
develop web pages and tools to allow the easy incorpo-
ration of new data. Furthermore, GNIFdb will also pro-
vide new possible intrinsic feature measurements in different
cancer types and develop web interfaces to facilitate cross-
cancer comparison of neoantigens and their intrinsic fea-
tures in different cancer subtypes. The neoantigen browser
will be further improved to support interactive visualiza-
tion of big neoantigen data as well as other related data.
In addition to the neoantigen and neoantigen intrinsic fea-
tures generated by our team, we also invite the scientific
community to submit their neoantigen data to GNIFdb and
to build collaborations in improving the functionalities of
GNIFdb.
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