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The divergent genital morphology observed among closely related animal species has long been posited as a mechanism of
reproductive isolation. Despite the intuitive appeal that rapidly evolving genitalia might cause speciation, evidence for its
importance—or even its potential—in reproductive isolation is mixed. Most tests of genital structural isolation between species
often fail to find convincing evidence that differences in morphology prevent copulation or insemination between species.
However, recent work suggests that differences in genital morphology might contribute to reproductive isolation in less obvious
ways through interactions with sensory mechanisms that result in lowered reproductive fitness in heterospecific matings. In
this paper, I present a brief history of the “lock-and-key” hypothesis, summarize the evidence for the involvement of genital
morphology in different mechanisms of reproductive isolation, discuss progress in identifying the molecular and genetic bases of
species differences in genital morphology, and discuss prospects for future work on the role of genitalia in speciation.

L’armure copulatrice est un organe ou mieux un instrument ingénieusement compliqué,
destiné à s’adapter aux parties sexuelles externes de la femelle pour l’accomplissement de l’acte copulatif;

elle est la garantie de la conservation des types, la sauvegarde de la légitimité de l’espèce.
[The copulation armor is an organ or better an instrument ingeniously complicated,

destined to adapt to sexual parts external to the female for the completion of copulation;
it is the guarantee of the preservation of the standards, the safeguard of the legitimacy of the species.]

L. Dufour, 1844

1. Introduction

The French entomologist Leon Dufour’s statement [1] in
which he hypothesized that the remarkable diversity in gen-
ital morphology observed among Dipterans is important for
maintaining reproductive isolation (RI) between species is
one of the notable ideas in speciation research that has gen-
erated both considerable controversy and much experimen-
tal work. Indeed, among different mechanisms of RI, struc-
tural isolation involving genitalia appears to be one of the
first mechanisms of speciation to be experimentally tested.
However, despite the widespread differences in genital mor-
phology observed among many animal species [2], and the
intuitive nature of the so-called lock-and-key hypothesis—
that structural differences in the genitalia prevent species

from hybridizing—the vast majority of experimental tests
have failed to find convincing evidence that the differences in
genitalia between species have a substantial role in preventing
hybridization. Most of these tests, however, have focused
on one specific mechanism of genital lock-and-key RI, and
recent studies suggest that differences in genital morphology
might in fact contribute to RI in more cryptic ways that
reduce the reproductive success of heterospecific matings.

Lock-and-key reproductive isolation can operate via two
different mechanisms [3, 4]. The first is the classic mechani-
cal or structural lock-and-key mechanism of Dufour where
differences in genital morphology between species prevent
or reduce the success of copulation and/or insemination as
a direct result of mechanical incompatibilities that occur
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during genital coupling. RI caused by structural lock-and-
key also includes postmating fitness losses such as physical
damage to either parent that might prevent any future mat-
ings. The second mechanism is sensory lock-and-key first
posited by De Wilde [5] and later formalized by Eberhard
[3] where differences in genital morphology are perceived
by one or both sexes and evoke behavioral or physiological
responses that result in premature termination of mating
attempts or postcopulatory reproductive fitness problems.
These two mechanisms are not mutually exclusive, and both
can operate in concert to give rise to RI.

Because genital morphology and its role in RI have re-
ceived much attention in literature, it will be helpful to make
clear what I will discuss in this review. Several hypotheses
about the forces that drive the rapid evolution of genital
morphology in animal taxa have been put forth, and there
is good evidence that sexual selection often operates to drive
the evolution of genital morphology within species. These
hypotheses and the data supporting them have been reviewed
thoroughly elsewhere [2, 6–8], and I refrain from doing so
here. I also refrain from reviewing the evidence testing genital
lock-and-key RI using comparative or phylogeographic data.
My reason for doing this is that without detailed knowledge
of the evolutionary histories of species, it is often difficult
to draw firm conclusions about the role of genitalia in RI
from these patterns alone. For example, although patterns
like reproductive character displacement are consistent with
reinforcement acting on genital morphology where species
exist either sympatrically or parapatrically, an absence of
reproductive character displacement does not preclude a
history of differences in genital morphology contributing to
RI between species, as other RI mechanisms (e.g., mate dis-
crimination, ecological niche divergence, temporal isolation,
etc.) might evolve via reinforcement before reproductive
character displacement might evolve.

Instead, my goal here is to examine evidence of hybridiza-
tions between species where differences in genital morphol-
ogy appear to contribute to RI either by structural lock-
and-key and/or sensory lock-and-key mechanisms. Although
many studies exist that present indirect evidence to suggest
a possible role for genitalia in contributing to RI between
species, I focus my discussion on only those studies that
have either directly observed species crosses in nature, or
performed laboratory crosses between species, and recorded
postcopulatory reproductive fitness in heterospecific pairs. In
each of these cases it is important to emphasize that other
mechanisms of RI beside genital lock-and-key also exist be-
tween these species pairs, and I do not suggest that genital
isolation is the primary cause of speciation in any of these
examples. Rather, I present these data to illustrate the pos-
sibility that RI between species can occur as a byproduct
of differences in genital morphologies that have evolved in
response to evolutionary forces such as sexual selection act-
ing within species. In describing each of the heterospecific
crosses below, I use the convention of always presenting the
female parental species first (e.g., species A female × species B
male).

2. The History of the Idea

Observations of genitalia and structural isolation have en-
joyed a long history in the study of speciation and systematics
(for a detailed history of the structural lock-and-key hypoth-
esis and tests of the hypothesis, see [9]). Much of the appeal
of the structural lock-and-key hypothesis is that it offers an
intuitively obvious mechanism of RI and an appealing visual
image. The idea that incompatibilities between genitalia
of different species caused RI was perhaps considered so
obvious that it appears few careful tests of structural isolation
were performed in the years following Dufour. Among some
of the early proponents of the idea was one of Dufour’s
students, Pérez [10], who made similar observations that
genital morphology among several Hymenoptera species was
incredibly diverse, and supported the notion that these dif-
ferences in male genital morphology were the likely cause
of RI among species (Although Pérez seemed to accept that
differences genital morphology are important for RI, he does
urge some caution in his interpretation as he notes that in
some groups the genital morphology among males varies
very little. It is a bit unclear, however, if his caution is in
regard to the potential for genitalia to cause RI, or for their
usefulness in systematic classification.). Another early cham-
pion of the idea, and one of the first to make careful ob-
servations of genital coupling between males and females in
a laboratory setting, was Jordan [11]. Jordan performed
crosses between species of Papilio and observed that for
crosses within species, the male and female external genitalia
are well-matched and fit together with tight coupling, but
in crosses between species, the coupling between the male
and female genitalia is not quite as good. Specifically, Jordan
found that although the external genitalia of Papilio memnon
males and females fit to provide tight genital coupling, in
crosses between P. helenus and P. memnon and between
P. podalirius (the modern classification of this species is
Iphiclides podalirius) and P. machaon, the male and female
genitalia did not fit as precisely to secure the copulating pairs
as they did within species. Jordan also observed that, similar
to males, the females of different species also possess genital
structures that appear different, but these differences are not
as dramatic as those observed among male genital structures.

Despite these early observations that seemed to support
structural lock-and-key RI, many subsequent observations
called the ubiquity, and even the existence, of RI as a result
of differences in genital morphology into question. Boulangé
[12] pointed out that in many Hymenoptera species, the
most divergent structures of the male genitalia are those that
are not involved in intromission and insemination. Instead,
these structures make contact with female structures that
possess essentially identical morphology across species, for
example, the sides of the female abdomen. He also observed
that in comparisons between species where females do pos-
sess divergent genital morphology, the differences are usually
minor. Richards [13] and later Robson and Richards [14]
made several observations in Bombus (subgenus P sithyrus)
that also did not support the structural lock-and-key hypoth-
esis. Among the many criticisms they level against structural
lock-and-key, they found that females usually do not differ
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greatly in genital morphology, so the required structural
“locks” simply do not exist, the morphological differences in
male genitalia of some species are so small as to likely have
no effect on reducing the tight coupling between male and
female genitalia, and there appears to be no correlation be-
tween the degree of diversity in genital morphology among
species and the species richness of most groups. Robson and
Richards also presented what is perhaps the most serious
criticism against the importance of structural lock-and-key
in RI: species that possess dramatic differences in genital
morphology can often mate and produce offspring. From
these observations, they state with regard to RI, “we are
forced to regard specific differences in the genitalia as of
essentially the same nature as other apparently useless specif-
ic characters” [14, page 297]. They conclude that divergent
genital morphologies are more likely the result of RI rather
than its cause, and other isolating mechanisms (in particular
mate discrimination) probably play more important roles in
speciation. For many years following, tests for genital struc-
tural isolation were performed in a variety of animal taxa and
almost all of these tests failed to find convincing evidence of
structural lock-and-key RI [9].

What exactly “lock-and-key RI” implies has also become
a bit muddled throughout the literature since the intro-
duction of the idea. A common notion of lock-and-key RI
describes the phenomenon as natural selection acting on
genital morphology to prevent species from hybridizing. When
considering the case of reinforcement, this is certainly an
applicable definition, but as a more general definition to
describe genital lock-and-key RI, it is incorrect. Just as some
other RI mechanisms such as intrinsic postzygotic isolation
evolve as a byproduct of evolutionary processes that occur
within populations evolving in isolation, genital lock-and-
key RI can also evolve as a byproduct of evolutionary proc-
esses that occur within isolated populations, such as sex-
ual selection, that can act to drive genital morphological
evolution. The divergence in morphology between two
populations might consequently give rise to either structural
or sensory isolation as a byproduct when they attempt to
hybridize. A history of sympatry or parapatry is not required
for lock-and-key RI to evolve under this scenario, and I
use this broader definition of lock-and-key in evaluating the
contribution of genitalia to RI.

3. Structural Isolation

For structural isolation to operate two criteria need to be
satisfied. First, the genitalia of both males and females are
required to bear substantial, species-specific differences in
morphology of structures important for successful copula-
tion, intromission, and/or insemination. Second, male and
female genitalia within species are required to show strong
correlated evolution in the morphology of these structures.
Tests of structural isolation are often difficult as they require
both incomplete premating RI between species and careful
measurements of parental fitness loss after heterospecific
matings. Despite these challenges, crosses between species
in a handful of arthropod and arachnid taxa suggests that

structural lock-and-key may, in fact, contribute to RI in at
least some hybridizations.

Standfuss [15, pages 60-61] observed crosses between 24
heterospecific pairs of the lackey moths Bombyx franconica
and B. neustria (modern day classifications for these two
species are Malacosoma franconica and M. neustria, resp.).
This large number of heterospecific matings suggests that
little premating isolation exists between these two species,
and indeed, courtship and copulation appear to proceed
normally [15]. After mating, the M. franconica females also
appear to exhibit the normal postcopulatory behavior by
walking around to identify locations to oviposit. Within the
next three to four hours of observation, however, most of
these females die. Among those that survive, some are unable
to lay eggs. Others do lay eggs, but egg lethality ranges from
50–100% and larvae never reach adulthood. Although no
description is given of the morphological differences in male
or female genitalia between these two species, Standfuss spec-
ulates that the probable cause of lethality of M. franconica
females was injuries suffered as a result of the M. neustria
male genitalia. He is, however, cautious in his interpretation,
and hypothesizes that other species differences might have
been the cause of female lethality (In a remarkably insightful
passage for the time period, Standfuss hypothesizes that
some of the other possible causes of egg mortality and female
lethality might include sperm-egg incompatibility and what
he describes as “molecular differences” between the two spe-
cies.).

Structural isolation also appears to operate in some other
species of Lepidoptera. Federley [16, pages 371-372] per-
formed crosses between the hawk moths Metropsilus porcellus
and Chaerocampa elpenor (modern day classifications for
these two species are Deilephia porcellus and D. elpenor,
resp.). Upon intromission, D. elpenor males become “stuck”
and are unable to withdraw their aedeagus from the D.
porcellus females. In the case of copulating species pairs that
do manage to separate, females never lay eggs, although
sperm is found in the bursa copulatrix, which suggests the
possibility that damage to the female reproductive tract
might prevent fertilization and/or oviposition. Males of these
two species bear substantial morphological differences in
their external genitalia: D. elpenor males possess a long and
slender aedeagus, whereas D. porcellus males possess a shorter
and thicker aedeagus compared to those of D. elpenor
males. These differences in male genitalia are consistent with
structural isolation in the D. porcellus × D. elpenor cross,
and also agree with the results from the reciprocal cross—
D. elpenor × D. porcellus proceeds normally through intro-
mission and insemination [16].

Males and females of several species of crab spider in
the genus Misumenops possess genital morphologies that are
both highly divergent among species and show strong cor-
related evolution between males and females within species
[17]. During copulation, the male intromittant organ, the
palpus, is guided into the reproductive tract by the female
epigynum to successfully complete intromission and insemi-
nation. In the cross M. rothi×M. gabrielensis, M. gabrielensis
males initiate courtship and are received by the female, but
are unable to orient their palpus and complete intromission
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C. maiyasanus

C. iwawakianus

Figure 1: Genital morphology in Carabus iwawakianus and C.
maiyasanus. The male copulatory piece is shown from both dorsal
and sagittal views. The female vaginal appendix for each species is
also shown. Images courtesy of Teiji Sota.

because the M. gabrielensis palpus is much larger than the
opening to the epigynum in M. rothi. (It seems possible
that the reciprocal cross might proceed through intromission
and insemination, but was not attempted [17].) In the
cross M. lepidus × M. californicus attempts at intromission
were unsuccessful because the M. californicus male failed to
correctly align the palpus with the epigynal structures of
the M. lepidus female presumably because of the structural
incompatibilities between the two structures. The reciprocal
cross results in successful intromission and insemination, but
does not produce offspring. Individual females have been
collected from nature that show genital morphology inter-
mediate to those of M. lepidus and M. californicus, thus it
does appear that the structural RI in the M. lepidus × M.
californicus cross is incomplete [17].

One of the best-characterized examples of structural
lock-and-key comes from hybridizations among beetles of
the genus Carabus (subgenus Ohomopterus) [18]. Carabus
comprises a large group of wingless beetles on Japanese is-
land of Honshu. Many species in the genus exist para-
patrically and form hybrid zones. In the C. iwawakianus
and C. maiyasanus species pair, males of both species do
not discriminate against heterospecific females, and hybrid
individuals that possess intermediate genital morphology
between these two species have been found at low frequencies
in the hybrid zone. Males of each species possess striking
differences in genital morphology: C. iwawakianus possesses
a short and wide copulatory piece, whereas C. maiysanus
possesses a long and thin copulatory piece (Figure 1). The
vaginal appendix of the females in each species also shows
striking correlated morphology with the copulatory piece of
their conspecific males (Figure 1). During intromission, the
copulatory piece of the male and vaginal appendix female
lock together. Sota and Kubota [18] performed reciprocal
crosses between these two species and measured male and
female fitness after intromission. In the cross C. iwawaki-
anus × C. maiyasanus 50% (18 of 36) of C. maiyasanus
males suffer broken copulatory pieces that were likely to
prevent future matings. Female C. iwawakianus mortality is
high (60%, 20 days postmating) and postmortem dissections

revealed ruptured vaginal appendices and torn bursae in the
majority of cases. In the reciprocal cross C. maiyasanus ×
C. iwawakianus, none of the C. iwawakianus males suffer
injuries to the copulatory piece (0 of 27), and female C.
maiyasanus mortality is lower compared to the C. iwawaki-
anus × C. maiyasanus cross (∼30% versus 60%). However,
a substantial fraction of C. maiyasanus females still suffer
damage to the vaginal appendix that appear severe enough to
prevent future mating. In both directions of crosses between
these species, mated females lay fewer eggs and the egg
hatch rates are lower, although it is unclear whether this is
a direct consequence of damage to the female reproductive
tract by the male genitalia. Structural isolation might prove
to be a common mechanism of RI among Carabus species
as female mortality following heterospecific crosses has also
been reported between C. albrechti and C. iwawakianus [19]
and between C. albrechti and C. yamato [20].

Another well-characterized example of a species group
where structural lock-and-key appears to have an impor-
tant role in RI occurs among some species of millipedes
[21]. The Parafontaria tonominea species complex are also
endemic to Japan, and many species exist parapatrically
(some species exist sympatrically). Tanabe and Sota [21]
performed crosses between Parafontaria tonominea sp. A and
Parafontaria tonominea sp. B., two species that differ in their
overall genital morphology, particularly in the size of their
genital structures. They also possess notable differences in
body size with Parafontaria sp. A possessing a larger body
size than Parafontaria sp. B. Courtship and intromission
between these species requires multiple steps and is highly
choreographed. Courtship is initiated by the male with
antennal contact, the male aligns head-to-head with female,
and a preliminary intromission occurs without sperm trans-
fer. If the female remains receptive following preliminary
intromission, true intromission and insemination occur,
which is then followed by postcopulatory behavior by the
male. When preliminary intromission fails the male aborts
the mating attempt. No apparent premating isolation exists
between Parafontaria sp. A and Parafontaria sp. B, as males
are equally likely to mate with a female of either species [21].

In the cross Parafontaria sp. B × Parafontaria sp. A,
preliminary intromission fails in every cross (10 of 10)
despite repeated contact between the male and female gen-
italia. The cause of the failed intromission is the difference
in size between the much larger Parafontaria sp. A male
gonopod and the smaller Parafontaria sp. B female gonopore.
In the reciprocal cross Parafontaria sp. A × Parafontaria sp.
B, preliminary intromission fails in ∼65% of the attempts
(9 of 14) because the smaller Parafontaria sp. B male is
unable to align his gonopod correctly even after repeated
attempts due to his smaller overall body size. Four of the
five remaining Parafontaria sp. A × Parafontaria sp. B cross-
es resulted in successful preliminary intromission, and true
intromission occurred in three of the five. In each of these
cases, however, the Parafontaria sp. B male terminated post-
copulatory behavior prematurely.

A recent study has also identified structural isolation
between two members of the Drosophila melanogaster species
subgroup. D. yakuba and D. santomea inhabit the island of
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Saõ Tomé off the western coast of Africa. Although these two
species occur primarily at different elevations, their ranges
overlap and form a hybrid zone at mid-elevation locations
around the island [22, 23]. D. yakuba males possess a pair
of sclerotized spikes that project from the lateral portion
of the aedeagus. D. santomea males also possess sclerotized
projections in the same location, but the morphology of
the projections is rounded and more “nub-like.” Females of
each of these species show correlated evolution of genital
structures with those of their conspecific males: D. yakuba
females possess a pair of heavily sclerotized cavities that
receive the male aedeagus spikes during copulation, whereas
D. santomea females lack these cavities.

Kamimura and Mitsumoto [24] studied the conse-
quences of these morphological differences on structural
isolation between D. santomea and D. yakuba. In the cross D.
santomea × D. yakuba, D. yakuba males successfully mount
the D. santomea females, but usually fail to insert their
aedeagus during mating, which results in insemination of
only 20% (3 of 15) of the females in heterospecific matings.
In 11 of the 12 remaining crosses that did not result in
insemination, the male ejaculate was observed as a white,
sperm-bearing mass on the external genitalia of either the
D. yakuba male or D. santomea female in each pair. This
mass appears to bind the genitalia of mating pairs together as
heterospecific pairs are often observed struggling to separate
from each other. Moreover, severe copulatory injuries were
observed in mated D. santomea females that match the
pattern of aedeagus spikes from the D. yakuba male. The
reciprocal cross D. yakuba × D. santomea proceeds through
copulation and insemination, although it is easy to dislodge
mating pairs, which suggests that the spikes in D. yakuba
may have evolved to secure genital coupling [24]. Similar
modifications of male genitalia that function to secure
genitalia during copulation within species have also been
documented in D. bipectinata [25].

4. Sensory Isolation

It has been thought that the highly specific shape of structures
and appendages of male and female copulatory apparatus con-
stitutes a decisive structural factor in species isolation, acting
as a system of key and lock. But it would rather seem that in-
traspecific matings are assured by precopulatory behavior, and
probably by the mutual stimulation of specific sensory sites dur-
ing the copulatory act.

J. De Wilde, 1964

The possibility that genital incompatibilities might cause
RI between species through behavioral or physiological
responses has recently received renewed interest. In contrast
to the requirements for structural lock-and-key RI where
both male and female genital structures are required to
possess both complementary morphologies within species
and divergent morphologies between species, sensory lock-
and-key RI requires that only one of the sexes possesses
divergent morphology between species. The morphology of
the opposite sex, whether species-specific or not, requires

innervation with sensory neurons capable of relaying infor-
mation about species identity. Compared to structural lock-
and-key mechanisms, sensory lock-and-key is perhaps more
difficult to detect for the primary reason that the phenotype
being studied is more complex—rather than studying a
simple structural incompatibility, it is necessary to study
a structurally induced behavior, or structurally induced
changes in physiology. Although RI via sensory lock-and-key
has not been as extensively studied as structural lock-and-
key, there is growing evidence that it operates in some species
crosses.

In laboratory crosses among several genera of Lepi-
doptera, forced matings often show no evidence of struc-
tural lock-and-key preventing successful insemination in
heterospecific matings, despite that fact that male genital
morphology often differs dramatically among closely related
species (e.g., [26]). Although differences in male genital mor-
phology do not appear to hinder the mechanics of copulation
and intromission, they may relay species identity between
the sexes. Two species of brush-footed butterflies Erebia
nivalis and E. cassioides form hybrid zones along altitudinal
gradients at some locations in the Alps. Although strong
mating discrimination exists between them, heterospecific
crosses can be obtained in the laboratory [26]. In conspecific
crosses, mating pairs will remain in copula ∼18–30 minutes
after a male successfully courts a female. However, in the het-
erospecific cross E. nivalis× E. cassioides, the male terminates
copulation after only 0.5–7 minutes [27]. During this time
the female remains receptive to the heterospecific male, and
presumably the male perceives the female is heterospecific
and terminates copulation prematurely, although it is also
possible that the female fails to cooperate with the male and
as a result he terminates the mating attempt. The duration
of copulation in the reciprocal cross E. cassioides × E. nivalis
appears normal [27].

Another example sensory lock-and-key occurs among
some scarab beetle species [3]. Macrodactylus costulatus,
M. sylphis, and M. sericinus females each possess relatively
similar genital morphologies, but males of these species
possess substantial differences in their genitalia. The differ-
ences in male morphology are most pronounced not in the
hard cuticular structures of the external genitalia, but rather
in the soft tissues involved in intromission. Among these
three species, Eberhard [3] observed 37 male mounting at-
tempts between heterospecific pairs out of total 160 mount-
ing attempts in the field. All attempts to mount by het-
erospecific males were short (<5 seconds) and intromission
never occurred. Macrodactylus females are known to reject
unwanted males in conspecific crosses by contracting their
vaginal walls to prevent intromission [28], thus it seems
likely that females perceive heterospecific males and reject
their copulation attempts using a similar behavior. However,
it also seems possible that because the male morphological
differences occur in soft and possibly sensory tissues, the
male might perceive species identity of females via these
differences in genital morphology, and terminate mating
attempts prematurely.

Damselflies present an interesting case where both
structural and sensory lock-and-key mechanisms appear to
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Figure 2: External genital morphology among members of the Drosophila melanogaster species complex. (a) Terminal portion of the male
abdomen representative of the four members of the D. melanogaster species complex. Black box denotes the area of male genitalia shown in
the scanning electron micrographs presented in panels (b–e). (b) D. melanogaster male, (c) D. simulans male, (d) D. sechellia male, (e) D.
mauritiana male. Yellow shading marks the posterior lobe of the genital arch. (f) Female genital morphology representative of members of
the D. melanogaster species complex. Scale bars are 100 µm.

contribute to RI. During courtship, the male damselfly grasps
the female with his legs and brings his terminal appendages
into contact with two mesostigmal grooves on the back of
the female thorax. Both the male appendages and the female
mesostigmal grooves within species show structural comple-
mentary and species-specific morphologies [29, 30]. Abla-
tion experiments show that the male terminal appendages
are important for mate recognition and copulation; females
perceive the superior appendages, whereas the inferior ap-
pendages are used primarily by males for grasping the female
[30]. Unreceptive females resist copulation by vigorously
beating their wings and orienting their abdomen to prevent
the males from achieving genital coupling. If the female is
receptive, she bends her abdomen to make contact between
her genitalia and those of the male. When damselflies occur
in large groups, males will usually mate with conspecific
females, but heterospecific matings do occur in nature [31].

In several genera of damselflies, the fit between the male
appendages and the female mesostigmal grooves appears to
be used by the female to assess species identity of the male. In
heterospecific crosses among different Sympecma and Lestes
species, heterospecific females vigorously resist copulation
shortly after the male grasps the female and makes contact
with his terminal appendages [31]. Similar observations have
also been made in crosses between Ischnura elegans males
mated to females of species belonging to different damselfly
genera [32]. Paulson [33] performed several laboratory
crosses among Enallagma, Argia, Ischnura, and Telebasis spe-
cies. He observed that in contrast to conspecific pairs, in
heterospecific pairs, the male appendages are unable to grasp

the female thorax correctly. Roughly 66% of the crosses
(8 of 12) show nearly complete inability of grasping by
heterospecific males, which suggests structural incompatibil-
ities between the morphologies of the male appendages and
the female mesostigmal grooves also contribute along with
sensory isolation to RI among these species.

Evidence of sensory lock-and-key is also found in some
Drosophila species. Among members of the D. melanogaster
species complex (D. mauritiana, D. melanogaster, D. sechellia,
D. simulans), males possess two bilaterally symmetrical scle-
rotized cuticular genital structures called the posterior lobes
of the genital arch, which insert between the eight and ninth
tergites of the female during copulation [34], and differ dra-
matically in both size and shape among species (Figure 2;
[35, 36]). Females of these species show no apparent differ-
ences in external genital morphology, although the posterior
lobe likely comes into contact with, or distends soft abdom-
inal tissues during copulation. No evidence exists of a struc-
tural lock-and-key mechanism among the D. melanogaster
complex species that involves the posterior lobe, but the
posterior lobe does appear important for mounting and
genital coupling [37, 38]. (It is worth pointing out, however,
that the posterior lobe in D. sechellia and D. simulans is
known to cause some damage to the soft abdominal tissues
at the insertion site in conspecific crosses [39].)

Heterospecific crosses among D. mauritiana, D. sechellia,
and D. simulans show two cryptic defects that reduce the
reproductive success of heterospecific pairs. The first defect
is that copulation is generally shorter when females mate
with heterospecific males compared to copulation duration
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when females mate with conspecific males. Within species,
copulation duration lasts an average of ∼15–17 minutes in
D. mauritiana, ∼30 minutes in D. sechellia, and ∼25–30 mi-
nutes in D. simulans [37, 40, 41]. In the D. simulans ×
D. mauritiana cross, copulation is much shorter than either
pure species cross and lasts only 5–11 minutes [37, 40–
42]. During copulation, the D. simulans females also actively
resist mounting attempts of D. mauritiana males. In the
D. mauritiana × D. simulans cross, copulation duration is
slightly shorter than that of D. simulans heterospecific cross-
es, but abnormally long compared to D. mauritiana conspe-
cific crosses [40]. In the D. simulans × D. sechellia cross,
copulation duration varies from as short as ∼16 minutes to
the normal ∼25–30 minutes observed in D. sechellia con-
specific crosses. In each heterospecific pair (including het-
erospecific crosses involving the other species in the group,
D. melanogaster; [38]), the duration of copulation is more
similar to the copulation duration typical of the male species.
This suggests the possibility that differences in posterior
lobe morphology might allow males to maintain copulation
duration for times that are characteristic of that species,
which could be important for successful insemination [38].

The second defect observed among these heterospecific
crosses is abnormal sperm transfer and lower offspring pro-
duction. In the D. simulans × D. mauritiana cross, a smaller
fraction of the D. mauritiana sperm are stored by the D.
simulans female compared to either pure species cross, and
the cross produces 40% fewer offspring compared to pure
species D. mauritiana and 70% fewer compared to pure
species D. simulans [37, 40]. In the D. mauritiana × D. sim-
ulans cross, D. simulans males transfer an abnormally large
number of sperm during copulation, however, the female
loses the heterospecific sperm rapidly from her storage or-
gans. Oviposition rates of mated females are reduced, and
the cross yields fewer progeny [40]. Lastly, in the D. simu-
lans × D. sechellia cross, D. sechellia males transfer few or no
sperm to D. simulans females even when copulation duration
last the full 30 minutes [40]. Although the morphology
of the posterior lobe might contribute to these postinsem-
ination reproductive defects, these reproductive fitness prob-
lems might also result from differences in molecular incom-
patibilities between male seminal fluid proteins and proteins
in the female reproductive tract, which are known to
cause postcopulatory reproductive problems between other
Drosophila species [43, 44].

5. Genetics of Species Genital Morphology

Because of their rapidly evolving morphology and their im-
portance in reproductive fitness, animal genitalia have at-
tracted the attention of evolutionary geneticists. Aside from
presenting a good model to study the genetics of rapidly
evolving morphological traits, there is reason to suspect that
genitalia might possess a particular genetic architecture if
sexual selection drives the evolution of morphology within
species [4]. In particular, we might expect that several genes
would be necessary to specify differences in genital morphol-
ogy (or in the case of sensory lock-and-key, differences in
behavioral preferences) in both males and females, reflective

of the step-wise coevolution of phenotypes between the sex-
es. We might also predict to find the molecular signature
of selection at loci important for specifying morphological
(behavioral) differences.

Many closely related species possess divergent genital
structures thus making it possible to construct interspecific
hybrid genotypes to dissect the genetics of genital morphol-
ogy. Although experiments mapping differences in genital
morphology have been performed in only two species groups
where genitalia contribute to RI, the results of these map-
ping experiments suggest that the genetic architecture of
species differences in genital morphology bears some similar
characteristics across taxa. The results also support at least
one of our predictions: species differences in genital mor-
phology appear to be specified by many genes, and the phe-
notypic effects of species alleles act in the direction of the
species phenotype, consistent with the idea that sexual se-
lection drives the evolution of morphology within species.
Moreover, the genomic locations that have large effects on
morphological differences are similar among species within
some species groups, which suggests the possibility that
change at some of the same loci might be involved in the
evolution of species-specific genital morphology.

Recent work on C. maiyasanus and C. iwawakianus has
identified several genomic regions between these two species
that carry loci specifying the species differences in both the
male and female genital morphology involved in structural
lock-and-key RI [45, 46]. Sasabe and colleagues measured
a panel of reciprocal F1 and backcross hybrids for genital
morphology and performed quantitative trait loci (QTL)
mapping experiments to identify the minimum number
of genes that specify male and female morphology. They
measured two genital phenotypes for each sex: in males,
they measured copulatory piece length and copulatory piece
width, and in females they measured vaginal appendix length
and vaginal appendix width. The results of their mapping
identified 15 QTL that reside across 8 of the 14 linkage groups
in these species: three QTL specify differences in copulatory
piece length, three QTL for copulatory piece width, four
QTL for vaginal appendix length, and five QTL for vaginal
appendix width.

Several genetic studies have also been performed that
map the genomic regions that specify the differences in pos-
terior lobe morphology among the D. melanogaster complex
species. Because crosses to D. melanogaster usually result in
dead or sterile offspring [47, 48], most of these mapping
studies focus on comparisons among D. mauritiana, D.
sechellia, and D. simulans where it is easier to obtain F2 and
backcross hybrid genotypes [49]. QTL mapping experiments
between D. mauritiana and D. simulans identified 20 QTL
that map across each of the major chromosomes in these
species underlying the posterior lobe morphological differ-
ences [50]. In the D. sechellia-D. simulans species pair, QTL
mapping revealed a minimum of 13 QTL that have effects on
posterior lobe morphology [51]. An introgression mapping
approach was used to map loci specifying morphology
between D. mauritiana and D. sechellia to small genomic
regions across roughly 50% of the genome. The mapping re-
sults identified a minimum of six regions with large effects
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Table 1: Species hybridizations that display lock-and-key reproductive isolation.

Order Species hybridized
Lock-and-key
mechanism

Reference(s)

Lepidoptera
Malacosoma franconica and M. neustria Structural Standfuss [15]

Deilephia porcellus and D. elpenor Structural Federley [16]

Erebia nivalis and E. cassioides Sensory Lorkovic [27]

Araneae
Misumenops rothi and M. gabrielensis Structural Schick [17]

Misumenops lepidus and M. californicus Structural Schick [17]

Coleoptera
Carabus iwawakianus and C. maiyasanus Structural Sota and Kubota [18]

Macrodactylus costulatus, M. sylphis, and M.
sericinus

Sensory Eberhard [3]

Polydesmida Parafontaria tonominea sp. A and sp. B Structural Tanabe and Sota [21]

Zygoptera

Sympecma, Lestes (7 species total) Sensory/structural Loibl [31]

Ischnura elegans with Enallagma, Platycnemis,
Sympecma, Lestes (various species)

Sensory/structural Krieger and Krieger-Loibl [32]

Argia, Enallagma, Ischnura, Telebasis (10
species total)

Sensory/structural Paulson [33]

Diptera

Drosophila santomea and D. yakuba Structural Kamimura and Mitsumoto [24]

Drosophila mauritiana, D. sechellia, and D.
simulans

Sensory

Robertson [42]

Cobb et al. [41]

Coyne [37]

Price et al. [40]

Jagadeeshan and Singh [38]

on morphology [52]. Interestingly, some of these genetic
regions have morphological effects on posterior lobe size, but
not posterior lobe shape, whereas others have morphological
effects on posterior lobe shape, but not posterior lobe size.
This result suggests that these two posterior lobe phenotypes
are specified, in part, by different loci. Transcriptome se-
quencing experiments in the larval tissue that gives rise to the
male genitalia also reveal a possible role for gene expression
differences in the insulin/insulin-like signaling pathway in
specifying morphological differences between D. mauritiana
and D. sechellia [52].

6. Conclusions and Prospects

Although it has long been thought that differences in genital
morphology had little or no importance for speciation, it
appears that in some hybridizations lock-and-key mecha-
nisms do in fact contribute to RI (Table 1). However, despite
the widespread diversity of genital morphologies among
many animal taxa, it is clear that genitalia usually do not
cause structural lock-and-key RI in the strict sense [4, 9].
In most species crosses where structural lock-and-key has
been tested, it seems reasonable to suspect that the criteria for
structural isolation were not satisfied—correlated differences
of genital morphology between males and females within
a species appear to occur much less frequently than the
case of substantial diversity of male genital morphology
among closely related species, but relatively little diversity of
morphology among females of those species. This common
sexual asymmetry in the degree of genital morphological
divergence suggests the possibility that sensory lock-and-key

RI mechanisms, however, could be quite common in limiting
gene flow between species [4].

Thus, two major challenges face the study of genital
evolution and its role in speciation for the near future. The
first is to identify the frequency with which RI via genital
sensory lock-and-key occurs among different taxa. This
might be most easily tested in insect and arachnid species,
although the potential for genital sensory lock-and-key RI
in some vertebrate systems is currently being explored (B.
Langerhans, personal communication, I. Schlupp, personal
communication). The second challenge will be to dissect the
mechanistic basis—both phenotypically and molecularly—
of morphologically induced behaviors or physiological
responses that result from genital incompatibilities. This
problem will require the availability of sophisticated mea-
surement and molecular tools to manipulate genital mor-
phology, but some experimental systems such as Carabus and
Drosophila appear poised to begin work on determining the
sensory consequences of genital morphology and its effect on
RI.
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