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    Introduction 
 During mitosis, the bipolar spindle serves to segregate sister 

chromatids into the two daughter cells. As the chromosomes 

move toward the spindle poles at anaphase, the overlapping non-

kinetochore microtubules in the midzone bundle into a structure 

known as the central spindle ( Straight and Field, 2000 ;  Glotzer, 

2005 ), which serves to stimulate the initiation of the cleavage 

furrow and ensure completion of cytokinesis ( Wheatley, and Wang, 

1996 ; for reviews see  Oegema and Mitchison, 1997 ;  McCollum, 

2004 ). As the cleavage furrow constricts the central spindle dur-

ing cytokinesis, the midzone microtubules become highly com-

pacted into a transient structure known as the midbody, which 

connects the two daughter cells after division and is later abscised 

(for review see  Otegui et al., 2005 ). At the center of the mid-

body, the overlapping microtubules are surrounded by an electron-

dense structure known as the midbody matrix or Flemming body 

( Mullins and Biesele, 1977 ). The microtubules in the midbody 

matrix are remarkably stable to depolymerization, suggesting that 

the midbody matrix imparts stability to the overlapping plus ends 

( Salmon et al., 1976 ;  Mullins and McIntosh, 1982 ). 

 Several key mitotic regulators have been shown to re-

distribute to the central spindle during anaphase and then become 

highly organized into the midbody during cytokinesis ( Skop 

et al., 2004 ; for review see  Otegui et al., 2005 ). These include the 

centralspindlin complex, Polo-like kinase, the microtubule bun-

dling protein PRC1, and the chromosome passenger complex, 

containing INCENP, survivin, borealin, and Aurora B kinase (for 

reviews see  Adams et al., 2001 ;  Vader et al., 2006 ). Disruption of 

these midzone components results in the lack of proper mid-

body assembly and failure of cytokinesis ( Mishima et al., 2002 ; 

 Mollinari et al., 2002 ;  Matuliene, and Kuriyama, 2002 ). 

 Tektin 2 (the mammalian homologue of the sea urchin 

tektin B protein) was previously proposed to be a component of 

the mitotic spindle matrix ( Pickett-Heaps et al., 1984 ;  Steffen, 

and Linck, 1992 ), and yet little is known about its function in 

somatic cells ( Setter et al., 2006 ). Tektins were originally iden-

tifi ed as structural components of axonemal doublet microtubules 

in cilia and fl agella ( Linck, 1976 ;  Linck, and Langevin, 1982 ). 

Tektins represent a family of elongated proteins that assemble 
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body matrix ( Fig. 1 E ). Although anti-Tek2 is excluded from the 

matrix, Tek2-GFP is found in the matrix, suggesting that it 

forms a disc-like structure at the midbody ( Fig. 1 D ). 

 Imaging of mitotic cells revealed that Tek2 concentrated 

at spindle poles during metaphase, at the central spindle re-

gion in late anaphase, and at the midbody during cytokinesis 

( Fig. 1 F ). In isolated CHO mitotic spindles sedimented onto 

coverslips, anti-Tek2 labeled the poles at all stages of mitosis 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200711160/DC1). Although no obvious Tek2 organization was 

seen in metaphase cells other than at the spindle poles, there 

was fi brous Tek2 staining in early/late anaphase, suggesting that 

Tek2 interacts with microtubules before becoming concentrated 

at the midbody. 

 To determine whether Tek2 played a role during spindle 

assembly/cytokinesis, we knocked down Tek2 expression with 

siRNAs. Depletion of Tek2 protein by  > 90% did not prevent 

bipolar mitotic spindles from forming but led to an increase in 

binucleate interphase cells ( Fig. 2 ). In cells transfected with 

siRNA constructs unique to either the untranslated region (UTR) 

or the ORF of mouse Tek2, the number of binucleate cells in-

creased to 18 and 29%, respectively, compared with 8% in cells 

transfected with scrambled (SCR) Tek2 siRNA and 5% in un-

transfected cells ( Fig. 2 C ). 

into extended fi laments, which are similar in structure to inter-

mediate fi laments but tektins are distinct from intermediate fi la-

ments proteins ( Setter et al., 2006 ). Previous work revealed that 

one member of the tektin family, tektin B (i.e., tektin 2), associ-

ated with the centrosomes and the spindle remnant after Ca 2+ -

induced microtubule depolymerization ( Steffen, and Linck, 

1992 ;  Steffen et al., 1994 ). However, little is known about the 

function of tektin proteins in mammalian somatic cells, particu-

larly during mitosis. 

 Results and discussion 
 To test whether tektins play a role in mitosis, we generated anti-

bodies against mouse tektin 2 (anti-Tek2). Immunofl uorescence 

microscopy showed that Tek2 is centrosomal during interphase. 

It localized to two foci surrounding the position of the centri-

oles, as judged by colocalization with the centriole marker cen-

trin 2-GFP ( Fig. 1, A – C ). This centrosomal localization was 

confi rmed in a CHO cell line expressing Tek2-GFP (CHO-GT2 

cells), where Tek2-GFP localized to the two centrosomes during 

both interphase and mitosis ( Fig. 1 D ). In addition, Tek2-GFP 

localized to the midbody region during cytokinesis ( Fig. 1 D , 

arrows). High-magnifi cation imaging of the midbody revealed 

that anti-Tek2 decorates a region surrounding the central mid-

 Figure 1.    Tek2 localizes to the centrosome and midbody in CHO cells.  (A) Immunofl uorescence localization of Tek2 in interphase CHO cells. Tek2 deco-
rates the centrosomes (arrows). (B) Anti-Tek2 decorates a single polypeptide in CHO cells and two polypeptides in CHO cells stably transfected with 
GFP-Tek2. (C) Tek2 colocalizes with centrioles, indicated by centrin 2 – GFP – expressing cells. (D) Tek2-GFP decorates the centrosomes during interphase 
and spindle poles/midbody during mitosis. Arrows show tektin 2 – GFP localization to the centrosomes. (E) Anti-Tek2 decorates the center of the midbody 
region surrounding the midbody matrix. (F) Tek2 concentrates (arrows) at the midzone beginning in late anaphase. Bars: (A) 20  μ m; (C and E) 1  μ m; 
(D and F) 10  μ m.   
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of anti –  � -tubulin at the midbody region. In other cases, there 

was no pronounced connection between the two daughter 

cells before refusion ( Fig. 2 A ). This suggests that the lack of 

Tek2 allowed the microtubule plus ends of each daughter to 

interact beyond the midzone overlap, leading to the fusion of 

daughter cells. 

 We next examined the localization of the previously char-

acterized central spindle proteins Aur B, MKLP1, and PRC1. 

Imaging of cells transfected with the SCR Tek2 siRNA construct 

(SCR control cells) revealed that the localization of these proteins 

to the central spindle was not affected by the transfection/selection 

 Next, time-lapse video microscopy was used to monitor 

mitosis in CHO cells constitutively expressing a Tek2 ORF 

siRNA construct (Tek2 knockdown [KD] cells). 60 individ-

ual CHO Tek2-KD cells were imaged as they exited mitosis. 

The loss of Tek2 did not prevent cells from undergoing anaphase, 

exiting mitosis, or undergoing cytokinesis ( Fig. 2 A ), and 43 

cells (72%) divided into two distinct daughters. However, 

after cytokinesis, 17 cells (28%) fused back together, result-

ing in a multinucleate cell. Tek2-KD cells often lacked a mid-

body matrix and, in some cases, these microtubules connected 

the two daughters ( Fig. 2 D , inset). There was no exclusion 

 Figure 2.    Tek2 siRNA blocks the formation of the midbody and completion of cytokinesis.  (A) Frames from video microscopy sequence of CHO cells express-
ing a Tek2 siRNA construct targeting the ORF. Two cells enter and exit mitosis, initiate cytokinesis, and then fail cytokinesis and fuse together (arrows). Time is in 
h:min. (B) siRNA of Tek2 depletes both Tek2 protein and Tek2 mRNA. (C) Tek2 siRNA induces binucleate CHO cells. The mean percentage of binucleate cells for 
untransfected cells and cells transfected with siRNA constructs targeting the ORF, UTR, or SCR ORF is shown. 100 cells per experiment;  n  = 3. Error bars are SEM. 
(D) Tek2 siRNA prevents the formation of the midbody matrix. Cells are linked by overlapping microtubules that lack the central Flemming body (insets). Overlapping 
microtubules lack Tek2 label; however, Tek2 still decorates the spindle poles, presumably because Tek2 at the centrosome is resistant to degradation. Tek2 forms 
around the midbody in SCR-expressing cells. Arrows represent Tektin localization. The bottom right inset shows the central midbody (left arrow). Bars, 10  μ m.   
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 Depletion of Tek2 disrupted the localization of Aur B to 

the central spindle and midbody region. During anaphase in 

Tek2-KD cells, the microtubules in the central spindle were 

process ( Fig. 3, A, D, and G ) compared with untransfected 

controls (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200711160/DC1). 

 Figure 3.    Loss of Tek2 disrupts the localization of 
midzone components Aur B, MKLP1, and PRC1 to 
the central spindle and midbody.  (A) Localization of 
Aur B to SCR siRNA-transfected CHO cells. Three 
cells in early and late anaphase and in cytokinesis 
are shown. Aur B localizes to the overlapping mid-
zone microtubules in anaphase (arrows) and to ei-
ther side of the midbody matrix in cytokinesis (inset). 
(B) Effect of Tek2 siRNA on Aur B localization and 
central spindle organization during anaphase. The cen-
tral spindle lacks the compaction seen in controls, and 
Aur B is widely distributed across the overlapping 
microtubules. Inset shows detail of mislocalized Aur B 
(broad staining). (C) Tek2 siRNA prevents the forma-
tion of a midbody. Aur B fails to become organized. 
The overlapping microtubules that connect the two 
cells do not form a Flemming body (insets). (D) Local-
ization of MKLP1 to SCR siRNA-transfected CHO cells. 
Two cells in late anaphase and cytokinesis are shown. 
MKLP1 localizes to the overlapping midzone micro-
tubules in anaphase and to either side of the midbody 
matrix in cytokinesis (arrows). (E and F) Effect of Tek2 
siRNA on MKLP1 localization and central spindle or-
ganization during anaphase. The central spindle lacks 
the compaction seen in controls, and MKLP1 is par-
tially diminished and broadly distributed across the 
overlapping microtubules. Insets show mislocalization 
of MKLP-1 (broad staining). (G) Localization of PRC1 
to SCR siRNA-transfected CHO cells. PRC1 decorates 
the central region of the overlapping midzone micro-
tubules in anaphase (arrow). (H and I) Effect of Tek2 
siRNA on PRC1 localization and central spindle or-
ganization during anaphase. The midzone micro-
tubules are diffuse and unbundled. PRC1 is distributed 
broadly across the midzone (arrows) and also deco-
rates nonmidzone microtubules (arrowheads). Bar: 
(A and D) 20  μ m; (B, C, and E – I) 10  μ m.   
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MKLP1, and PRC1 were not restricted to the narrow band at the 

center of the midzone during anaphase. 

 To further examine the role of Tek2 in midbody organiza-

tion, we used blebbistatin, a small molecule inhibitor that is 

specifi c for nonmuscle myosin II ( Straight et al., 2003 ). In bleb-

bistatin, cells enter mitosis, proceed through anaphase, and build a 

normal central spindle. However, because they lack actin/myosin 

contractility, the cleavage furrow does not contract ( Straight 

et al., 2003 ). These cells eventually exit mitosis and reform 

interphase nuclei without cleaving. The two daughter cells re-

main transiently interconnected by a central spindle. This allows 

for the observation of postanaphase events of central spindle 

microtubule organization without the contraction of the cleav-

age furrow, which obscures the morphological features of the 

midzone structure. 

 Pairs of interconnected daughter cells with decondensed 

chromosomes were identifi ed. These cells had exited mitosis 

without cleaving, but the pair of interphase daughter cells re-

mained connected by an intact central spindle ( Fig. 4, A and B ). 

Interestingly, the central spindle in these pairs of SCR control 

cells maintained their characteristic compact shape and also 

contained the presumptive midbody region, which is indicated 

by a central area that excludes anti-tubulin staining, even in the 

absence of a cleavage furrow ( Fig. 4, A and B , arrows). In these 

cells, Tek2 was concentrated in this presumptive midbody 

poorly organized and Aur B staining was diffuse throughout 

the midzone region ( Fig. 3 B , inset). During cytokinesis, deple-

tion of Tek2 prevented the midbody from forming at all, and 

anti – Aur B decorated a broad region of the overlapping micro-

tubules that formed between the daughter cells. No midbody 

matrix was observed ( Fig. 3 C , insets). MKLP1 localization to 

the midzone was also disrupted by KD of Tek2 ( Fig. 3, E and F ). 

Not only was the localization pattern diffuse but the level of 

MKLP1 labeling was diminished compared with the SCR controls. 

The localization of PRC1 to the midzone in Tek2 siRNA cells was 

dramatically disrupted ( Fig. 3, H and I ). Instead of the tight 

concentration to the central midbody seen in wild-type and 

SCR-treated cells ( Fig. 3 G , arrow), PRC1 was found to be 

broadly distributed across the midzone ( Fig. 3, H and I , arrows). 

Anti-PRC1 labeling also extended along microtubules and 

microtubule bundles toward the polar regions ( Fig. 3, H and I , 

arrowheads). This localization pattern is drastically different 

from that seen during siRNA KD of Kif-4, the chromokinesin 

responsible for localization of PRC1 to the midzone during ana-

phase ( Kurasawa et al., 2004 ), where loss of Kif-4 resulted in 

a broadening of the localization pattern of PRC1 to the cen-

tral midzone but did not result in disruption of the midzone 

microtubules or localization of PRC1 outside of the midzone. 

In this case, the loss of Tek2 expression resulted in a lack of mid-

zone microtubule bundling, and the midzone components Aur B, 

 Figure 4.    Blebbistatin reveals that the com-
paction of the midzone microtubules occurs 
in the absence of actin/myosin contractility.  
(A) Blebbistatin prevents actin-myosin contrac-
tility during cytokinesis. Tek2 localizes to the 
dark microtubule overlap region (the presump-
tive midbody) in SCR siRNA-treated cells. Small 
arrows, Tektin staining at spindle poles; large 
arrows, position of spindle midzone overlap. 
(B) Aur B also localizes to the presumptive mid-
body in blebbistatin-treated SCR siRNA cells 
(arrows). The central spindle region is com-
pacted in the absence of a contractile ring. 
(C and D) Tek2 siRNA with an ORF construct 
prevents the compaction of the central spindle 
in blebbistatin-treated cells. Tek2 is missing 
from the midzone, there is no presumptive mid-
body (arrows), and Aur B is broadly distrib-
uted across the midzone. Bars, 10  μ m.   
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anaphase at a time well before it becomes concentrated at the 

midbody. This suggests the possibility that Tek2 provides the 

structural cues to organize the midzone microtubules necessary 

to generate the boundaries of the central spindle microtubules 

before cytokinesis, perhaps via direct interactions with micro-

tubules, as is seen for tektins and associated proteins in axo-

nemes ( Nojima et al., 1995 ;  Hinchcliffe and Linck, 1998 ). 

 To determine if Tek2 localization to the midbody matrix 

required intact microtubules, CHO cells were treated with bleb-

bistatin to elaborate postanaphase cells. The blebbistatin was then 

washed out in the presence of colcemid to depolymerize the 

postanaphase microtubule network ( Fig. 5 ). Colcemid treatment 

of control cells in either interphase or mitosis did not disrupt Tek2 

localization to the centrosome ( Fig. 5, A and B ). In blebbistatin-

released anaphase cells, microtubule depolymerization with 

colcemid induced the loss of Tek2 to the midzone/midbody 

region ( Fig. 5, C – E ). These observations reveal that Tek2 

region, as was Aur B, which was used as a marker for midzone 

organization ( Fig. 4, A and B , arrows). This suggests that during 

normal anaphase (elaborated by blebbistatin treatment), there is 

an activity that functions to bundle and compact the central 

spindle independently of actin-myosin contractility induced by 

the cleavage furrow, which is similar to that previously observed 

( Martineau et al., 1995 ;  Straight et al., 2003 ;  Y ü ce et al., 2005 ). 

 Immunofl uorescence of postmitotic Tek2-KD cells treated 

with blebbistatin revealed that in the absence of Tek2, the 

midzone microtubules were not bundled ( Fig. 4, C and D ; and 

Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.200711160/DC1). There was no organized central spindle, and 

Aur B distribution was diffuse across the overlapping micro-

tubules. There was no presumptive midbody in the Tek2 siRNA 

cells. Instead, there were widely overlapping disorganized micro-

tubules ( Fig. 4, C and D , large arrows). This indicates that Tek2 

plays a key role in compacting the midzone microtubules during 

 Figure 5.    Tek2 localization to the midbody 
requires microtubules.  Immunofl uorescence 
of CHO cells labeled with anti –  � -tubulin and 
anti-Tek2.   (A and B) Control CHO cells treated 
with colcemid. The microtubule network is de-
polymerized, and Tek2 remains localized to 
the interphase centrosomes and mitotic spindle 
poles. (C – E) Anaphase cells after washout 
of blebbistatin into colcemid. Loss of micro-
tubules in postanaphase cells does not disrupt 
Tek2 localization to the spindle poles. As the 
micro tubule network depolymerizes, anti-Tek2 la-
beling at the midzone/midbody is lost (arrows). 
At 30 min after blebbistatin washout, the cells 
assemble a cleavage furrow (E). Bar, 10  μ m.   
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boundaries of microtubule overlap appear particularly ill de-

fi ned ( Fig. 4 ). During the assembly of ciliary and fl agellar axo-

nemes, tektins presumably interact with the growing plus end 

of doublet microtubules as they grow out, and tektins also serve 

to limit the length of the axoneme ( Norrander et al., 1995 ;  Linck, 

and Stephens, 2007 ). At present, we support the model where 

Tek2 functions to delineate the plus-end boundaries of the mid-

zone microtubules, perhaps by stabilizing them via direct inter-

action. Alternatively, association of Tek2 with the midzone 

overlap provides structural cues that contribute to the recruit-

ment of key midzone components, such as PRC1, centralspindlin, 

and the chromosome passenger complex, which themselves 

interconnect and stabilize the microtubule overlap. Although 

further work is needed to understand the interactions between 

tektins and midzone microtubules, this study has provided in-

sight into the complex events that lead to the formation, bun-

dling, and organization of the midzone microtubules in the 

central spindle. 

 Materials and methods 
 Unless otherwise noted, all reagents were obtained from Sigma-Aldrich. 

 Cell culture and treatments 
 CHO-K1 cells (American Type Culture Collection) were cultured in Ham ’ s 
F12 media containing 10% FCS and 1 mg/ml pen-strep (Invitrogen). 

 Anti-Tek2 polyclonal antibodies 
 Full-length mouse tektin 2 (Open Biosystems; accession no. NM_011902) 
was sub-cloned into the pET14 vector (EMD) and transformed into lBL21 
bacteria (DE3; Invitrogen), and protein expression was induced by IPTG. 
Recombinant Tek2 was separated on a 7.5% SDS-PAGE curtain gel and 
transblotted onto nitrocellulose. The tektin 2 band was cut out as a strip 
used to immunize rabbits, and antisera was affi nity purifi ed as previously 
described ( Hinchcliffe and Linck, 1998 ). 

 GFP – tektin 2 construct and stable cell line creation 
 Full-length mouse tektin 2 was subcloned into pBluescript II containing the 
GFP gene, and the GFP – tektin 2 fragment was subcloned into the pCI-Neo 
expression vector (Promega) 

 CHO-K1 cells stably expressing Tek2-GFP were generated as previ-
ously described ( Durcan et al., 2008 ). Cells were transfected with Fugene 6 
(Roche), and the day after transfection, Hepes-buffered F12 media con-
taining 2 mg/ml G418 was added to cells. After 3 d in G418, cells were 
passaged, small groups of cells were seeded into 24-well dishes, and the 
concentration of G418 was lowered to 50  μ g/ml. CHO – tektin 2 (CHO-
GT2) cells were screened by fl uorescence microscopy. Tertiary clones were 
identifi ed with maximal numbers of cells showing optimal GFP – tektin 2 ex-
pression and aliquots were frozen down. 

 Mitotic spindle isolation 
 Mitotic spindles and midbodies were isolated as previously described 
( Sellitto and Kuriyama, 1988 ). Once the extraction was complete, as moni-
tored by phase microscopy, the spindles or midbodies were spun onto cover-
slips at 14,000  g  for 15 min at 4 ° C. 

 Microscopy 
 Cells on coverslips were fi xed in ice-cold methanol. Immunofl uorescence 
was performed using  � -tubulin (mouse D1a clone; Sigma-Aldrich), and 
either anti-Tek2 (this study) anti – Aur B, anti-MKLP1, or anti-PRC1 (all ob-
tained from Santa Cruz Biotechnology, Inc.). Secondary antibodies used 
were Alexa-594 goat anti – rabbit (Invitrogen) and Alexa-488 goat anti –
 mouse. Fixed cells were imaged at room temperature with a 63 ×  1.4 NA 
Apo oil immersion lens on an upright microscope (DM RXA2; Leica). 
Images were acquired with Simple PCI software (Compix Media) using a 
cooled charge-coupled device camera (ORCA-ER; Hamamatsu Photonics). 
Images were acquired as a Z stack at 0.2- μ m intervals and compiled as 
maximum projections, and image overlays were created with Photoshop 
6.0 (Adobe). 

localization to the midzone and midbody is dependent on intact 

microtubules. Interestingly, in some cells the midzone micro-

tubule depolymerized, and a cleavage furrow formed as the bleb-

bistatin was washed out in the presence of colcemid ( Fig. 5 E ). 

Midzone microtubules are thought to be highly resistant to 

drug-induced depolymerization, although they can depolymer-

ize in the presence of cold and colcemid or nocodazole ( Uetake 

and Sluder, 2007 ), and their continued presence is required to 

allow ingression of the cleavage furrow ( Wheatley and Wang, 

1996 ). Perhaps the phenomenon we observed here is related to 

the timing of washout. The presence of the midzone during pro-

longed anaphase may obviate the need for intact midzone 

microtubules, as is seen for cell washed out of cytochalasin 

( Martineau et al., 1995 ). 

 Our fi nding that Tek2 relocated from the spindle poles to 

the midbody during late anaphase is reminiscent of Centriolin 

and Cep55, proteins that are centrosomal during metaphase/

anaphase and then relocalize to the midbody during cytokinesis 

( Gromley et al., 2003 ;  Fabbro et al., 2005 ;  Zhao et al., 2006 ). 

However, Centriolin and Cep55 are not involved in central spin-

dle organization. Their loss does not disrupt the central spindle 

or midbody nor cause fusion of daughter cells. Instead, these 

proteins are involved in recruiting new membrane to the cleav-

age furrow, resulting in midbody abscission ( Gromley et al., 2005 ; 

 Zhao et al., 2006 ; for reviews see  Hinchcliffe, 2003 ;  Doxsey, 

2005 ). Loss of Tek2 appears to give a very different phenotype. 

Instead of preventing midbody abscission, loss of Tek2 appears 

to disrupt the normal organization of the midzone microtubules. 

These poorly bundled microtubules may have an indirect effect 

on the completion of cytokinesis by physically preventing the 

proper and coordinated membrane fusion to the nascent cleav-

age furrow. 

 Tektins are evolutionarily conserved from  Chlamydomonas 
reinhardtii  to human, including both  Caenorhabditis elegans  and 

 Drosophila melanogaster , and are essential for many develop-

mental processes, such as fertilization and neuronal development, 

which are dependent upon cilia and fl agella ( Norrander et al., 

1998 ;  Keller et al., 2005 ;  Setter et al., 2006 ). During axoneme/

basal body assembly, tektins directly interact with microtubules, 

imparting the intricate arrangement of doublet/triplet micro-

tubules necessary for these organelles ( Nojima et al., 1995 ; 

 Hinchcliffe and Linck, 1998 ). In this paper, we show that in so-

matic cells, Tek2 plays a similar structural role in building the 

central spindle, and our results suggest that tektin may contribute 

to providing the complex morphology and inherent stability to 

the midzone microtubules necessary during cytokinesis. 

 Midzone microtubules form a characteristic overlap and, 

as anaphase proceeds, the length of the plus-end overlap de-

creases ( Saxton and McIntosh, 1987 ;  Shelden and Wadsworth, 

1990 ;  Mastronarde et al., 1993 ). In Tek2-KD cells, the micro-

tubule overlap does not appear well defi ned, resulting in dif-

fuse midzone microtubules with ill-defi ned boundaries ( Fig. 3 ). 

This observation, combined with the broad diffuse localiza-

tion of Aur B, MKLP1, and, in particular, PRC1, suggests that 

Tek2 serves to stabilize the plus-end boundaries of micro-

tubules in the midzone. This phenotype is also evident in im-

ages of Tek2-KD cells arrested with blebbistatin, where the 
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bled onto aluminium support slides, as previously described ( Hinchcliffe 
et al., 2001 ). Time-lapse images were captured using a microscope stand 
(DM RXA2; Leica) equipped with fl uorescence and differential interference 
optics and enclosed in a custom-made Plexiglas box maintained at 37 ° C. 
Live-cell differential interference contrast image sequences were captured 
with a 40 ×  0.7 NA Apo dry objective. Live-cell fl uorescence images were 
captured using a spinning disk confocal head (CSU-10; Yokagawa), as modi-
fi ed by McBain Industries, using a 488-nm 200-mW Sapphire continuous-
wave optically pumped solid-state laser (CW-OPSL; Coherent), connected 
through a fi ber optic cable into the excitation port of the spinning disk con-
focal head, and shuttered via a TTL pulse through a shutter controller 
(MAC5000; Ludl). Confocal fl uorescent images were taken through a Plan 
Apo 63 ×  1.3 NA 37 ° C glycerol immersion objective (Leica). The detector 
on the confocal microscope was a digital charge-coupled device camera 
(ORCA-AG; Hamamatsu Photonics), and images were captured using Simple 
PCI imaging software. 

 Tektin 2 siRNA KD 
 To transiently knock down levels of tektin 2 in CHO-K1 cells, oligos 
were created to target sequences within the mouse tektin 2 genes. For 
transient transfections, these oligos were cloned into the pSHAG vector 
(G. Hannon, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 
 Paddison et al., 2004 ). Oligos were created to target sequences in both 
the 5 �  UTR and the ORF of Tek2. An SCR ORF oligo was created as a 
control siRNA oligo that would not knock down tektin 2 (T2 ORF, AACAT-
GACAATAGGACCCGCC; T2 SCR, agacaacacgcactaatgcgc; T2 UTR, 
AAGACAGACCACTGAGGAAATACAG). 

 To transiently knock down tektin 2 levels, CHO cells were tran-
siently transfected with the pSHAG constructs described in the previous 
paragraph in a 4:1 ratio with pBluescriptII-RFP to allow identifi cation of 
transfected cells. To generate CHO cells stably expressing either the Tek2 
ORF or SCR constructs, oligos were cloned behind a U6 promoter in a 
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 RT-PCR 
 Total RNA was harvested from cells using Qiashredder and the RNeasy 
mini kit (QIAGEN). For a reverse transcription reaction in an RNase 
free environment, 2  μ g mRNA was added to an RNase-free PCR tube 
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 Blebbistatin treatment 
 Blebbistatin ( �  active enantiomer; EMD) was added at a fi nal concentration 
of 100  μ M to unsynchronized CHO cells expressing the Tek2 ORF siRNA, 
the Tek2 SCR siRNA, or no transfected for two hours. Cells were then fi xed 
and immunolabeled for  � -tubulin and either anti-Tek2 or anti – Aur B. 

 Online supplemental material 
 Fig. S1 shows that Tek2 localizes to isolated CHO mitotic spindles. 
Fig. S2 shows localization of Aur B, MKLP1, and PRC1 in control CHO 
cells. Fig. S3 shows that Tek2 compacts the central spindle microtubules. 
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200711160/DC1. 
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