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Abstract: The chloroplast relies on proteins encoded in the nucleus, synthesized in the cytosol and
subsequently transported into chloroplast through the protein complexes Toc and Tic (Translocon at
the outer/inner membrane of chloroplasts). A Tic complex member, Tic55, contains a redox-related
motif essential for protein import into chloroplasts in peas. However, Tic55 is not crucial for protein
import in Arabidopsis. Here, a tic55-II-knockout mutant of Arabidopsis thaliana was characterized
for Tic55 localization, its relationship with other translocon proteins, and its association with plant
leaf senescence when compared to the wild type. Individually darkened leaves (IDLs) obtained
through dark-induced leaf senescence were used to demonstrate chlorophyll breakdown and its
relationship with plant senescence in the tic55-II-knockout mutant. The IDLs of the tic55-II-knockout
mutant contained higher chlorophyll concentrations than those of the wild type. Our microarray
analysis of IDLs during leaf senescence identified seven senescence-associated genes (SAGs) that
were downregulated in the tic55-II-knockout mutant: ASP3, APG7, DIN2, DIN11, SAG12, SAG13, and
YLS9. Real-time quantitative PCR confirmed the reliability of microarray analysis by showing the
same expression patterns with those of the microarray data. Thus, Tic55 functions in dark-induced
aging in A. thaliana by indirectly regulating downstream SAGs expression. In addition, the expression
of four NAC genes, including ANAC003, ANAC010, ANAC042, and ANAC075 of IDL treated
tic55-II-knockout mutant appeared to be downregulated. Yeast one hybrid assay revealed that
only ANAC003 promoter region can be bound by MYB108, suggesting that a MYB-NAC regulatory
network is involved in dark-stressed senescence.

Keywords: Tic55 proteins of chloroplasts; dark-induced leaf senescence; MYB108; ANAC proteins

1. Introduction

The chloroplast is mainly composed of proteins encoded by the nuclear genome and synthesized
as precursor proteins (preproteins) in the cytosol. During the translocation of precursor proteins,
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several subcomponents of the complex function as the channel/motor complex components Tic110,
Tic40, cpHsp70, Hsp90C, and Hsp93/ClpC; redox-regulatory subunits, Tic62, Tic55, and Tic32; and
an alternative import channel Tic20/Tic21, Tic22, Tic214, Tic100, and Tic56 [1–9]. The transit peptide
of a preprotein is further translocated across the inner membrane through the Tic20/Tic21 channel
dependently or independently of Tic110 and translocate across the inner membrane [9–12]. The transit
peptide is subsequently cleaved by the stromal processing peptidase (SPP) and the processed mature
protein is pulled into the chloroplast’s stroma.

In the chloroplasts, photosynthesis relies on the redox reaction. Tic110 itself contains one or two
regulatory disulfide bridges [13]. The formation/dissolving of such intramolecular bonds within
Tic110 can influence the structure and function of this central Tic component. In addition to the redox
state of the thiol system, the NADP+/NADPH ratio is a direct measurement of the total stromal redox
state. Hirohashi and others [14] demonstrated that the redox state within the chloroplasts may regulate
protein targeting. Stengel and others [15] recently demonstrated that the redox state regulates protein
import into the chloroplasts and mitochondria. Three redox proteins, Tic55, Tic62, and Tic32, are
associated with Tic110; among these, Tic62 can relay the redox status of the stroma to Tic110 [16].
Similar to Tic62, Tic32 dissociates from Tic110 in the presence of NAPDH, suggesting that Tic32 can
also be part of a redox-signal transducer [17]. Moreover, Tic55 is associated with Tic62 and Tic32
and contains a redox-related motif essential for protein import into the chloroplasts in peas [8,18–20].
However, redox-motif of Tic55 is essential for its biological function in Arabidopsis remains unclear.

Previous studies showed Tic55 may not be involved in the protein import into chloroplasts like
other translocon proteins in Arabidopsis thaliana and rather functions as a hydroxylase of phyllobilins
during plant senescence [21,22]. Senescence in green plants is a highly controlled and complicated
process. Chlorophyll degradation is the first visible sign of senescence. Arabidopsis and other higher
organisms contain four classes of tetrapyrroles and chlorophyll is the most abundant tetrapyrroles
that function as photosynetic pigments to harvest light energy and transfer the absorbed energy to
the reaction center for the photosynthetic reactions to occur. Leaf yellowing, caused by chlorophyll
degradation, is the most apparent indication of senescent leaves. The role of phyllobilin modification,
mediated by the hydroxylase activity of Tic55, during chlorophyll breakdown is still not clear [22].
Interestingly, chlorophyll degradation can be resulted from a numerous occasions of endogenous and
environmental cues. The environmental factors that influence leaf senescence include abiotic and biotic
factors. The abiotic influence is attributed to the drought, nutrient limitation, extreme temperature, and
oxidative stress, etc. Pathogen infection, on the other hand, is one kind of biotic factors. Nevertheless,
leaf senescence can occur prematurely under such unfavorable environmental stresses [23,24]. Thus,
the net loss of chlorophyll in chloroplasts is the main cause of phenotypic change of senescing leaves
from green to yellowing. Several lines of evidence have identified dozens of senescence-related mutants
and hundreds of senescence-associated genes (SAGs) implicated in hormone signaling, chlorophyll
catabolism, and light signaling [25–27]. For example, the famous stay-green pea used by Mendel
has been shown to be due to the mutation in the gene encoding pheophorbide a oxygenase [28].
In these mutants, only the chlorophyll degradation pathway is affected. Mutants with single gene
mutation usually do not lead to blocking of all aspects of senescence. There are multiple signaling
pathways involved in the gene expression during senescence, and it is very likely that a single gene
does not control all the signaling pathways implicated in senescence. In an experiment comparing
gene expression levels at three stages of leaf development (MG (mature green); S1 (early senescence,
no chlorosis) and S2 (mid senescence, 5–15% chlorosis)), Buchanan-Wollaston and coworkers [29] have
identified more than 1400 genes that showed relative changes in expression during leaf development.
Although some gene expression may be specific to certain stress stimulation, there is often a large
overlap among different stress responses. This notion suggests that common features are possibly
involved [30].

The main purpose of plant senescence is to mobilize and recycle. When the leaf is no longer needed
by the plant, the senescence process is triggered to relocate all the nutrients from leaves to reproducing



Int. J. Mol. Sci. 2018, 19, 1854 3 of 23

seeds or to other growing organs. During this process, plant-specific NAC (NAM/ATAF1, 2/CUC2)
family of transcription factors (TFs) in controlling the stress responses may play vital roles in plant
senescence [31,32]. NAC TFs by far is the largest plant TF families with over 100 members in Arabidopsis
for instance [33]. NAC TFs have been related to a variety of stress-associated responses such as drought,
high salinity, bacterial and fungal pathogens, and senescence [24,34–38]. Many members of NAC
family appear to have overlapping expression patterns and are involved in regulating multiple stress
responses, a situation suggesting their common roles in regulation [24,38,39]. From the recent structural
and functional studies, NAC TFs proteins contain a highly conserved target-specific N-terminal DNA
binding domain and a divergent C-terminal domain, which interacts dynamically with other proteins
and functions as a transcription regulatory domain (TRD) [40–43]. NAC TFs interact and control other
NACs or other TFs to fine-tune the target genes expression, thereby forming a NAC regulatory network
to integrate multiple developmental and environmental signals [44,45]. Within this network, NAC,
WRKY, and MYB TFs are central key players in regulating transcriptional changes during senescence.
Therefore, it appears that leaf senescence is controlled through multiple and cross-linking pathways,
many of which are related to stress response signaling [32,38,45–47].

In this study, in order to address whether the redox status of Tic55 in Arabidopsis affects
its biological function, a tic55-II-knockout mutant line of Arabidopsis thaliana, SALK_086048,
randomly chosen and obtained from the Arabidopsis Biological Resource Center (ABRC), was
characterized. The tic55-II-knockout mutant revealed no significant physical differences, and the
change in the redox state did not affect the association of this mutant with other translocon
proteins. This indicates that Tic55 does not have a crucial role in A. thaliana survival and
implies that Tic55 may not function as a redox signal transducer implicated in its biological
activities. By contrast, dark-induced leaf senescence experiments (IDLs) [48] have revealed
a unique biological function of Tic55 as an aging-related protein in A. thaliana. Chlorophyll
concentrations were higher in the tic55-II-knockout mutant than in the wild type (WT). Microarray
gene expression analysis of individually darkened leaves (IDLs) during the leaf senescence of
A. thaliana revealed 830 transcripts assigned to three main gene ontology (GO) categories, namely
biological processes, molecular functions, and cellular components, and 111 subcategories based on
TAIR (http://www.arabidopsis.org/help/helppages/go_slim_help.jsp) [49,50]. Seven downregulated
senescence-related genes—ASP3 (aspartate aminotransferase 3), APG7 (autophagy-related 7, ubiquitin-like
modifier-activating enzyme ATG7), DIN2 (dark inducible 2, beta-glucosidase 30), DIN11 (dark inducible 11,
2-oxoacid-dependent dioxygenase-like protein), SAG12 (senescence-associated gene 12, cysteine protease),
SAG13 (senescence-associated gene 13, senescence-associated protein), and YLS9 (yellow-leaf-specific gene 9,
protein NDR1/HIN1-like 10)—were selected for further analysis [51–58]. Real-time quantitative
reverse-transcription PCR (qRT-PCR) of these seven genes in the Columbia WT and tic55-II-knockout
mutant after IDL treatment indicated the reliability of the microarray results. Thus, these seven
senescence-associated genes (SAGs), including SAG12 and SAG13 shown previously [52,53,57] as well
as in our study, are indeed involved in plant senescence. We also identified from our microarray data
four NAC containing proteins, including ANAC003, ANAC010, ANAC042, and ANAC075, whose
expressions were downregulated in dark-induced aging in the tic55-II-knockout mutant. Earlier studies
have shown that the downstream gene expression of SAGs is possibly associated with the upstream
MYB-NAC transcription factors (TFs) controlling signaling pathways [32,59]. The key mechanism of
regulation in differential gene expression is that TFs function through sequence-specific binding to the
promoters of target genes. Our yeast one-hybrid data revealed that MYB108 indeed interacts with the
promoter of ANAC003, indicating MYB-NAC direct regulatory roles in dark-induced senescence in the
tic55-II-knockout mutant. We present not only the novel biological function of Tic55 in dark-induced
aging in A. thaliana, but also this stress-specific regulatory pathway.

http://www.arabidopsis.org/help/helppages/go_slim_help.jsp


Int. J. Mol. Sci. 2018, 19, 1854 4 of 23

2. Results and Discussion

2.1. Molecular Characterization and Phenotype of T-DNA Insertion Mutant tic55-II

To assess the biological importance of Tic55 in A. thaliana, tic55 knockout mutant line with T-DNA
insertion in tic55 (AT2G24820), named SALK_086048, was obtained from the Arabidopsis Biological
Resource Center (ABRC). Both the WT and tic55 knockout mutant plants were grown on Murashige
and Skoog (MS) agar with kanamycin, and screening revealed the presence of T-DNA insertion.
The T-DNA insertion site in the mutant line was confirmed through genomic PCR, followed by DNA
sequencing at the T-DNA/gene junctions. In this knockout mutant, T-DNA disrupted the first exon
of Tic55. These mutant lines were further confirmed to be true tic55 knockout plants through RT-PCR
and protein gel blot analysis. Although no mutant (08-1, 08-2, or 08-3) showed the presence of the
1.6-kb full-length transcript, it was noted in the WT (Figure 1A). Protein gel blot analysis with a
Tic55-specific antibody (αTic55) further confirmed the complete absence of Tic55 in the total protein
and chloroplast of the knockout line, named tic55-II (Figure 1B). These data corroborate those of
Boij et al. [21], who screened and characterized three tic55 knockout mutants, including SALK_086048.
We therefore obtained a true tic55 knockout mutant in order to further study the potential biological
functions of Tic55 in A. thaliana. Both WT and tic55-II-knockout plants were grown on MS agar and
soil to observe abnormal phenotypes. No significant phenotypic differences were observed (Figure 2).
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Figure 1. Molecular characterization of T-DNA insertion lines derived from SALK_086048. (A) RT-PCR
analysis was performed using RT-F and RT-R primers as indicated in Table S1. Tic55 in A. thaliana is
shown as atTic55. Internal control was atACT2, an actin gene in A. thaliana, used to normalize sample
loading. (B) Protein gel blotting assay for both total protein and chloroplast protein was performed to
detect Tic55 in the wild-type (WT) and knockout mutant (tic55-II) plant extracts by using a Tic55-specific
antibody (αTic55) or the housekeeping protein porin (αPorin) and Tic40 (αTic40).
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Figure 2. Phenotypes of the wild-type (WT) and tic55-II-knockout mutant lines. (A) WT and
tic55-II-knockout (SALK_086048) mutant lines were grown on MS medium side by side for 10 days, and
the appearance of seedlings were compared. White bar indicates 1 cm. (B) Comparison of root systems
of 10-day-old WT and tic55-II-knockout mutant seedlings, respectively. White bar represents 1 cm.
(C) Leaf tissues in (A) were photographed at closer distances for both WT and tic55-II-knockout mutant
plants (upper panel). Lower panel shows the number of leaf hairs for both WT and tic55-II-knockout
mutant plants. White bar (white line) indicates 1 mm. (D) Similar plants were grown in vitro for
10 days and then transferred to soil and grown for 30 days. White bar represents 2 cm.

2.2. The Relationship between Tic55 and Other Translocon Proteins

Most chloroplast proteins are nuclear-encoded preproteins that are synthesized in the cytosol,
directed to the chloroplast by the transit peptide at the N-terminus of the preprotein, and translocated
into the chloroplast. After successful import, the transit peptide is cleaved off by the SPP, resulting
in the mature form of the protein. Eight proteins are involved in preprotein import at the IM of the
chloroplast: Tic110, Tic62, Tic55, Tic40, Tic32, Tic22, Tic21, and Tic20 [4]. Recently, Tic56, Tic100, and
Tic214 were reported to be associated with Tic20 to form the 1 MDa complex at the IM, which also
functions as a translocation channel for preproteins [9,12]. In addition, a defect in Tic110 resulted
in the death of mutant plants, indicating that Tic110 is essential in protein import machinery [60].
However, the tic55-II-knockout mutant plants exhibited no significant phenotypic differences from the
WT (Figure 2), indicating that Tic55 may not be functionally critical to the survival of A. thaliana in
normal growth conditions.

Boij and others [21] demonstrated that only atTic55-II, but not AtPTC52 (atTic55-IV), can be
considered a plausible ortholog of the pea Tic55 protein (psTic55) because the amino acid sequences
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of atTic55 and AtPTC52 are only 26% identical, but they are 79% identical for psTic55 and atTic55-II.
To determine whether atTic55-II would affect the level of translocon proteins involved in the protein
import machinery, total proteins from 14-day-old WT, tic55-II-knockout, and tic40-2 mutant lines under
normal growth conditions were extracted. Between the tic55-II-knockout mutant and WT, protein
quantities were similar for the outer membrane component Toc159, the inner membrane components
Tic110 and Tic40, and the stromal protein Hsp93 (Figure 3A). Therefore, a defect in Tic55 does not
affect the cellular levels of other translocon proteins essential to precursor protein translocation into
the chloroplast stroma.
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Figure 3. Relationship of Tic55 and other translocon proteins. (A) Protein gel blot analysis
demonstrating the location of the inner membrane proteins Tic110 and Tic40, the outer membrane
protein Toc159, and the stoma protein Hsp93 in tic55-II-knockout or tic40-2 mutants and WT plants.
(B) Location of Tic55 and other translocon proteins under redox environments. Chloroplast fraction
was treated with oxidized glutathione (GSSG) and reduced glutathione (GSH). Control indicates no
treatment. After ultracentrifugation, lipid-soluble (Pe) and water-soluble (Su) protein fractions were
separated and examined using protein gel blots to explore the location and complex formation of Tic55
with other translocon proteins. IM: inner membrane. St: stroma. OM: outer membrane.

Tic55 is located in the inner membrane of chloroplast in peas [19]. To determine the location
of Tic55 in A. thaliana, chloroplasts were isolated through fractionation analysis and separated into
four parts: the IM, OM, thylakoid membrane, and stroma. Protein gel blots indicate that Tic55 was
fractionated in the IM of chloroplast in A. thaliana (Figure S1A and Figure 3A).

Furthermore, reports have demonstrated that in A. thaliana, AtTic55 (At2g24820) has a role in
redox regulation and is possibly regulated by its thioredoxins [19,61]. Other translocon proteins alter
protein-protein interactions depending on the cellular redox state. For example, Tic62 and Tic32
form distinct complexes with nearby proteins under oxidizing conditions (high NADP+/NADPH
ratio) compared with those under reducing conditions (low NADP+/NADPH ratio) [62]. Similarly, to
explore whether the redox environment affects the complex formation of Tic55 with other translocon
proteins, we first confirmed whether Tic55 forms a complex with other translocon proteins, including
Tic110, Tic40, and Hsp93, through coimmunoprecipitation (CO-IP) assays. Isolated chloroplast
membrane proteins were immunoprecipitated with either specific anti-Tic55 antibody or preimmune
serum (negative control), followed by protein gel blot assay with antibodies against Tic110, Tic40, or
Hsp93. Tic55 appeared to form a complex with Tic110, Tic40, and Hsp93 (Figure 4). Furthermore, we
used oxidized glutathione (GSSG) and reduced glutathione (GSH) to create oxidizing and reducing
environmental conditions, respectively, for the isolated chloroplasts, followed by protein gel blot
analysis with a specific antibody to detect particular translocon proteins. As shown in Figure 3B, Tic55
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fractionated with Tic110 and Tic40 at the IM in the presence of either GSSG or GSH, indicating the redox
environments did not affect the protein–protein interactions of Tic55 and its nearby translocon proteins.
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Figure 4. Tic55 could directly interact with other Tic proteins. Coimmunoprecipitation (Co-IP) analysis
was used to determine complex formation between Tic55 and other translocon proteins. Isolated
chloroplasts from wild-type A. thaliana were treated with ice for 15 min, followed by hypotonic
treatment. Chloroplast membrane proteins were subsequently retrieved, and an immunoprecipitation
(IP) assay was performed using either anti-Tic55 antibody or preimmune serum (negative control).
Next, protein gel blots were conducted using specific antibodies αTic110, αHsp93, or αTic40 to detect
whether a particular translocon protein could be coimmunoprecipitaed to indicate that the protein can
form a complex with Tic55 protein.

2.3. Possible Novel Biological Function of Tic55 in the Aging of A. thaliana

Our data indicate that the physical appearance, other translocon proteins levels, and Tic complex
formation under oxidizing or reducing environments do not differ between the tic55-II-knockout
mutant and the WT. Dark-stimulated aging has a major effect on chlorophyll degradation in plants.
Notably, similar to Tic55, some proteins from the LLS1-related nonheme family are involved in
different stages of chlorophyll metabolism. For example, PAO and CAO are implicated in chlorophyll
degradation [63]. Studies have also shown that LLS1 suppressed cell death in maize cells [64].
Therefore, Tic55 may play a role in the aging of Arabidopsis [65]. To test this hypothesis, dark-induced
leaf senescence experiments (IDLs) [48] were conducted on soil-grown WT and tic55-II-knockout
mutant plants. Dark treatment was applied to the expanding third and fourth rosette leaves (Figure 5A,
Control Day 0) when both WT and tic55-II-knockout mutant plants were grown under long-day
conditions. No apparent differences were noted between WT and tic55-II-knockout mutant plants in
the control leaves (unshaded leaves) after five days of growth (Figure 5A, Control Day 5). However,
IDLs of the tic55-II-knockout mutant exhibited a greener phenotype than did the WT (Figure 5A,
Control Day 5 and IDL Day 5). We also measured the total chlorophyll concentrations of the WT and
tic55-II-knockout mutant plants, our data showed that at Day 5, IDLs from the mutant plants retained
significantly more chlorophyll than did the IDLs from the WT plants (Figure 5B). Thus, these results
indicate reduced chlorophyll degradation in the dark and in the absence of Tic55, suggesting Tic55 may
play a role in leaf senescence. Notably, our results corroborate the recent findings that Tic55 functions
as a hydroxylase in chlorophyll breakdown during plant senescence [22].
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Figure 5. Dark-induced aging and the importance of Tic55 in senescence. (A) Phenotypes of wild-type
(WT) and tic55-II-knockout mutant lines without treatment on both Day 0 and Day 5 (Control Day 0
and Control Day 5, respectively) compared with the IDLs of WT and tic55-II-knockout mutant lines
at Day 5 after dark treatment (IDL Day 5). The third and fourth rosette leaves of Day 0 plants were
individually covered with foil soon after bolting, and the plants were grown for another five days.
(B) Quantitative chlorophyll analysis: The fifth and sixth leaves of 19-day-old seedlings were collected
as Day 0 samples. After five days, the fifth and sixth leaves of the control seedlings (without dark
treatment) were gathered as Day 5 samples. The fifth and sixth leaves of dark-treated plants were
collected five days after treatment started on Day 0 (IDL Day 5). Chlorophyll was extracted and
quantified (µg/mL) in leaves gathered from each group. Solid bars represent WT and open bars
indicate tic55-II-knockout mutant lines. Three independent experiments were performed and standard
deviation was measured. Asterisk (*) depicts p < 0.05.

2.4. Microarray Gene Expression Analysis in IDLs during Leaf Senescence of A. thaliana

Dark-induced leaf senescence experiments revealed that tic55 gene knockout led to the delay of
leaf aging (Figure 5) and decrease in the expression of some senescence-associated genes (SAGs) in
A. thaliana. To obtain further insight into whether a defect in Tic55 affects other biological pathways
during leaf aging, we performed transcriptomic analysis by using microarray technology. Both WT and
tic55-II-knockout mutant plants were provided dark-induced senescence treatment (IDL treatment)
for three days, following which their leaves were collected. After a microarray assay, as indicated in
the Materials and Methods section, differential gene expression associated with biological processes,
cellular components, or molecular functions was analyzed (Figure 6). A log2 fold cutoff (p < 0.05)
was applied to the data, resulting in a total of 923 highly significant differentially expressed genes
(Figure 6). On comparing the IDLs of the tic55-II-knockout mutant and the WT, we identified 252
induced and 671 repressed transcripts after three days of growth. The fold change expression data was
then assigned to a functional category according to the GO classification system for plants developed
at TAIR (http://www.arabidopsis.org/help/helppages/go_slim_help.jsp) [49,50]. The functions of
the identified genes cover various biological processes, cellular components, and molecular functions.
In total, 830 transcripts were grouped into three main GO categories and 111 subcategories (functional
groups) (Table S2).

http://www.arabidopsis.org/help/helppages/go_slim_help.jsp
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Figure 6. Regulated genes (log2-fold change) assigned to functional protein categories based on the
gene ontology (GO) classification scheme. These genes are involved in the biological processes (A),
cellular components (B), or molecular functions (C). Positive and negative values on the scale indicate
the numbers of significantly up- and downregulated genes, respectively.

2.5. Functional Categorization of log2-Fold Induced and Repressed Genes in the IDLs Based on
Microarray Analysis

The patterns of transcript fold changes for upregulated and downregulated genes were further
examined and classified according to their GO functional categories derived from our microarray
analysis (Table S2). The trend for each subcategory presented a significant increase (p < 0.05) in the total
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number of differentially regulated (repressed and induced) genes from the IDLs of tic55-II-knockout
mutants after dark-induced leaf senescence. Of these differentially expressed transcripts, the repressed
genes increased the most in each subcategory (Table S2). Thus, our microarray data indicated that
dark-induced aging in the tic55-II-knockout mutant, which has the defective Tic55, would subsequently
affect the downstream genes expression involved in regulating the developmental stages in A. thaliana.

2.6. Confirmation of Microarray Results by Real-Time qRT-PCR

The results of our dark-induced leaf senescence experiments in tic55-II-knockout mutant showed
increased chlorophyll concentration compared to WT (Figure 5B), and differential gene expression
involved in the regulation of leaf aging in our microarray data in the absence of Tic55 (Figure 6, Table S2).
In addition, a developmental tissue-specific expression profile for atTic55 revealed that the highest
expression levels are in the photosynthetic tissues, according to publicly available Affymetrix GeneChip
microarray data, accessed using the Genevestigator analysis tool (www.genevestigator.ethz.ch/).
Notably, Tic55-II expression is augmented not only in the cotyledons, sepals, and cauline leaves,
but also in the senescent leaves in terms of tissue-specific expression, suggesting that Tic55-II gene
expression increases in response to leaf aging [21]. To further explore whether Tic55 is crucial in
regulating senescence-associated genes (SAGs) expression, we conducted microarray analysis using
dark-induced aging leaves from the tic55-II-knockout mutant and identified differentially expressed
genes in this mutant when compared to the WT (Table S2). Our microarray data revealed that
several genes are classified into the biological processes categories divided into the subcategories of
“aging” (three upregulated and seven downregulated), “senescence” (four downregulated), and “leaf
senescence” (four downregulated) (Table S2). We thus selected seven genes for further analysis on the
basis of their possible involvement in leaf senescence in A. thaliana [51–58]: ASP3, APG7, DIN2, DIN11,
SAG12, SAG13, and YLS9. According to microarray analysis, these genes are downregulated in the
tic55-II-knockout mutant (Table 1), indicating the aging-related gene expression is repressed under
dark-induced senescence in the absence of functional Tic55, thus delaying leaf senescence.

Table 1. List of significantly upregulated or downregulated genes in aging, senescence, and
leaf senescence subcategories from biological processes categories according to the gene ontology
classification scheme from microarray analysis. Data provided represent fold expression Log2

(tic55-II-knockout/wild type).

Locus ID GO Term Annotation Up or Down Fold Change
(tic55-II/WT)

NM_180632
GO:0007568~aging

GO:0010149~senescence
GO:0010150~leaf senescence

Arabidopsis thaliana epithiospecifier
protein mRNA (ESP) Up 2.452

NM_124040 GO:0007568~aging Arabidopsis thaliana tetraspanin
family protein mRNA (TRN2) Up 2.017

NM_001036860 GO:0007568~aging
GO:0010149~senescence

Arabidopsis thaliana vegetative
storage protein 2 mRNA (VSP2) Up 2.009

NM_121190
GO:0007568~aging

GO:0010149~senescence
GO:0010150~leaf senescence

Arabidopsis thaliana aspartate 3
aminotransferase mRNA (ASP3) Down −2.107

NM_129157
GO:0007568~aging

GO:0010149~senescence
GO:0010150~leaf senescence

Arabidopsis thaliana late
embryogenesis abundant

hydroxyproline-rich
glycoprotein mRNA (YLS9)

Down −2.52

NM_123958
GO:0007568~aging

GO:0010149~senescence
GO:0010150~leaf senescence

Arabidopsis thaliana ubiquitin-like
modifier-activating enzyme

atg7 mRNA (APG7)
Down −2.533

www.genevestigator.ethz.ch/
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Table 1. Cont.

Locus ID GO Term Annotation Up or Down Fold Change
(tic55-II/WT)

NM_201829 GO:0007568~aging
Arabidopsis thaliana

senescence-associated protein
13 mRNA (SAG13)

Down −3.353

NM_115877 GO:0007568~aging Arabidopsis thaliana beta-glucosidase
30 mRNA (DIN2) Down −3.735

NM_115877 GO:0007568~aging

Arabidopsis thaliana
2-oxoacid-dependent

dioxygenase-like protein
DIN11 mRNA (DIN11)

Down −3.735

NM_123957
GO:0007568~aging

GO:0010149~senescence
GO:0010150~leaf senescence

Arabidopsis thaliana cysteine
protease mRNA (SAG12) Down −7.388

To confirm the differential gene expression profiles obtained from microarray assay, we
validated expression values through relative real-time qRT-PCR. Both IDLs from Columbia WT and
tic55-II-knockout mutants were collected, followed by real-time qRT-PCR. All seven genes showed
the same expression patterns as they did in the microarray analysis, demonstrating the reliability of
the microarray results (Figure 7). However, the fold changes determined through microarray analysis
and real-time qRT-PCR were slightly different. This may have been due to technical differences in
the analysis and normalization methods. Nevertheless, our results demonstrated that the expression
of these aging-related genes decreased without functional Tic55 in the tic55-II-knockout mutant
under dark treatment, thus delaying leaf senescence and causing greener phenotypes in their leaves
than in those of the WT (Figure 5A). Therefore, the biological function of Tic55 is involved in plant
senescence. Our data corroborate the recent reports of Hauenstein et al. [22], who demonstrated that
Tic55 is involved in the hydroxylation of phyllobilins, the products of chlorophyll breakdown during
senescence. These authors mainly focused on the elucidation of biological activity of Tic55, whereas
our study revealed not only the direct effect of Tic55 on chlorophyll catabolism but also its indirect role
in the downstream senescence associated genes (SAGs) expression through microarray and qRT-PCR
analyses. Consequently, we propose that Tic55 expression is increased when a leaf enters the normal
aging stage, subsequently affecting the downstream senescence-associated gene expression, leading to
leaf senescence.
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were determined using three replicates, and signal intensities for each transcript were normalized 
with tubulin (internal control). Error bars represent standard deviation. Primers used in PCR 
reactions are listed in Table S1. Each experiment was repeated three times with similar results. Black 
and white boxes indicate the Columbia WT and tic55-II-knockout mutant, respectively. 
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Figure 7. Validation of microarray expression data by relative real-time quantitative RT-PCR. Validated
leaf senescence-related genes, namely ASP3, APG7, DIN2, DIN11, SAG12, SAG13, and YLS9, showed
downregulation in the tic55-II-knockout mutant after dark-induced leaf senescence compared with
the wild-type (WT) in microarray analysis. Relative transcript levels of these genes were determined
using three replicates, and signal intensities for each transcript were normalized with tubulin (internal
control). Error bars represent standard deviation. Primers used in PCR reactions are listed in Table S1.
Each experiment was repeated three times with similar results. Black and white boxes indicate the
Columbia WT and tic55-II-knockout mutant, respectively.
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2.7. Sequence Alignment and Phylogenetic Analysis of ANAC TFs

Multiple layers of regulation are involved in the control of leaf senescence. An overview of these
multiple controlling layers has been shown recently, including chromatin-mediated, transcriptional,
post-transcriptional, translational, and post-translational modes of regulation [44]. From the onset
through the completion of leaf senescence, it is a highly coordinated process and involves an extensive
rearrangement of gene expression [44,66]. The regulation of plant senescence has been related to
thousands of senescence-associated genes (SAGs) [52,53,57], including SAG12 and SAG13, which we
have found downregulated from our microarray data and confirmed by qRT-PCR analysis in the
dark-induced tic55-II-knockout mutant, which led to delayed leaf senescence. Earlier studies have
shown that Arabidopsis SAG12 is an important molecular marker specific for leaf senescence, while
not detected in the hypersensitive response (HR) linked programmed cell death (PCD) in tobacco.
Similarly, HSR2037 is upregulated during HR, but not in leaf senescence [67]. This observation indicates
that signaling pathway linked leaf senescence-associated cell death is distinct from those of other
HR PCDs. Thus, our results are in accord with this notion in which expression of SAGs is highly
associated with the process of leaf senescence. Although leaf senescence is considered a complex
process, upstream NAC transcription factors (TFs) appear to play essential roles in senescence and
over 100 NAC genes have been found in Arabidopsis by transcriptome analyses, thereby implicating
NAC genes as important regulators of the senescence process [33,59]. From our microarray data
of dark-induced senescence in tic55-II-knockout mutant, we identified four downregulated genes
encoding NAC domain-containing proteins, including ANAC003, ANAC010, ANAC042, and ANAC075,
whereas no upregulated NAC genes were found. The common subdomains (A–E) of protein sequences
were determined by MEME/MAST analysis [68] and MEGA 6.0 [69] was used to construct the
phylogenetic tree by the neighbor-joining method with 1000 bootstrap replicates [70,71]. As shown
in Figure 8A, alignment of four downregulated Arabidopsis NAC-containing proteins, ANAC003,
ANAC010, ANAC042, and ANAC075, in response to dark stress in tic55-II-knockout mutant appeared
the typical domain structure (subdomains A–E) at N-terminal end as other NAC-containing proteins,
such as ANAC019 whose crystal structure was identified [41]. Our results therefore are in agreement
with those of earlier studies [24,42] in that the N-terminal portion with the NAC domain of our
four downregulated NAC proteins is highly conserved, whereas the C-terminal region is divergent
(Figure 8A). According to the study of Podzimska-Sroka and others [72], ANAC003 and ANAC042
are senescence-associated proteins in Arabidopsis. Their notion further supports our microarray data
in that downregulated ANAC003 and ANAC042 found in tic55-II-knockout mutant are very likely
to be associated with leaf senescence. In addition, recent studies have revealed that plant signaling
pathways are composed of complicated network with cross-talks [73]. In fact, several Arabidopsis
NAC genes were identified as convergence points between different pathways, such as ANAC019,
ANAC055 [35,74] and ANAC072 (RD26) [34], indicating the important role of NAC genes involved
in plants in response to abiotic and biotic stresses. Furthermore, these three genes were found to be
age-related NAC genes [32]. To analyze the relative relationship among the identified NAC proteins,
phylogenetic tree of these NAC TFs and other NAC proteins was constructed as illustrated in Figure 8B.
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Figure 8. ANAC domain structure of seven Arabidopsis NAC transcription factors (TFs). (A) Architecture
of NAC containing domains of seven Arabidopsis NAC TFs. * indicates the identical amino acids aligned
within the different ANAC proteins. (B) phylogenetic relationships of four downregulated ANAC
proteins, including ANAC003, ANAC010, ANAC042, and ANAC075 with other ANAC proteins that
have been previously published involved in plant senescence.

2.8. MYB-NAC Linked Regulatory Pathway and Leaf Senescence

To validate whether NAC transcription factor genes, including ANAC003, ANAC010, ANAC042,
and ANAC075 are repressed in the tic55-II-knockout mutant after dark-induced leaf senescence, relative
real-time quantitative RT-PCR assays were conducted. As shown in Figure 9A, these four NAC genes
were indeed downregulated in the tic55-II-knockout mutant following dark-induced leaf aging when
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compared with the wild type (WT). Furthermore, members of a MYB TF family group, including
MYB2, MYB21, MYB108, and MYB112 have been found to interact with the promoter of a NAC gene,
ANAC055, in a sequence-specific manner [32]. In agreement with this notion is the presence of a MYB
binding motif [32,75]. Thus, members of this MYB subgroup are involved in regulating the same stress
responses as the NAC TFs. MYB108 revealed to be implicated in response to ABA, JA, and ethylene
and also involved in regulating the response to pathogen infection [76,77]. In addition, Hickman and
coworkers [32] have shown a gene regulatory network in which the expression of ANAC019, ANAC055,
and ANAC072 was regulated directly by the upstream MYB108, which was determined by using the
yeast one-hybrid assays. Since we identified downregulated MYB108 as well as four ANAC genes,
including ANAC003, ANAC010, ANAC042, and ANAC075 from Microarray analysis of dark stressed
tic55-II-knockout mutant, similar yeast one-hybrid experiments were performed. Our data showed that
indeed MYB108 interacts with the promoter of ANAC003 gene, indicating dark-induced leaf senescence
in tic55-II-knockout mutant is associated with the MYB108 linked NAC regulatory pathway (Figure 9B).
In addition, PCR reactions confirmed that both MYB108 and NAC constructs were introduced into
yeast cells and thus the results of yeast one-hybrid assays were reliable. The possible MYB TF binding
sites for all four ANAC genes are exhibited in Table 2. Furthermore, our results revealed that MYB108
interacts with the promoter of ANAC003, while not with those of ANAC010, ANAC042 or ANAC075,
suggesting different control mechanisms involved in regulating ANAC010, ANAC042 and ANAC075
expression. Earlier studies have shown WRKY, bZIPs, HB TFs, or other NAC proteins could be other
possible upstream regulatory factors [32]. Taken together, our results suggest that MYB-NAC TFs
regulatory singling is involved in the dark induced Tic55-associated plant senescence by a complex
transcriptional network.
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Figure 9. Downregulated expression of four ANAC genes accessed by relative real-time quantitative
RT-PCR and MYB-NAC relationship determined by yeast one-hybrid assay. (A) Validated leaf
NAC transcription factor genes, including ANAC003, ANAC010, ANAC042, and ANAC075 showed
downregulation in the tic55-II-knockout mutant after dark-induced leaf senescence compared with the
wild-type (WT) in microarray analysis. Relative transcript levels of these genes were determined using
three replicates, and signal intensities for each transcript were normalized with tubulin (internal control).
Error bars represent standard deviation. Primers used in PCR reactions are listed in Table S1. Black and
white boxes indicate the Columbia WT and tic55-II-knockout mutant, respectively. (B) Interaction
between MYB108 TF and promoters of different ANACs was analyzed. Promoter region of different
ANAC genes was linked to the HIS3 reporter gene, resulting in different constructs: pHIS2.1-ANAC003p,
pHIS2.1-ANAC010p, pHIS2.1-ANAC042p and pHIS2.1-ANAC075p. Each of these constructs was
transformed into yeast cells either with plasmid carrying an Activation Domain (AD)-MYB108 TF
fusion (pGADT7-MYB108) or pGADT7 plasmid as a negative control. Binding of MYB108 to the
cis-elements of ANAC003, ANA010, ANAC042, or ANAC075 promoter region, resulting in the expression
of reporter gene, showed the growth of yeast cells in SD/–Leu/–Trp/–His medium in the presence of
3-amino-1,2,4-triazol (3-AT).
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Table 2. Possible MYB binding sites predicted by PlantPAN 2.0 analyses [78].

NAC Genes MYB Binding Sequences (Nucleotides No.) 1

ANAC003
AGAATATAGT (-222~-231); ATCGTATCTATGT (-329~-341);
AGATAACGGA (-356~-365); AAAGATATGTC (-537~-547);

TTGATATTT (-614~-622); GGAATATTTT (-658~-667)

ANAC010 TTGGTAGGTC (-33~-42); AAAATATTAT (-191~-200); TATAATCTGTT (-641~-651);
TGAGATCTCT (-786~-795); GTGAAGATATGGT (-850~-862)

ANAC042 AGTTATCCTTT (-133~-143); TGTGAATCTTA (-152~-162);
GATAATCTGA (-302~-311); TCAGATTCTCT (-643~-653); TAAGATCTTG (-845~-854)

ANAC075

AAGATATTCG (-9~-18); TTCATATCTTCAC (-132~-144);
CGGTTAGGT (-218~-0226); TAAGATCTTA (-310~-319);
TAAATATTTT (-725~-734); TTCATATCTC (-879~-888);

TCTGATATTAT (-903~-913); ATAAAGATACATA (-932~-944)
1 Nucleotide sequence numbers correspond to the sequences upstream of the transcriptional start site of their
respective NAC genes.

3. Materials and Methods

3.1. Plant Materials and Growth Conditions

All A. thaliana plants used in this study were of the Columbia ecotype. tic40-2 mutant plants were
isolated by screening T2 seeds from a T-DNA insertion population for pale-green phenotypes (mutant
line 2490) and the T-DNA insertion position was identified by plasmid rescue [79]. A. thaliana plants
were grown as described previously [80]. For in vitro growth, seeds were surface sterilized, sown on
1/2× MS agar containing 2% (w/v) sucrose in petri dishes, and kept in a growth chamber (22 ◦C, 16-h
light/8-h dark). To select for the T-DNA insertion mutants, kanamycin monosulfate was added to the
MS medium at a final concentration of 50 µg/mL. Seedlings of A. thaliana plants were grown under a
long-day cycle (22 ◦C, 16-h light/8-h dark).

3.2. Preparation of Chloroplasts and Chloroplast Subfractions

Intact chloroplasts were isolated from 20-day-old A. thaliana plants, as described previously [81,82].
Outer membrane (OM), inner membrane (IM), thylakoid, and stromal fractions were recovered and
isolated from the supernatant through sucrose density centrifugation [83].

3.3. Protein Gel Blot Analysis

Proteins were separated through SDS-PAGE by using SDS gels (NuPAGE 4–12% Bis-Tris Gel;
Invitrogen, Carlsbad, CA, USA) and electroblotted on to PVDF membrane (Immobulilin P; Millipore,
Bedford, MA, USA), according to the standard procedures. The membranes were immunodetected
using the method of Harlow and Lane [84], with an alkaline phosphatase-linked second antibody and
bromochloroindoyl phosphate (BCIP)/nitro blue tetrazolium (NBT) development.

3.4. Coimmunoprecipitation (Co-IP) Analysis

Intact chloroplasts were isolated from 20-day-old A. thaliana plants, as has been described in
previous research [81,82]. Briefly, 20-day-old A. thaliana plants were ground in 1× grinding buffer
(GB; 330 mM D-sorbitol, 50 mM HEPES-KOH, pH 8.0, 2 mM EDTA, 0.5% BSA) and filtered through
two layers of Miracloth (Calbiochem, Inc., La Jolla, CA, USA). After centrifugation, the pellet was
dissolved in 1× GB buffer. The chloroplast was then isolated and resuspended in 1× import buffer
(600 mM D-sorbitol, 100 mM HEPES-KOH, pH 8.0) to a final concentration of 1 mg/mL after Percoll
(Amersham Biosciences, UPpsala, Sweden) gradient centrifugation. Diluted chloroplast (0.5 mg/mL)
was then treated with 0.5 mM dithiobis succinimidylpropionate (DSP) and 50 mM glycine, followed
by 2× hypotonic buffer (25 mM HEPES-KOH, pH 8.0, 4 mM MgCl2). After ultracentrifugation



Int. J. Mol. Sci. 2018, 19, 1854 16 of 23

at 45,000 rpm (Beckman TL-100), the pellet was dissolved in 1× solubilization buffer (25 mM
HEPES-KOH, pH 8.0, 50 mM KCl, 4% Tx-100, 20% glycerol, proteinase inhibitor) and incubated
on ice for 10 min. Subsequently, 50 µL of supernatant was collected, mixed with 2× sample buffer
(900 mM Tris-HCl, pH 8.45, 24% glycerol, 8% SDS, 0.0076% Coomassie Blue G, 0.01% Phenol Red,
0.001 mM EDTA, 0.1 mM DTT), and stored at −20 ◦C for further study after centrifugation. The leftover
supernatant was diluted with HKG buffer (25 mM HEPES-KOH, pH 8.0, 50 mM KCl, 10% glycerol)
and divided into two tubes. Anti-Tic55 antibody and preimmune antibody were added into separate
tubes; protein A was then added into each tube following 12 h incubation at 4 ◦C. After 4 h, the
pellet was washed four times with equal volume of 2× solubilization buffer and 2× HKG buffer after
centrifugation. Finally, the pellet was resuspended in 30 µL of 2× sample buffer and protein gel blot
was performed with specific antibodies.

3.5. Dark Treatment and Chlorophyll Concentration Analysis

Dark-induced aging: Following Wada and others [85], the third to sixth leaves of 19-day-old
WT (Columbia ecotype) and mutant (tic55-II-knockout) A. thaliana plants were either covered with
aluminum foil to prevent exposure to sunlight or left untreated and collected directly as untreated
controls (Day 0). On Day 5, the IDLs were uncovered and both they and the untreated (control) leaves
were photographed for both WT and tic55-II-knockout plants

Chlorophyll concentration analysis: Quantitative analysis of chlorophyll a/b concentration was
performed according to the method described by Porra [86]. Briefly, we collected the fifth and
sixth leaves from normal and dark-treated 19-day-old seedlings; these were weighed, frozen in
liquid nitrogen, and finally stored at −80 ◦C. The frozen leaves were then broken in 80% acetone
and centrifuged. Chlorophyll was extracted and collected from the supernatant by repeating the
preceding steps until the centrifuged pellets were almost completely white. The absorbance of the
collected chlorophyll at 663 and 647 nm (A663 and A647, respectively) was determined; chlorophyll
concentrations were then calculated as follows [87]:

Chlorophyll a (µg/mL) = (12.25 × A663) − (2.55 × A647)

Chlorophyll b (µg/mL) = (20.31 × A647) − (4.91 × A663)

Total chlorophyll (µg/mL) = (18.71 × A647) + (7.15 × A663).

Finally, the chlorophyll concentrations were divided by the weight of the leaf tissues and
multiplied by the total collected volume.

3.6. Hybridization of A. thaliana Microarrays and Data Analysis

Total RNA (0.2 µg), isolated from each sample by using TRIzol (Invitrogen) according to the
manufacturer’s instructions, was amplified by using Low Input Quick-Amp Labeling Kit (Agilent
Technologies, Santa Clara, CA, USA) and labeled with Cy3 (CyDye, Agilent Technologies) during
the in vitro transcription process. Cy3-labeled cRNA (1.65 µg) was fragmented to an average size of
approximately 50–100 nucleotides through incubation with fragmentation buffer at 60 ◦C for 30 min.
Correspondingly fragmented and labeled cRNA was then pooled and hybridized using a Agilent
Arabidopsis V4 Oligo 4 × 44 K Microarray (Agilent Technologies) at 65 ◦C for 17 h. After being washed
and dried through nitrogen gun blowing, the hybridized microarrays were scanned on an Agilent
microarray scanner (Agilent Technologies) at 535 nm for Cy3. The scanned images were analyzed
using Feature extraction 10.5.1.1 software (Agilent Technologies); image analysis and normalization
software were used to quantify signal and background intensity for each feature, respectively. The data
points with nonzero flag values or <2.6 signal-to-noise ratios were masked. The remaining data
were log2-transformed and averaged for each gene. For selecting genes significantly expressed
in the tic55-II-knockout mutant after dark treatment compared with the WT, a 2-fold change and
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pValueLogRatio of <0.05 were used as thresholds. The GO Slim Classification for Plants, developed at
TAIR (http://www.arabidopsis.org/help/helppages/go_slim_help.jsp), was used to characterize the
functionally upregulated and downregulated genes. The GO identifier of the optimal hit (with a cutoff
of E-value < 10−5) was attributed to the sequence. This step allowed putative functions to be assigned
on the basis of the classification proposed by the GO.

3.7. Relative Real-Time qRT-PCR and Microarray Validation

Real-time qRT-PCR was used to validate selected data from the microarray experiments and
examine the expression of a subset of genes over time. The leaf senescence-related genes, namely
ASP3, APG7, DIN2, DIN11, SAG12, SAG13 and YLS9, and primers used for the qRT-PCR assays
are listed in Table S1. The cDNA was synthesized from 1 µg of total RNA in a volume of 20 µL
using the GoScriptTM Reverse Transcription System (Promega, Madison, WI, USA), according to the
manufacturer’s instructions. The cDNA products were diluted and used for real-time qPCR analysis,
which was performed using a PTC-200 thermal cycler and real-time fluorescence monitoring by a
Chromo 4 optical detector (MJ Research/Bio-Rad, Hercules, CA, USA) with the SYBR Green Master
Mix (Toyobo) for transcript measurements. Amplification conditions were as follows: one cycle at
95 ◦C for 1 min, followed by 35 cycles of 95 ◦C for 15 s and then 60 ◦C for 60 s, with plate reading
conducted after each cycle. The Arabidopsis tubulin gene (TUB2) was used as the endogenous control.
After the completion of PCR amplification, all data from three replicated qRT-PCR samples were
analyzed using Bio-Rad CFX ManagerTM (version 1.5.534.0511, Hercules, CA, USA) to the 2−∆∆Ct

method [87].

3.8. Transactivation Assays in Yeast Cells

A yeast one-hybrid assay (Clontech) was performed to determine whether MYB108 can activate
the promoter regions of downstream target transcription factors, including ANAC003, ANAC010,
ANAC042 and ANAC075, which were chosen based on the results of our microarray analysis in
Arabidopsis. The MYB108 ORF was amplified using PCR reaction incorporating A. thaliana cDNA
as a template. The products were cloned into pDONR221 by Gateway BP clonase II Enzyme Mix
(Invitrogen), subsequently fused to the GAL4 activation domain (AD) in the pGADT7 vector to
create pGADT7-MYB108 by Gateway LR clonase II Enzyme Mix (Invitrogen). Around 1 Kb DNA
fragments located upstream of the predicted transcription start site of ANAC003, ANAC010, ANAC042
and ANAC075, respectively contain potential sequences binding to MYB. These promoter regions
were amplified by PCR reactions using primers containing SacI and SpeI restriction sites and then
cloned into the pHIS2.1 vector (Clontech) to generate recombinant constructs: pHIS2.1-ANAC003p,
pHIS2.1-ANAC010p, pHIS2.1-ANAC042p and pHIS2.1-ANAC075p. Thereafter, pGADT7-MYB108 and
pHIS2.1-ANAC003p (or pHIS2.1-ANAC010p, or pHIS2.1-ANAC042p, or pHIS2.1-ANAC075p) were
co-transformed into yeast AH109 strain, followed by grown for three days on SD/–Leu/–Trp medium
and SD/–Leu/–Trp/–His medium with or without 5 mM 3-AT to investigate the expression of the
reporter gene HIS3. Plasmid pGADT7 alone was used as a negative control.

4. Conclusions

Tic55 is associated with several translocon proteins (such as Tic32, Tic62, Tic110, and Tic40) located
at the IM of chloroplasts in peas, and functions as a chloroplast protein importer [18–20]. Of note, Tic55
executes its activity as a hydroxylase of phyllobilins during plant senescence in A. thaliana [22], however,
the regulatory network remains unclear. The characterization of a tic55-II-knockout mutant, which
generated neither tic55 mRNA nor protein, showed no significant phenotypic differences between WT
and tic55-II-knockout A. thaliana, suggesting that Tic55 is not functionally essential for its survival.
A unique biological function of Tic55 was finally revealed when A. thaliana was aged under dark
treatment and the senescent leaves were analyzed using microarray technology. Based on microarray
analysis results, seven senescence-associated genes (SAGs) were selected for qRT-PCR analysis.

http://www.arabidopsis.org/help/helppages/go_slim_help.jsp
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The results of qRT-PCR analysis correlated closely with those of microarray analysis, indicating
the reliability of the microarray results (Figure 7). The absence of Tic55 in the tic55-II-knockout mutant
indirectly inhibited the expression of these seven senescence-related genes, subsequently delaying
leaf senescence. Our data thus indicate that the novel biological function of Tic55 is related to the
dark-induced aging of A. thaliana. This is supported by the results of Hauenstein et al. [22], who
indicated that Tic55 functions as a hydroxylase and is involved in chlorophyll breakdown during plant
senescence. However, their work mainly focuses on the elucidation of the biological function of Tic55,
whereas our study reveals not only the direct effect of Tic55 on chlorophyll catabolism but also its
indirect role in the downstream senescence associated genes (SAGs) expression through microarray
and qRT-PCR analyses. Furthermore, yeast one-hybrid assays confirmed the expression of the NAC
gene, ANAC003, was likely controlled by MYB108, which was also downregulated in dark stressed
tic55-II-knockout mutant. Our studies thus shed light on further understanding the biological function
of chloroplast protein Tic55 and its association with MYB-NAC network signaling involved in the
dark-induced aging, since researches regarding light-related senescence are relatively rare.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/7/
1854/s1.
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Toc and Tic Translocon at the outer/inner membrane of chloroplasts
IDLs individually darkened leaves
ASP3 aspartate aminotransferase 3
APG7 autophagy-related 7, ubiquitin-like modifier-activating enzyme ATG7
DIN2 dark inducible 2, beta-glucosidase 30
DIN11 dark inducible 11,2-oxoacid-dependent dioxygenase-like protein
SAG12 senescence-associated gene 12, cysteine protease
SAG13 senescence-associated gene 13, senescence-associated protein
YLS9 yellow-leaf-specific gene 9, protein NDR1/HIN1-like 10
ABRC Arabidopsis Biological Resource Center
NBT nitro blue tetrazolium
BCIP bromochloroindoyl phosphate
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