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Abstract

MRI-based neuroimaging techniques have been used to investigate brain injury asso-

ciated with HIV-infection. Whole-brain cortical mean-field dynamic modeling pro-

vides a way to integrate structural and functional imaging outcomes, allowing

investigation of microscale brain dynamics. In this study, we adopted the relaxed

mean-field dynamic modeling to investigate structural and functional connectivity in

42 HIV-infected subjects before and after 12-week of combination antiretroviral

therapy (cART) and compared them with 46 age-matched healthy subjects. Micro-

scale brain dynamics were modeled by a set of parameters including two region-

specific microscale brain properties, recurrent connection strengths, and subcortical

inputs. We also analyzed the relationship between the model parameters (i.e., the

recurrent connection and subcortical inputs) and functional network topological char-

acterizations, including smallworldness, clustering coefficient, and network efficiency.

The results show that untreated HIV-infected individuals have disrupted local brain

dynamics that in part correlate with network topological measurements. Notably,

after 12 weeks of cART, both the microscale brain dynamics and the network topo-

logical measurements improved and were closer to those in the healthy brain. This

was also associated with improved cognitive performance, suggesting that improve-

ment in local brain dynamics translates into clinical improvement.
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1 | INTRODUCTION

There were approximately 37.9 million people globally living with the

HIV in 2018 according to World Health Organization (WHO, https://

www.who.int/gho/hiv/en/). Since the introduction of antiretroviral

therapy (ART), there has been a significant decrease in the mortality

rate of people infected with HIV, and a dramatic decrease in the inci-

dence of HIV-associated dementia (Saylor et al., 2016). However, the

prevalence of HIV-associated neurocognitive disorders (HAND) is

increasing (Nabha, Duong, & Timpone, 2013). The cause of the high

prevalence of HAND remains unclear. It is likely multifactorial, includ-

ing early injury prior to starting antiretroviral drugs (HIV infects the

brain shortly after transmission), chronic mild neuroinflammation and

possibly neurotoxicity of antiretroviral drugs (Chang & Shukla, 2018;

Fois & Brew, 2015).

MRI-based neuroimaging techniques are valuable in the investiga-

tion of HIV-infection associated neuropathology (Chang & Shukla,

2018). HIV-infected subjects have reduced cortical thickness and sub-

cortical brain volumes (Chang & Shukla, 2018; Sanford, Fellows,

Ances, & Collins, 2018), and reduced functional connectivity (FC)

(Samboju et al., 2018; Zhuang et al., 2017). Both imaging metrics have

been associated with impaired cognitive performance when compared

with healthy controls (HCs) (Samboju et al., 2018; Sanford et al.,

2018; Zhuang et al., 2017). Brain injury at a microstructural level can

be quantified by diffusion tensor imaging (DTI) metrics, such as

decreased fractional anisotropy (FA) and increased mean diffusivity

(MD). Both FA and MD abnormalities have been previously reported

in HIV-infected subjects (Stebbins et al., 2007; Underwood et al.,

2017; Zhu et al., 2013). Graph theoretical analysis of structural and

functional connectome has also been used to show brain network

topological changes in HIV-infection (Abidin et al., 2018; Bell et al.,

2018; Chockanathan, AM, Abidin, Schifitto, & Wismuller, 2018;

Thomas, Brier, Ortega, Benzinger, & Ances, 2015).

Overall, there is evidence that brain injury is present and measur-

able via MRI in HIV infected individuals. However, most of the previ-

ous studies have investigated one modality at a time, whereas the

integration of multimodalities in HIV-related studies has not been

fully explored yet. Large-scale whole-brain dynamic modeling is a

promising approach to further quantify the integrated contribution

of structural and FC in CNS injury. This approach allows simulating

resting-state fluctuations emerging from the interaction between

brain regions, constrained by the anatomical connections derived from

DTI, and effectively integrates FC and structural connectivity (SC)

(Honey et al., 2009; Mollink et al., 2019; Surampudi et al., 2019; Wang

et al., 2019). Furthermore, this approach has already provided some

insights in connectome disruption in other neurological disorders

such as Alzheimer's disease (AD) and Parkinson's disease (Alderson

et al., 2018; Deco & Kringelbach, 2014; Demirtas et al., 2017; Jirsa,

Sporns, Breakspear, Deco, & McIntosh, 2010; Proix, Bartolomei,

Guye, & Jirsa, 2017). A novel whole-brain modeling technique, named

relaxed mean field dynamic modeling (rMFM) (Wang et al., 2019)

has been proposed to simulate local brain dynamics. Previous whole-

brain modeling studies assumed that local microscale properties, the

recurrent connection strengths and subcortical inputs, were the same

across entire brain, while the rMFM modeling method relaxed these

two parameters to be heterogeneous across different brain regions.

Two microscale brain properties, recurrent connection strengths and

subcortical inputs, can be derived from this generative brain dynamic

modeling by tuning the model to fit the simulated FC to empirical FC.

In this study, we applied the rMFM (Wang et al., 2019) to assess

CNS changes in a cohort of HIV infected treatment-naïve patients at

baseline (HIV + BSL) and after 12 weeks of combination antiretroviral

therapy (cART) treatment (HIV + 12 wk), and compared them to HCs.

The overreaching goal was to investigate potentially new imaging bio-

markers that could be sensitive to CNS changes and thus helpful in

monitoring CNS disease progression and response to treatment. First,

we built the rMFM whole-brain dynamic models for the three groups

(HC, HIV + BSL, HIV + 12 wk), respectively. We then compared the

microscale brain properties (the recurrent connection strength and

subcortical inputs) across the three groups. This was followed by

investigating the topological changes among the three groups using

traditional graph theoretical analysis from both global and regional

perspectives. Subsequently, we investigated the association of nodal

graph theoretical measurements with microscale brain properties and

neuropsychological tests scores.

2 | MATERIALS AND METHODS

2.1 | MRI data collection

MRI was performed on a 3 T Siemens MAGNETOM Trio MRI scanner

(Siemens Healthineer, Germany) equipped with a 32-channel head

coil. T1-weighted three-dimensional magnetization-prepared rapid

acquisition gradient echo images were acquired, with repetition time

(TR)/inversion time (TI)/echo time (TE) = 2,530/1,100/3.44 ms, voxel

size = 1.0 × 1.0 × 1.0 mm3, flip angle = 7�, bandwidth = 190 Hz/pixel.

Diffusion weighted imaging (DWI) data were acquired with the fol-

lowing parameters: TR/TE = 34.85/7.12 ms; 10 b = 0 s/mm2 images;

60 diffusion weighting images with b = 1,000 s/mm2 and direction

uniformly distributed on a unit sphere; voxel size = 2 × 2 × 2 mm3,

bandwidth = 1,502 Hz/pixel. A double-echo gradient echo field

map sequence was acquired with the same resolution as the DWI

sequence and was used to correct for distortion caused by B0 inho-

mogeneity. Resting-state fMRI data were acquired using a gradient

echo-planar imaging sequence, with TR/TE = 2,000/30 ms, voxel

size = 4 × 4 × 4 mm3, 150 time points, flip angle = 90�, bandwidth =

1,562 Hz/pixel. During the entire 5-min resting-state fMRI series, par-

ticipants were instructed to keep their eyes closed and avoid falling

asleep.

2.2 | Overview of data processing

The processing pipeline schematically shown in Figure 1 has the fol-

lowing steps:
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1. We preprocessed the T1-weighted (T1w) image, DWI, and rsfMRI,

and constructed the empirical SC and FC (Section 2.3).

2. The rMFM whole-brain model was built for each group

(Section 2.4): We split the empirical SC and FC into training and

test datasets for each cohort. We then derived the rMFM model

parameters using the training dataset and validated each rMFM

model using the test datasets (Section 2.5). The microscale brain

properties, namely recurrent connection strength, denoted as w,

and subcortical input strength, denoted as I, were derived from

each group were then compared among HIV + BSL, HIV + 12 wk

and HC subjects.

3. Graph topological analysis on empirical FC and SC (Section 2.6):

We investigated the topological changes in empirical FC and corre-

lated the recurrent connection strength w, and subcortical inputs I

with the nodal graph theoretical measurements.

4. The rMFM modeling and graph theoretical analysis were validated

in three steps (see supplementary material): (a) split the data into dif-

ferent training and testing groups, (b) doubled the rMFM optimiza-

tion steps, and (c) reproduced our results using a finer segmented

brain atlas, Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010),

which includes 148 cortical regions.

5. Neuropsychological assessment scores were compared among

cohorts, and their relations with graph theoretical measurements

were also investigated (Section 2.7).

2.3 | MRI data preprocessing

2.3.1 | Anatomical T1w image analysis

Three-dimensional high resolution T1w images were brain extracted

using Brain Extraction Tool (Smith, 2002) to remove nonbrain tissue.

Cortical and subcortical segmentation were then performed with

Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/).

The Desikan–Killiany atlas (Desikan et al., 2006) and the Destrieux

atlas (Destrieux et al., 2010) were mapped to individual T1w images

and were further used for SC and FC construction. The 68 labeled

cortical regions, 34 in each hemisphere from the Desikan–Killiany

atlas are served as nodes in the SC and FC. The Destrieux atlas

includes 148 labeled cortical regions, 74 in each hemisphere. The main

results in the following sections are calculated using Desikan–Killiany

atlas, whereas the Destrieux atlas was used for validation of rMFM

modeling results (supplementary materials).

2.3.2 | DTI data processing and whole-brain
tractography

Preprocessing of DTI data was reported in detail previously (Zhuang

et al., 2017). Briefly, the b0 images and diffusion-weighted images were

F IGURE 1 Overview of processing pipeline. (a) We collected diffusion weighted image (DWI), T1-weighted (T1w) structural image, and
resting-state functional MRI (rsfMRI) for each HIV+ and healthy control (HC) subject. (b) For each subject, the T1w image was segmented using
Freesurfer. DWI and rsfMRI were preprocessed and coregistered to T1w image. Whole-brain tractography for each subject was derived from
DWI image, and a structural connectivity (SC) matrix was generated for each subject. The streamline count for each pair of brain regions
constitutes the SC matrix. Regional BOLD time series were extracted for each subject. The Pearson's correlation coefficient of the BOLD time
series of two brain regions constitutes the functional connectivity (FC) matrix. (c) Whole-brain dynamic modeling, specifically, relaxed mean field
dynamic modeling (rMFM), is used to study the neuronal dynamic changes between HIV+ subjects and HC subjects. (d) We also used graph
theoretical analysis to investigate the topological changes by comparing the SC and FC for HIV+ subjects with HC subjects
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motion corrected using a 6-degrees of freedom rigid-body registration

and field maps were used to correct the susceptibility induced distor-

tion, using FUGUE in FSL (Jenkinson, 2003). DTI processing and

structural connectome construction were then performed using the

population-based structural connectome pipeline (Zhang et al., 2018). A

reproducible probabilistic whole-brain tractography algorithm (Girard,

Whittingstall, Deriche, & Descoteaux, 2014; Maier-Hein et al., 2017)

was used to reconstruct streamlines. The tissue partial volume estima-

tion maps obtained from the anatomical T1w image helped reduce the

tractography bias. The particle filtering tractography was used to recon-

struct more reliable streamlines (Girard et al., 2014). After whole-brain

tractography was generated, the Desikan–Killiany atlas and Destrieux

atlas were used to construct the structural connectome represented by

68 × 68 matrix and 148 × 148 matrix, respectively. The individual SC

matrix was used for graphic theoretical analysis. Subjects were randomly

split into training and test groups, controlling for age, so that there was

no significant age difference between the training and testing group,

and between the three cohorts (see Supplemental Table S1). For the

whole-brain dynamic modeling, the SC matrices were averaged across

subjects in training and test datasets, respectively.

2.3.3 | Resting-state functional MRI analysis

Resting-state functional MRI data were preprocessed using FMRI

Expert Analysis Tool (Woolrich, Ripley, Brady, & Smith, 2001), part

of FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012).

Detailed preprocessed steps are included in the supplementary mate-

rials. The preprocessed fMRI data were then further cleaned by using

FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), an ICA-based

noise removal software that automatically classifies noise components

of the resting-state functional data. Head motion, white matter, and

cerebrospinal fluid time series were regressed out as nuisance regres-

sors. Two HIV + BSL subjects and one HC subject were removed from

rsfMRI analysis due to head motion greater than 2.5 mm. We used a

two-sample t test to ensure there was no significant head motion dif-

ference between HIV+ and HC cohort (HIV+ mean displacement =

0.748 mm, HC mean displacement = 0.645 mm, p = .065).

Mean BOLD signals were then extracted from each parcel in the

Desikan–Killiany and Destrieux atlases. Pearson's correlation of the

mean BOLD signals between each pair of parcels was calculated yielding

an FC matrix for each subject. The FC matrix was then Fisher's r-to-z

transformed, resulting in a zFC matrix. The zFC matrices for all subjects

were used for graph theoretical analysis. In preparation for rMFM

whole-brain dynamic modeling, the zFC matrices were averaged across

subjects within training or test dataset, for each age-controlled cohort

(HIV + BSL, HIV + 12 wk, and HC) respectively (Supplemental Table S1).

2.4 | Simulated FC using rMFM model

The whole-brain dynamic mean-field model (MFM) (Deco et al., 2013;

Deco et al., 2014) has been widely used to derive spontaneous brain

activity from SC (Deco et al., 2018). Here, we used a modified version

of MFM, the rMFM (Wang et al., 2019), which assumes the recurrent

connection strengths w and subcortical inputs I are not uniformly dis-

tributed in the brain. This model has been previously proved to

improve the FC simulation by 53% over the original MFM (Wang

et al., 2019). Using rMFM, we simulated the neural activity for

each cortical region, and then used the Balloon–Windkessel hemody-

namic model (Buxton, Wong, & Frank, 1998; Friston, Harrison, &

Penny, 2003; Friston, Mechelli, Turner, & Price, 2000) to convert neu-

ral activity to simulated BOLD signal. The simulated FC was then cal-

culated using Pearson's correlation of the BOLD signal for pairwise

cortical regions. More details of the rMFM model and its mathemati-

cal relations to various parameters are given in supplementary

materials.

2.5 | Model parameters estimation

Empirical SC and FC for each group (HIV + BSL, HIV + 12 wk, and

HC) in the training dataset was used to estimate the model parame-

ters. There are 138 parameters to be optimized when we use the

Desikan atlas (68 recurrent connection strength wi, 68 subcortical

input strength Ii, global scaling factor G, and noise coefficient σ).

The optimization steps were based on the expectation–

maximization algorithm in dynamic causal modeling (Friston et al.,

2003), and were detailed in (Wang et al., 2019). In this study, 500 iter-

ations were performed for each run, and the final optimum estimated

parameters for the rMFM model were chosen from the highest

Pearson's correlation coefficient between the empirical FC and simu-

lated FC in the training dataset from the 500 iterations (highest simi-

larity for each cohort in Supplemental Figure S1a). The corresponding

138 model parameters were stored, shown as one column in Supple-

mental Figure S2.

We noticed that the random initialization parameters had a small

effect on the final model parameters, so we repeated the entire opti-

mization process with 25 different random initializations for each

cohort. We then chose the top five sets of model parameters, that is,

the model parameters corresponding to the five highest Pearson's cor-

relation coefficients between empirical FC and simulated FC (the five

highest similarities in Supplemental Figure S1b).

We then fed the empirical SC in the test dataset for each group

to its own rMFM model, to validate these three rMFM models by cal-

culating the similarity between the simulated FC and empirical FC for

each group. After each model for HIV + BSL, for HIV + 12 wk, and for

HC was validated, we obtained three rMFM generative models rep-

resenting the three cohorts. The recurrent connection w = {w1, …, wn}

and subcortical inputs I = {I1, …, In}, where n = 68 for Desikan–Killiany

atlas, in each rMFM model represent the microscale brain dynamics

for each group and were compared among groups.

To ensure 500 iterations for each optimization run were suffi-

cient, we also repeated the process with 1,000 iterations, with 15 dif-

ferent random initializations for each group. In addition, we repeated

the rMFM modeling process using a different atlas to validate our
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results. To do this, we constructed the empirical SC and FC using

Destrieux atlas, which yields 298 model parameters to be optimized.

Detailed results from these analyses are reported in the supplemen-

tary materials.

2.6 | Graph theoretical analysis

The topology of the empirical FC and SC was further evaluated using

graph theoretical measurements (Rubinov & Sporns, 2010), with cal-

culations using Brain Connectivity Toolbox (BCT, https://sites.google.

com/site/bctnet/) and graph theoretical network analysis toolbox

(GRETNA (Wang et al., 2015), https://www.nitrc.org/projects/gretna).

It is known that there are some spurious connections in the con-

nectivity matrix that should be taken into consideration in the analy-

sis. Also, applying arbitrary thresholding of the FC or SC metrics

before calculating the topology properties may influence the result

(van Wijk, Stam, & Daffertshofer, 2010). Therefore, we applied a

range of thresholds to study the topology properties under different

network sparsity. The graph theoretical measurements were calcu-

lated over 10 different network sparsity values ranging from 0.05 to

0.5, where the network sparsity is defined as the ratio of the number

of edges divided by the maximum possible number of edges in a net-

work. Undirected weighted matrices were used in these calculations.

Four common topological measurements were chosen in this

study for analysis of network properties, including the clustering coef-

ficient, shortest path length, global efficiency, and smallworldness.

Detailed information is included in supplementary materials. We eval-

uated the association between the nodal graph theoretical measure-

ments and the recurrent connection strength w, and the subcortical

inputs I, using Pearson's correlation.

2.7 | Neuropsychological assessment

The neurocognitive evaluation was performed by trained staff and

supervised by a neuropsychologist, and included tests of executive

function (Trailmaking Test Part B, Stroop Interference Task), speed of

information processing (Symbol Digit Modalities Test and Stroop

Color Naming), attention and working memory (CalCAP[CRT4] and

WAIS-III Letter-Number Sequencing), learning (Rey Auditory Verbal

Learning Test RAVLT [trials 1–5], Rey Complex Figure Test Immediate

Recall), memory (Rey Auditory Verbal Learning Test RAVLT Delayed

Recall, Rey Complex Figure Test Delayed Recall), verbal fluency

(Letter, Category and Action Fluency Tasks), and motor (Grooved

Pegboard, the left and right hands). An estimate of premorbid intellec-

tual functioning ability was obtained via WRAT-4 Reading. The total

composite Z-score was the primary cognitive outcome and was cre-

ated from the linear combination of the Z-scores of the seven cogni-

tive domains measured (executive function, speed of information

processing, attention and working memory, learning, memory, verbal

fluency, and motor). HAND diagnoses were determined for each par-

ticipant according to the Frascati criteria (Antinori et al., 2007). The

neuropsychological composite Z-score and the seven cognitive

domains Z-scores were compared between HIV + BSL, HIV + 12 wk,

and HC, respectively. We also investigated the relationship between

the graph theoretical measurements with cognitive performance

scores.

2.8 | Statistical analysis

Comparisons of continuous variables between two independent

groups were conducted by two-group Welch's unequal variances

t test. Fisher's exact test was used to test any proportional differences

in race, gender, and education level between the HIV+ and control

groups in Table 1. Pearson's correlation test was used to analyze the

association between two continuous variables. A p-value p < .05 was

considered statistically significant for a single hypothesis testing prob-

lem. For inferential problems that involved multiple hypotheses,

Benjamini–Hochberg multiple testing procedure was used to control

the false discovery rate (FDR) at <.05 level. The statistical analysis in

this study was performed using MATLAB 2017b (https://www.

mathworks.com/products/matlab.html) and R version 3.6.1 (https://

www.r-project.org/).

3 | RESULTS

3.1 | Demographics

Then, 42 HIV+ subjects were age matched with 46 HC. The HIV+ sub-

jects were scanned before starting the cART treatment, and scanned,

on average, after 12-week of the initiation of cART treatment. At

baseline, 21 HIV+ individuals had normal cognitive performance,

20 had asymptomatic neurocognitive impairment, and one had mild

neurocognitive disorder. The overall cognitive performance, based on

the summary Z-score of all cognitive tests, was significantly higher in

the HC compared to HIV infected individuals. The mean CD4 count

and HIV RNA plasma levels at baseline were 515.8 ± 42.3 cells/mm3,

and 4.254 ± 0.164 log10 copies/ml, respectively. After 12 weeks,

mean CD4 cell count and HIV RNA levels were 566.4 ± 44.5 cells/

mm3 and 2.675 ± 2.641 log10 copies/ml, respectively.

3.2 | FC simulation using rMFM

We performed rMFM simulations with 25 different random initializa-

tions for each cohort, respectively, 75 simulations in total. Supplemen-

tal Figure S1a shows the increase of similarity within 500 iterations

for model optimization. The similarities within each cohort are consis-

tent, and all above 0.55, indicating that the rMFM whole-brain

dynamic model yields good simulation of FC from SC in the training

dataset of each cohort. The similarity between simulated FC and

empirical FC shows high consistency across different random

initializations.
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We found that using different initialization parameters had little

effect on the final similarity results (see Supplemental Figure S1b).

The variance of the maximum similarity Z-score for 25 random initiali-

zations for HC, HIV + BSL, and HIV + 12 wk are 5.438 × 10−5,

8.886 × 10−5, and 4.210 × 10−5, respectively. Different initialization

parameters also had little effect on the final rMFM model parameters

(see Supplemental Figure S2), including the recurrent connection w,

excitatory subcortical input I, global scaling of the SC G, and neuronal

noise σ. Therefore, to minimize this effect, for each cohort, the opti-

mum rMFM model was adopted from the averaged values across the

five runs which had the highest similarities.

3.3 | Model validation

We validated the rMFM model parameters for each cohort using the

test dataset. Then we calculated the simulated neuronal activity for

each brain region by feeding the empirical SC from the test dataset

into the fitted rMFM model for each cohort. We calculated the simu-

lated BOLD signal for each region by feeding the simulated neuronal

activity to the Balloon–Windkessel hemodynamic model. The simu-

lated FC was calculated by Pearson's correlation. We run 1,000 simu-

lations with different random initializations for each cohort using the

test dataset. The mean simulated FC matrices for each cohort were

calculated as the average across the 1,000 simulations (see Figure 2b,

e,h). The correlation between the averaged simulated and empirical

FC in the test dataset is 0.498, 0.442, and 0.525 for HC, HIV + BSL,

and HIV + 12 wk, respectively (see Figure 2c,i,f). The empirical SC-FC

correlation coefficients in the test dataset are 0.401, 0.409, and

0.414, respectively, suggesting that the use of rMFM model for simu-

lating FC from SC improved their agreements by 24.2, 8.1, and 26.8%.

Further validation steps including: (a) using a different training/

test dataset, (b) increase to 1,000 iterations, and (c) reproducing

results using Destrieux atlas, which can be found in the supplemen-

tary materials.

3.4 | rMFM model parameters comparison
between HIV and HC

The microscale brain dynamic properties of the three groups were

investigated by comparing the rMFM model parameters, w and I. Here,

we compared these two regional values between cohorts to identify

which brain regions changed significantly with a treatment intervention.

The recurrent connection strength w is shown in Figure 3, while the

subcortical inputs I are shown in Figure 4.

The recurrent connection strengths for each region and cohort wi,

are reported in Figure 3a–f. There were 10 regions that were signifi-

cantly different when comparing HIV + BSL, HIV + 12 wk, and HC

(shown in Figure 3 red bar, also shown in Figure 3g, FDR corrected

p < .01). These regions are the left frontal pole, opercular part of inferior

frontal gyrus (pars opercularis), superior temporal gyrus, postcentral

gyrus, pericalcarine cortex, lingual gyrus; right frontal pole, insula, para-

hippocampal gyrus, and lateral occipital lobe. Their anatomical locations

TABLE 1 Demographics and baseline
clinical variables

HIV infected
(n = 42)

HC
(n = 46) p-Value

Age (years) mean ± SE 34.9 ± 2.2 37.3 ± 2.1 .196

Gender (male:female) 39:3 23:23 <.001

Ethnicity (White:Black:Other) 22:19:1 35:5:6 .042

Education

≤12 years 12 6 1

>12 years 30 40

HIV duration by patient report at baseline (months)

median (lower quantile, upper quantile)

1 (1, 12.75) NA —

Baseline CD4 cell count (cells/mm3) mean ± SE 515.8 ± 42.3 NA —

Baseline HIV RNA levels (log10 unit) median (range) 4.5 (1.7, 5.8) NA —

HAND classification at baseline

Normal 21 NA 1

ANI 20 NA

MND 1 NA

Total NPZ score mean (SD)

BSL −1.886 (3.79) 0.100 (3.94) .014

12 week −0.187 (3.88) —

Abbreviations: 12-week, HIV+ after 12-weeek cART treatment; ANI, asymptomatic neurocognitive

impairment; BSL, HIV+ and HC at baseline; CD4, cluster of differentiation 4; HAND, HIV-associated

neurocognitive disorder; HC, healthy control; MND, mild neurocognitive disorder; NPZ score, neuropsy-

chological test Z-score; SE, standard error.
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F IGURE 2 Relaxed mean field dynamic modeling (rMFM) simulated functional connectivity (FC). The empirical and rMFM models generated
the simulated FC for healthy control (HC), HIV + BSL, and HIV + 12 wk, respectively. Left column (a,d,g): the averaged empirical FC in test dataset
for each cohort. Middle column (b,e,h): the averaged simulated FC. Right column (c,f,i): The correlation between empirical and simulated FC

F IGURE 3 Recurrent connection strengths. (a–f) The regional recurrent connection strength (wi) in three groups; (a,d) HIV + BSL; (b,e) HIV +
12 wk; and (c,f) HC. (a–c)—left hemisphere; (d–f)—right hemisphere. The bars and error bars indicate the mean and SD of the recurrent
connection strength for each brain region, the red bars indicate the regions which are significantly different between cohorts (false discovery rate
[FDR] p < .01). (g) The regional recurrent connection changes in these nodes (red bars in figure (a–f)) plotted on a smoothed brain surface indicate
their anatomical locations. (h) Bar plots show the recurrent connection strength for each ROIs. Red: HC, blue: HIV + BSL, green: HIV + 12 wk
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are shown in Figure 3g. The boxplots in Figure 3h show the recurrent

connection strength w in these regions, there are 9 out of 10 regions

showing clear transitions toward HCs values after 12 weeks of cART

treatment.

The subcortical input strength for each region Ii, and for each

cohort are reported in Figure 4a–f. The red bars indicate the regions

with significant differences among the three groups. The regions

include the left frontal pole, temporal pole, and lingual gyrus; right fron-

tal pole, temporal pole, superior parietal lobule, precuneus, isthmus of

the cingulate gyrus, lateral occipital lobe, and lingual gyrus. Their ana-

tomical locations are shown in Figure 4g. We also observed that 9 out

of 10 brain regions showed transitions toward HC after 12 weeks of

treatment, for example in left and right frontal pole and right precuneus

(see Figure 4h). We also observed that the regions which differed in

subcortical inputs I were asymmetric (see Figure 4g), with more repre-

sentation in the right posterior regions. These results are also replicated

when using Destrieux atlas (see Supplemental Figure S11).

3.5 | Graph theoretical analysis on empirical FC,
correlation with recurrent connection strength w

We have investigated the functional network topology using the

conventional graph theoretical analysis. We calculated both global

and nodal clustering coefficient, network efficiency, shortest path

length, and smallworldness. The global network topology differences

between groups are reported in Figure 5. Using the empirical

FC, we have found that, the smallworldness (Figure 5a), normalized

clustering coefficient (gamma) (Figure 5b), and global efficiency

(Figure 5d) were significantly reduced in HIV + BSL compared to

HC, in a majority of network sparsity range (sparsity range:

0.05–0.5, FDR corrected p < .05). There were no significant differ-

ences between HIV + 12 wk and HC, or HIV + BSL and HIV + 12 wk

after FDR correction. Here, we only report the results for the

binarized FC matrix across different network sparsity. Similar results

were reproduced using the weighted FC matrix (Supplemental

Figure S12). We also investigated the network topology on the

empirical SC but did not find any statistically significant difference

between groups.

Next, we investigated the association between local topological

measurements and rMFM model parameters. The nodal clustering

coefficient and local efficiency results were correlated with recurrent

connection strengths w and subcortical inputs I, as shown in Figure 6.

We found significant correlations between recurrent connection

strengths w, nodal clustering coefficient (r = .248, p = .041), and

local efficiency (r = .253, p = .037) only in the HC group. These

relationships were confirmed using Destrieux atlas (Supplemental

Figure S13).

F IGURE 4 Subcortical input strengths. (a–f) The subcortical input strength (Ii) in the three groups: (a,d) HIV + BSL; (b,e) HIV + 12 wk; and (c,f)
healthy control (HC), in both hemisphere; (a–c)—left hemisphere; (d–f)—right hemisphere. The bars and error bars indicate the mean and SD of
the subcortical input strength for each brain region, the red bars indicate the regions which are significantly different between cohort (false
discovery rate [FDR] p < .01). (g) The subcortical inputs changes in these nodes plotted on a smoothed brain surface indicate their anatomical
locations. (h) Bar plots show the subcortical input strength for each ROI. Red: HC, blue: HIV + BSL, green: HIV + 12 wk
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F IGURE 5 Graph theoretical measurements. Graph theoretical measurements on binarized functional connectivity matrix across network
sparsity range from 0.05 to 0.5. (a) Smallworldness. (b) Global clustering coefficient. (c) Global characteristic path length. (d) Global network
efficiency. *False discovery rate (FDR) corrected p < .05. Red: healthy control (HC), blue: HIV + BSL, green: HIV + 12 wk

F IGURE 6 Recurrent connection correlated with network topology. The recurrent connection w and subcortical inputs I correlated with
empirical local network topology. (a) Association between clustering coefficient and recurrent connection strength w. (b) Association between
local efficiency and recurrent connection strength w. (c) Association between clustering coefficient and subcortical inputs I. (d) Association
between local efficiency and subcortical inputs I. Red: healthy control (HC), blue: HIV + BSL, green: HIV + 12 wk. ns: not significant
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3.6 | Neuropsychological test score comparison,
association with FC graph theoretical measurements

As shown in Figure 7, HIV + BSL subjects had lower overall composite

Z-score on the neurophysiologic test battery, and lower motor

function score when compared to HC (uncorrected p < .05). However,

the HIV + 12 wk shows no significant difference when compared to

HC or to HIV + BSL. Cognitive performance improved in the HIV-

infected subjects after 12 weeks, as the boxplots show. The neuro-

psychological test scores in other domains, including speed, attention,

(a) (b)

(c)

F IGURE 7 Neuropsychological test. (a) Overall composite Z-score. (b) Motor Z-score. (c) Linear correlation between empirical functional
connectivity (FC) graph theoretical measurements and Neuropsychological test Z-score. Red: healthy control (HC), blue: HIV + BSL, red: HIV +
12 wk. All of these plots reach to significance level: uncorrected p < .05. Gamma = normalized network clustering coefficient
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learning, memory, executive function, and verbal fluency, although

not significantly different between groups, were trending toward

better performance in the HC which explain why the summary

Z-score was significantly different between HIV + BSL and HC. Neu-

ropsychological test results for other cognitive domains that are

not significantly different are reported in supplementary materials

(Supplemental Figure S6).

We also investigated the relationship between Z-scores for differ-

ent cognitive domains and total Z-score and global graph theoretical

measurements. Figure 7c shows the significant linear relationship

between neuropsychological test scores and graph theoretical mea-

surements. The correlation coefficients are range from 0.19 to 0.25

with uncorrected p < .05.

4 | DISCUSSION

In this study, we used rMFM whole-brain dynamic modeling to inves-

tigate the local and global brain dynamic changes associated with HIV

infection. Our results indicate that HIV infection disrupts microscale

brain dynamics in several cortical regions, and HIV antiretroviral treat-

ment improves these brain dynamics.

4.1 | rMFM revealed disruption of local dynamics
changes due to HIV infection

Among the areas found to have changes in both recurrent connection

strength w and subcortical inputs I were the frontal poles, left lingual

gyrus, and right lateral occipital areas. The frontal pole regions are part

of the prefrontal cortex thus involved in working memory and multi-

tasking (Gilbert et al., 2006). Disruption in these networks has signifi-

cant behavioral consequences as shown by studies in HIV-infected

subjects with active cocaine use disorder (Meade, Lowen, MacLean,

Key, & Lukas, 2011). Our study is also consistent with findings that

HIV-infection disrupts the frontostriatal circuitry (Heaton et al., 1995).

The lingual gyrus (part of the visual processing system) has also been

previously reported to be affected in perinatally HIV-infected youths

(Sarma et al., 2019). Ances et al. (2009) and Ances et al. (2010))

reported reduced activity and resting cerebral blood flow in the visual

cortices during visual stimulation and at rest in HIV-infected subjects

using arterial spin labeling and fMRI. Wiesman et al. (2018)) also dem-

onstrated that the spontaneous and neural oscillatory activity in

the visual cortices were affected by HIV-infection using magnetoen-

cephalography. Our results are complementary to these observations,

suggesting that the microscale cortical dynamics including recurrent

connection strengths w and subcortical input strength I are affected in

these areas in HIV infected individuals.

A number of regions, including left opercular part of inferior fron-

tal gyrus (pars opercularis), superior temporal gyrus, postcentral gyrus,

pericalcarine cortex, right insula, and parahippocampal gyrus showed

significant differences only in recurrent connections strength w. Some

of these, such as the insula and parahippocampal gyrus have been

shown to have reduced regional volume and FC in the HIV-infected

population (Kallianpur et al., 2012; McIntosh et al., 2017; Samboju

et al., 2018). The balanced integration of excitatory and inhibitory syn-

aptic currents in the local cortex allows the cortical network to oper-

ate at high efficiency of information transmission at a low energy cost

(Yu, Shen, Wang, & Yu, 2018). Although the rMFM model did not dis-

entangle the contribution of excitatory and inhibitory effect, using

rMFM method made it possible to compare local recurrent connection

changes between groups.

Among the regions that showed significant differences only in

subcortical inputs I were the left temporal pole, right temporal pole,

right lingual gyrus, right isthmus cingulate, right precuneus, and right

superior parietal regions. Some of these regions, such as temporal,

right precuneus, superior parietal regions, have been reported to

have altered in FC and amplitude of low frequency fluctuations in

HIV infected subjects(Yadav et al., 2018). The medial frontal regions

(bilateral frontal poles), precuneus, and isthmus cingulate gyrus are

considered nodes within the default mode network (DMN). HIV-

associated decreases in FC within DMN are consistent with previ-

ously reports using ICA-based FC analysis (du Plessis et al., 2017;

Zhuang et al., 2017).

The bilateral supramarginal gyrus and inferior parietal lobule are

considered as the two lateral hubs in the DMN. We found that the

recurrent connection strength w of supramarginal gyrus was stronger

in the HIV + BSL compared to HC, while the subcortical input

strength I in the inferior parietal lobule was less in the HIV + BSL

cohort compared to HC cohort. The significance of increased or

decreased w and I are dependent on the local circuit. They are both

average inputs that need to be compared to HC. Here, change with

treatment helps to understand the meaning of the direction in the

change observed. The DMN appears to be a critical network that is

sensitive to HIV-associated CNS injury.

We noticed the maximum similarity Z-scores in HC group were

consistently lower than the HIV + BSL and HIV + 12 wk groups, when

using training dataset to optimize the rMFM model parameters.

This difference indicates the rMFM model fitting is in favor of HIV-

infected group than HC group. We have tried to quantitatively

compare the metastability of the three groups using the SD of

the Kuramoto order parameter (Acebrón, Bonilla, Vicente, Ritort, &

Spigler, 2005; Kuramoto, 1984; Strogatz, 2000). The metastability is

not significantly different between groups. We also found the maxi-

mum similarity Z-scores are comparable between groups, which indi-

cates the rMFM models can produce a good and comparable

representation of three groups.

In our study, we have shown that after treatment, the microscale

local brain dynamics improved in both recurrent connection strength

w and subcortical inputs I. Specifically, we found 9 out of 10 regions'

rMFM metrics in HIV-infected subjects change toward HC levels

(Figures 3 and 4). A similar approach was reported by Deco et al.

(Saenger et al., 2017) in the context of deep brain stimulation in

Parkinson's disease, but to the best of our knowledge, our study is the

first to use rMFM metrics to assess response in brain networks

after cART.
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4.2 | Global and local topological organization
disrupted in HIV-infected subjects

Given that rMFM and simulated FC are population-based analyses,

we could not directly correlate individual subject cognitive scores and

rMFM metrics w and I. We used an intermediate step by applying

graph theoretical analysis to empirical FC and then correlated graph

metrics to rMFM metrics. We found significant topological changes in

FC when comparing HIV + BSL to HC, but no significant change in

SC. The local topological measurements showed some association

with the cognitive scores. Furthermore, we found after 12-week cART

treatment, the functional network topology in HIV-infected subjects

also shows transitions toward HC, similar to what was observed in

local brain dynamics. Specifically, we observed that smallworldness,

global clustering coefficient, and network efficiency were lower in the

HIV + BSL (see Figure 5), which indicated the HIV-infection changes

the functional network integration and segregation. A previous study

has shown that global clustering coefficient declines with HIV infec-

tion (Abidin, D'Souza, Nagarajan, & Wismuller, 2016). The loss of the

smallworld organization in brain functional networks has been previ-

ously demonstrated in several neurological disorders, such as AD

(Sanz-Arigita et al., 2010), Parkinson's disease (Baggio et al., 2014),

and traumatic brain injury (Pandit et al., 2013). In our study, we found

that reduced smallworldness in HIV + BSL was associated with

decreased neuropsychological composite Z-score, executive function

and learning Z-score (Figure 7c).

The global network efficiency was also reduced in HIV + BSL,

suggesting that the communication between different brain regions

(van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) was affected in

HIV-infected subjects. The global network efficiency was associated

with the composite Z-score, verbal, executive, and learning Z-score

(Figure 7c). The positive correlation of the network efficiency and

executive function performance has been reported in HIV-infected

individuals (Ventura et al., 2018), where they focused on the posterior

cingulate cortex.

We and others did not find significant topology difference in

structural network of HIV infected individuals (Samboju et al., 2018;

Zhuang et al., 2017). However, two studies (Baker et al., 2017;

Bell et al., 2018) have shown disrupted structural networks in HIV-

infected subjects compared to HC in terms of reduced global cluster-

ing coefficient, global network efficiency, and connection strength.

These two studies differ from our study in the population enrolled.

Our patients had been recently diagnosed and had a relatively

high CD4 count at baseline (mean 515.8 cells/mm3) compared to

the other two studies. It is likely that persistence of HIV infection

overtime causes some irreversible structural CNS changes (Zhu

et al., 2013).

The local topological measurements showed some association

with the local dynamic properties, specifically, we found the local

topological measurements of FC were also correlated with the recur-

rent connection strengths w and subcortical inputs I (Figure 6 and

Supplemental Figure S13). The positive correlations between recur-

rent connection strength w and clustering coefficient, and local

efficiency, respectively, were only found in HC group, suggesting that

HIV-infection altered microscale local dynamics, which was also

reflected in the change of network topology.

We found the association between microscale local dynamics

and empirical network topology using both the Desikan atlas and

Destrieux atlas. The HC group consistently shows higher associations

than HIV + BSL and HIV + 12 wk (Figure 6a,b, and Supplemental

Figure S13a,b). In HIV + 12 wk, a significant correlation was only pre-

sent in Destrieux atlas. This may be due to the inclusion of more corti-

cal parcels in the Destrieux atlas. The results suggest that the cART

treatment tends to improve microscale brain dynamics and the effi-

ciency of the brain information transmission.

4.3 | Limitations

There are some limitations of our approach due in part to the avail-

able dataset. First, the rMFM modeling requires reliable and accurate

SC reconstruction. Our diffusion data have only one shell at b-value =

1,000 s/mm2. This single shell scheme may introduce errors for

tractography due to fiber-crossing issue (Sotiropoulos et al., 2013). In

our study, we have adopted a reliable tractography and SC recon-

struction pipeline (Zhang et al., 2018) to mitigate to some extent.

Second, we could only derive a population-based whole-brain

dynamic model using averaged FC and SC. The reliability of empirical

FC is crucial to the rMFM simulation. A recent study from Patricio

group (Donnelly-Kehoe et al., 2019) suggests that in order to derive

reliable subject-specific brain dynamics, the total length of rsfMRI

acquisition should be 20 min with TR = 2 s. They used both static FC

matrices (Pearson correlation of BOLD signal) and dynamic-FC (FCD)

metrics to evaluate the simulation results, while in our analysis we

only used static FC matrices. Though the FCD estimation requires

longer rsfMRI scanning time compared to static FC, our 5 min rsfMRI

scan may still limit the static FC reliability to generate subject-specific

FC. In this regard, we attempted to derive subject-specific rMFM

models using individual SC and FC maps; however, the variance of

the similarities was much greater than that of the population-based

model. We thought this large intersubject variation for rMFM came

from both individual differences and SC/FC noise. It is difficult to dis-

entangle these two effects in our current data. However, we have

shown that using group-averaged population-based rMFM modeling

is much more stable across different cohorts, and we validated these

findings using a different atlas. Thus, the rMFM model parameters

(recurrent connection strength w, and subcortical input strength I)

and the simulated FC can only be used in comparing groups but not

individual parameters, such as CD4 count or cognitive scores. The

HIV-infected subjects in our study were mostly male; however, in the

HC group the male and female participants were evenly distributed.

Although in the rMFM modeling sex differences between groups

were embedded in the final results, we cannot fully assess the possi-

ble effect of sex on w and I. Finally, our sample size is relatively

small, constraining the stability of rMFM modeling as we needed

to split the cohorts into training and test groups. Unfortunately,
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enrolling cART naïve patients is quite challenging. Future studies

using more advanced diffusion scheme and longer rsfMRI acquisition,

should provide more reliable subject-specific rMFM model

reconstruction.

4.4 | Conclusion

We investigated the effect of HIV infection on the microscale local

dynamics derived by whole-brain computational modeling. We have

identified several brain regions where recurrent connection strengths

and subcortical inputs differ among HC, HIV+ untreated, and HIV+

after treatment. Treatment improved local brain dynamics, and this

was also reflected in improved brain network topology and cognitive

performance. However, short-term treatment did not fully reverse

CNS injury. Whether further diverge on CNS injury and cognitive per-

formance occurs between HIV+ and HIV− over longer periods of time

will need to be addressed in future studies. In this regard, whole-brain

dynamic modeling is a promising approach for assessing CNS injury

progression and response to interventions.
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