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Abstract: The trithiolato bridged diruthenium complex DiRu-1 [(p-MeC6H4
iPr)2Ru2(SC6H4-p-But)3]+

is highly cytotoxic against various cancer cell lines, but its exact mode of action remains unknown.
The present 1H HR-MAS NMR-based metabolomic study was performed on ovarian cancer cell line
A2780, on its cis-Pt resistant variant A2780cisR, and on the cell line HEK-293 treated with 0.03 µM
and 0.015 µM of DiRu-1 corresponding to full and half IC50 doses, respectively, to investigate the
mode of action of this ruthenium complex. The resulting changes in the metabolic profile of the cell
lines were studied using HR-MAS NMR of cell lysates and a subsequent statistical analysis. We show
that DiRu-1 in a 0.03 µM dose has significant impact on the levels of a number of metabolites, such as
glutamine, glutamate, glutathione, cysteine, lipid, creatine, lactate, and acetate, especially pronounced
in the A2780cisR cell line. The IC50/2 dose shows some significant changes, but full IC50 appears to
be necessary to observe the full effect. Overall, the metabolic changes observed suggest that redox
homeostasis, the Warburg effect, and the lipid metabolism are affected by DiRu-1.

Keywords: ovarian cancer; cytotoxicity; ruthenium complex; HR-MAS NMR; NMR metabolomics;
A2780; cis-Pt resistant; metal-based drugs

1. Introduction

Fifty years after the discovery of its antiproliferative properties, Cis-platin (Cis-Pt) is the most
used metal-based drug in cancer treatment. It has been used over decades for the treatment of ovarian,
testicular, and other types of cancer and is still used today in combination with other drugs in more
than 50% of all chemotherapies [1]. The numerous side effects and the emergence of resistance have
encouraged further development of platinum compounds as well as of other metal-based compounds
as anticancer drug candidates. Ruthenium-based complexes belong to the most promising ones [1,2].
Two ruthenium (III) compounds, NAMI-A and NKP1339, have entered clinical tests recently [3].
Half-sandwich arene ruthenium (II) complexes have also attracted attention since the discovery by
Tocher et al. in 1992 that observed a cytotoxicity enhancement by coordinating the anticancer agent
metronidazole to a benzene ruthenium dichloro fragment [4]. Out of the numerous arene ruthenium
(II) compounds synthesized and evaluated so far, RAPTA-C from the RAPTA family and RM175
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from the RAED [(η6-arene)Ru(en)Cl]+, where en = ethylenediamine) family are the most advanced.
RAPTA-C has been very active in vivo, where it inhibited lung metastases in mice. RAED compounds
are highly cytotoxic against a number of cancer cell lines including those that developed resistance
against cis-Pt [5–7].

Our group has developed a large variety of diruthenium p-cymene trithiolato bridged complexes,
obtained from the reaction of [(p-MeC6H4

iPr)2Ru2Cl2] with the corresponding aromatic thiols. The most
active compound obtained so far is [(η6-p-MeC6H4Pri)2Ru2(µ2-SC6H4-p-But)3]Cl (DiRu-1) (Figure 1),
with an IC50 of 0.03 µM towards the A2780 human ovarian cancer cell line and the cisplatin-resistant
A2780cisR cell line. Additionally, DiRu-1 is highly cytotoxic against hepatocellular carcinoma (HepG2),
estrogen-responsive breast adenocarcinoma (MCF-7) and triple-negative breast adenocarcinoma
(MDA-MB-231) cell lines with IC50 values in the nanomolar range (Table 1). A recent in vivo study has
demonstrated that DiRu-1 significantly prolongs the survival of tumor-bearing mice [8]. Obviously,
its mode of action differs from that of platinum complexes, but the exact mechanism is currently not
known. Though it was found that DiRu-1 has the ability to catalyze glutathione (GSH) oxidation,
this mechanism can only explain its cytotoxicity to a certain extent. Recently, it was found that,
when using inductively coupled plasma mass spectrometry (ICP-MS), 97% of the ruthenium is
localized in the mitochondria of treated A2780 cells [9–11].

Figure 1. Structure of [(η 6-p-MeC6H4Pri)2Ru2(µ 2-SC6H4-p-But)3]Cl (DiRu-1).

Table 1. IC50 (µM) of DiRu-1 against various cancer cell lines [9,10].

Cell Line A2780 A2780cisR MCF-7 MDA-MB-231 HepG2

IC50 0.03 0.03 0.077 0.228 0.268

It is a matter of fact that the energy metabolism of cancer cells is altered compared to that
of healthy cells. The change in metabolism manifesting as cancer cells ferment glucose to lactate
even in the presence of oxygen instead of mitochondrial oxidative phosphorylation is known as the
Warburg effect [12,13]. While being less efficient than mitochondrial respiration in terms of adenosine
triphosphate (ATP) production, anaerobic glycolysis is a faster way to catabolize glucose. Over the
same period of time, equal amounts of ATP are therefore generated in both types of glucose catabolism.
While the current understanding of how cancer cells benefit from the Warburg effect is likely to be
not yet complete [14], a number of possible explanations why cancer cells switch towards aerobic
glycolysis have been suggested in the past. To mention a few, one explanation is that less efficient ATP
production is only a problem when there is a lack of resources. Another reported suggestion is that the
metabolism of proliferating cells also requires nutrients besides ATP for growth [15]. Further, a number
of factors involved have been identified including protein kinase B (Akt), nuclear factor κB (NF-κB),
hypoxia inducible factor 1 (HIF-1), and p53 [16]. It is believed that, in cancer cells, the pyruvate
kinase PKM1 switches to the less active isoform PKM2. One of its functions is the conversion of
phosphoenolpyruvate to pyruvate [17,18]. The loss-of-function mutations of succinate dehydrogenase
and fumarate hydratase cause the accumulation of succinate and fumarate in mitochondria of cancer
cells [17].
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Increased conversion of glutamine (Gln) to glutamate (Glu) is another characteristic observed in
cancer [17]. It has been suggested that proto-oncogene Myc binds to the promoter of the Gln importer
and that this results in increased uptake of Gln [19]. Glutamine has multiple roles in the cell. It serves
as an important source of nitrogen as well as carbon and is involved in signaling [20].

Beside this, redox homeostasis pathways are upregulated. An example can be serine metabolism
which leads to the production of dihydronicotinamide-adenine dinucleotide phosphate (NADPH) and
GSH [14]. Additionally, upregulated fatty acid synthase activity has been observed in cancer cells
leading to elevated levels of lipids [21].

In this context, the knowledge of the influence of DiRu-1 on the metabolism of ovarian cancer
cells will help us to elucidate its modes of action. For this purpose, the effect of DiRu-1 treatment on
the metabolic changes in the A2780 and A2780cisR cell lines was investigated. The cells were treated
with DiRu-1 in a dose corresponding to the IC50 of DiRu-1 (0.03 µM) and to a half-dose (0.015 µM).
Non-tumor HEK-293 cell line was used to provide a reference.

2. Results

In this study, the cells were lysed prior to an NMR investigation in order to reach higher
stability [22]. Therefore, the corresponding spectra obtained from cell lysates appeared somewhat
different as compared to the whole cell spectra previously studied by our group on a hexacationic
ruthenium metallaprism [23]. Overall, more individual metabolite peaks seem to be resolved in
lysed cell spectra. Furthermore, there is a significant difference in observable signals such as the ones
corresponding to theω-CH3, (–CH2)n, and α-CH2 groups. Since these resonances are typical for the
long alkyl chains present in various types of lipids such as phospholipids, fatty acids, or triglycerides,
they will be referred to as lipid resonances throughout the manuscript. The 1H high resolution magic
angle spinning (HR-MAS) NMR 1-D NOESY and T2-filtered PROJECT [23] spectra of the lysed and
untreated cells are shown in Figure 2 and Figures S1 and S2, respectively.

Figure 2. One-dimensional 1H NMR NOESY spectra of untreated (a) HEK-293; (b) A2780;
and (c) A2780cisR cells: Each spectrum represents an average of 10 samples.

In order to perform a statistical analysis, the spectra were manually divided into 52 buckets in
the aliphatic and 44 buckets in the aromatic region (Tables S1 and S2). The bucketing was performed
without prior knowledge of the individual metabolites present in order to avoid bias. First, 1-D
1H-NMR spectra recorded with the PROJECT sequence [23] were used for analyzing both aromatic
and aliphatic regions. In these spectra, the T2-fitered suppression of broad components improves the
visibility of small metabolite resonances as can be seen in Figure S1 compared to the spectra in Figure 2.
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In order to increase the reliability of the attribution of the lipid resonances, 1-D NOESY spectra were
used (Figure 2) to specifically analyze the aliphatic region.

The effects of DiRu-1 were statistically tested based on the bucketed spectra providing data
matrices of 10 × 52 (aliphatic region) and 10 × 44 (aromatic region) for each group (10 replicates;
control, treated with 0.015 µM, and treated with 0.03 µM) and each cell line. The models obtained from
principal component analysis (PCA) showed some clustering of the three treatment groups but no
separation between them (Figure 3 and Figure S3; Table 2). Partial least squares method (PLS, with the
3 treatment groups 0, 0.015, and 0.03 µM equally spaced as a y-table) showed complete separation
between untreated and 0.03 µM of DiRu-1 treated A2780cisR groups. (Figure 3; Table 2). Partial least
squares discriminant analysis (PLS-DA) for pair-wise comparison (controls versus 0.03 µM of DiRu-1
treatment) yielded good separation for all three cell lines, which was also the best for A2780cisR
(Figure S4; Table S3). The corresponding PLS score plots applied to the aromatic regions are given
in Figure S5.

Figure 3. Principal component analysis (PCA; left side) and partial least squares method (PLS; right
side) score plots of the aliphatic region (of 1-D PROJECT spectra) of (a,d) HEK-293, (b,e) A2780, and (c,f)
A2780cisR cells treated with 0.03 µM of DiRu-1 (blue) or 0.015 µM of DiRu-1 (green) or untreated as the
control (red). The ellipses show 95% confidence interval. The corresponding parameters are shown
in Table 2.
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Table 2. Summary of parameters and statistical results of the PCAs and PLS shown in Figure 3. * In the
case of PLS for both the x and y tables ** Values below 0.05 indicate significance at the 95% level.

Groups HEK-293 A2780 A2780cisR

Included samples (1–30) (1–52) (1–17 19-30) (1–52) (1–19 21–23 25-30) (1–52)
Preprocessing * mean center, UVS
Cross validation Venetian blinds 5 splits, 1 sample/split

X-block 30 × 52 29 × 52 28 × 52

PCA

Components 4 2 2
Algorithm SVD SVD SVD

RMSEC 0.599 0.719 0.726
RMSECV 0.969 0.962 0.976

Total variance captured 62.94% 46.45% 45.37%
PC 1 24.05% 27.77% 35.41%
PC2 15.11% 18.67% 9.96%
PC3 12.60% - -
PC4 11.18% - -

PLS

Number of LVs 2 4 2
Algorithm SIMPLS SIMPLS SIMPLS

RMSEC 0.354 0.337 0.385
RMSECV 0.533 0.904 0.571

R2Cal 0.812 0.835 0.781
R2CV 0.576 0.096 0.524

Wilcoxon (self-pred.) ** 0.010 0.113 0.069
Wilcoxon (cross-val.) ** 0.004 0.085 0.014
Sign test (self-pred.) ** 0.068 0.254 0.197
Sign test (cross-val.) ** 0.031 0.140 0.067

Rand t-test (self-pred.) ** 0.014 0.194 0.066
Rand t-test (cross-val.) ** 0.006 0.190 0.016
Total variance captured 34.45% 54.83% 42.22%

LV 1 15.80% 25.77% 34.65%
LV 2 18.65% 9.22% 7.57%
LV 3 - 14.28% -
LV 4 - 5.56% -

Buckets that strongly contribute to the separation observable in the score plots of both PCA
and PLS/PLS-DA (Figure 3 and Figures S3–S5) were identified using loading plots (Figures S6–S10).
The first two components of each model served as a source for identification of contributing metabolites.
Additionally, all other components contributing to the variance of the model by at least 10% were
included as well. Next, we identified the metabolites present in these buckets using our own metabolite
library, available metabolite databases [24,25] and data from the literature [26] using 2-D TOCSY
spectra collected for each group of samples (Figures S11–S13).

Identified metabolites and changes in their levels are summarized in Table 3. The percentage
changes of the individual aliphatic buckets content upon treatment with both doses of DiRu-1 in
relation to untreated cells has been summarized for the three different cell lines in Figures 4–6 and
Figures S14–S16 and for the aromatic buckets in Figures S17–S19. A comparison of bucket means can
be found in Figures S20–S25. The treatment with a DiRu-1 dose of 0.03 µM led to the highest number
of significant bucket changes. Interestingly, most of the significant changes were observed for the
A2780cisR cell line (Figure 4 and Figures S14, S17, S20, S23), while the least number of significant
changes was observed for the A2780 cell line (Figure 5 and Figures S15, S18, S21, S24). HEK-293-induced
changes were lying in the middle (Figure 6 and Figures S16, S19, S22, S25). For the sake of clarity,
a simplified overview of the most important results is provided in Figure 7.
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2.1. Lipid Metabolism

The levels of lipids based on the evaluation of individual detected groups were significantly
altered only for the A2780cisR cell line. Decreases were observed after DiRu-1 treatment for the groups
that were clearly identified, namelyω-CH3, (–CH2)n, lipid β-CH2, and α-CH2, and were significant
for ω-CH3, (–CH2)n, and α-CH2. Of note, the decreases were also significant for ω-CH3, (–CH2)n,
and α-CH2 when half of the IC50 dose was applied.

The phosphocholine level increased significantly in both treated A2780cisR and HEK-293 cell
lines, and the choline level did not change significantly upon treatment with DiRu-1 in any of the
tested cell lines.

2.2. Amino Acid and GSH Metabolism

GSH was upregulated especially in A2780cisR and to a smaller extent also in the HEK-293 cell
line. Using the lower dose of 0.015 µM, the significant upregulation occurred only in A2780cisR cells.

The glutamine (Gln) level changed in all three cell lines but only upon treatment with 0.03 µM
of DiRu-1. Interestingly, a significant increase of the Gln level was observed for A2780cisR while
a decrease was observed for the other two cell lines. On the other hand, the glutamate (Glu) level
decreased significantly in A2780cisR already with a 0.015 µM dose of DiRu-1.

Amino acids cysteine (Cys), alanine (Ala), leucine (Leu), tyrosine (Tyr), and phenylalanine (Phe)
showed a trend towards increased or decreased values, which, however, were not significant after
correcting for multiple comparisons. All of the changes to be considered occurred in the A2780cisR cell
line with the exception of Phe which decreased consistently only in A2780.

2.3. Sugar-Containing Compounds

The myo-inositol showed an increase in one of the two buckets in A2780cisR when the 0.015 µM
dose of DiRu-1 was applied. Overall, most of the changes on myo-inositol were not significant across
the cell lines.

The changes in AMP were not very consistent in any of the cell lines. The AMP level decreased in
one of the two buckets in the case of the A2780 cell line treated with DiRu-1. There were no consistent
changes in the other two cell lines.

The uracil level changed consistently only in A2780cisR where it showed an increase upon DiRu-1
treatment but was not significant. In the other two cell lines, the changes were neither consistent nor
significant. In general, changes in uracil, uridine diphosphate (UDP), and uridine triphosphate (UTP)
levels were not very consistent, as can be seen in Table 3. It was not possible to distinguish sufficiently
cytidine (Cyt) and uridine (Urd) so that these metabolites had to be analyzed together.

2.4. Other Metabolites

The creatine level increased significantly in A2780cisR treated with DiRu-1. The change was
significant for both doses and in both buckets assigned to creatine (Cre). No consistent Cre changes
were observed in the A2780 or HEK-293 cell lines treated with the complex.

The lactate level dropped significantly in the A2780cisR and HEK-293 cell lines upon treatment
with DiRu-1. In both cases, the effect was significant when using the 0.015 –µM DiRu-1 dose.

The acetate level decreased significantly only in A2780cisR cells when treated with any of the two
doses of DiRu-1.

Further, there were yet unidentified buckets 6, 10, 15, 21, 23, 27, 35, and 43 which showed
significant changes in A2780cisR. Bucket 10 showed over 100% increase when treated with any of the
two doses compared to the control. A somewhat smaller but still very high increase was observed also
for bucket 35. Buckets 21, 23, 35, and 39 showed significant changes in the HEK-293 cell line as well.
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Table 3. Up- or downregulated metabolites upon treatment with DiRu-1. * indicates that the
changes observed were significant with a p-value < 0.05. The buckets marked with # show
Benjamini–Hochberg-corrected p-values < 0.05. Abbreviations: ar = buckets in aromatic region;
Ac = acetate; Ala = alanine; AMP = adenosine monophosphate; Chol = choline; Cre = creatine; Cyd =

cytidine; Cys = cysteine; Fum = fumarate; Glu = glutamate; Gln = glutamine; GSH = glutathione; Lac
= lactate; Leu = leucine; myo-Ino = myo-inositol; NADH = Nicotinamide adenine dinucleotide; PC =

phosphocholine; Phe = phenylalanine; Tyr = tyrosine, UDP = uridine diphosphate; Ura = uracil; Urd =

uridine; and UTP = uridine triphosphate. ? means assigned with not high enough certainty.

HEK-293 A2780 A2780cisR

DiRu-1 (µM) DiRu-1 (µM) DiRu-1 (µM)

Metabolite (bucket) 0.015 0.03 0.015 0.03 0.015 0.03
lipidω-CH3 (+Leu) (1) 0 ↑ ↓ ↓ ↓ * # ↓ * #

lipid (–CH2)n (4) ↑ ↑ ↓ ↓ ↓ * ↓ * #
lipid (–CH2)n, Lac (5) ↓ ↓ ↓ ↓ ↓ * # ↓ * #

lipid β-CH2 (8) ↑ ↑ ↓ ↓ ↓ ↓

lipid –CH2–CH=, Glu/Gln (12) 0 0 0 ↓ ↓ ↓ * #
lipid α-CH2 + other (14) 0 0 0 ↓ ↓ * ↓ * #

Lac, lipid (–CH2)n (5) ↓ ↓ ↓ ↓ ↓ * # ↓ * #
Lac (49) ↓ * # ↓ * ↑ ↑ ↓ * # ↓

Ala (7) ↓ ↓ ↓ ↓ ↑ ↑

Leu (9) ↑ ↓ ↓ ↓ ↓ ↓ *
Ac (+other) (11) ↓ ↓ 0 ↓ ↓ * # ↓ * #

Glu/Gln, lipid –CH2–CH= (12) 0 0 x x ↓ ↓ * #
Glu (16) 0 0 ↑ * ↑ 0 0
Glu (17) ↓ 0 ↑ ↓ ↓ * # ↓ * #

Glu, Gln (18) ↓ * ↓ ↑ ↑ ↓ * # ↓ * #
Gln (19) ↓ ↓ * 0 ↓ * ↑ ↑ * #

GSH, Glu, Gln (13) 0 ↑ * 0 ↑ ↑ * # ↑ *
GSH (20) ↑ * ↑ * # ↑ ↑ ↑ * # ↑ * #

(GSH) (25) ↑ ↑ 0 0 ↑ * # ↑ * #
GSH (26) ↑ ↑ * ↑ ↑ ↑ * # ↑ * #

Cre (+Cys?) (28) 0 0 0 ↓ ↑ * # ↑ * #
Cre (+Tyr) (45) 0 ↓ 0 0 ↑ * # ↑ * #
Cys, Tyr (29) ↑ ↑ ↓ ↓ ↓ ↓ *

Cys (+Tyr) (46) ↓ ↓ 0 0 0 ↓

Cys (47) 0 ↑ ↓ ↓ ↓ ↓ *
Tyr, Cys (29) ↑ ↑ ↓ ↓ ↓ ↓ *

Tyr, myo-Ino (32) ↑ ↑ ↓ ↓ ↓ ↓ * #
(Tyr), Cys (46) 0 ↓ 0 0 0 ↓

Chol (30) ↑ ↑ 0 ↓ ↓ 0
PC (31) ↑ * ↑ * # 0 ↑ * ↑ ↑

Chol, myo-Ino (37) ↓ ↑ * 0 ↑ ↑ * # ↑

(Chol), myo-Ino (38) ↓ * # ↑ ↑ ↑ ↑ ↑

Chol, myo-Ino (48) ↓ * ↑ * ↑ ↑ * # ↑ * # ↑

myo-Ino, Tyr (32) ↑ ↑ ↓ ↓ ↓ * # ↓ *
myo-Ino, Chol (37) ↓ ↑ * 0 ↑ ↑ * # ↑

myo-ino, PC (41) 0 ↑ * # 0 ↑ * ↑ * # ↑ *
GSH, Glu, Gln, Ala (42) 0 ↑ ↓ ↑ ↑ * # ↑ * #

PC (50) ↑ * ↑ * # ↓ ↑ ↑ * # ↑ * #
Ura (1 ar) ↑ ↑ ↑ ↓ ↑ ↑

Ura (23 ar) ↓ ↓ ↑ ↓ ↑ ↑

Ura (24 ar) 0 ↓ ↑ 0 ↑ ↑

Ura/UDP/UTP (5 ar) ↑ ↑ ↑ ↑ ↑ ↑

Ura/UDP/UTP (6 ar) 0 ↑ ↑ ↑ * ↑ ↑

Ura/UDP/UTP (7 ar) ↓ 0 0 ↑ * ↑ ↑

Ura/UDP/UTP (8 ar) ↓ ↓ ↓ ↑ 0 ↓

Cyd/Urd (3 ar) ↑ ↑ 0 ↓ ↓ 0
Cyd/Urd (9 ar) 0 ↓ ↓ 0 ↓ * ↓

Tyr (14 ar) 0 0 0 ↑ ↓ ↓

Tyr (15 ar) ↑ ↑ 0 ↓ ↓ ↓ *
Tyr (18 ar) 0 ↓ ↓ ↓ ↓ * ↓

Phe (20 ar) ↑ 0 ↓ ↓ 0 ↓

Phe (22 ar) ↓ ↓ ↓ ↓ * ↑ ↑

UDP (32 ar) ↑ ↑ ↑ ↑ ↑ ↓

UDP/UTP (31 ar) 0 ↑ ↑ ↑ ↑ ↑

AMP (37 ar) ↓ ↑ 0 0 0 ↑

AMP (42 ar) 0 ↑ ↓ ↓ * 0 0
Fum? (13 ar) 0 ↑ 0 ↑ ↑ 0

NADH? (12 ar) ↓ ↑ 0 ↑ ↓ 0
NADH? (35 ar) ↓ ↓ ↓ ↑ ↓ * ↓

NADH? (36 ar) ↓ 0 ↓ ↓ ↓ ↓

NADH? (40 ar) 0 ↑ 0 ↑ ↑ ↑
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Figure 4. Percental change in the assigned aliphatic buckets in A2780cisR cells: The
increasing/decreasing levels of each bucket compared to the control in cells treated with 0.015 µM of
DiRu-1 (blue) and 0.03 µM of DiRu-1 (red) are expressed in percentages. The buckets marked with
* show p-values < 0.05. The buckets marked with # show Benjamini–Hochberg-corrected p-values < 0.05.
The complete bar plot also containing unidentified buckets is given in Figure S14.



Metabolites 2019, 9, 146 9 of 21

Figure 5. Percental change in the assigned aliphatic buckets in A2780 cells: The increasing/decreasing
levels of each bucket compared to the control in cells treated with 0.015 µM of DiRu-1 (blue) and
0.03 µM of DiRu-1 (red) are expressed in percentages. The buckets marked with * show p-values < 0.05.
The buckets marked with # show Benjamini–Hochberg-corrected p-values < 0.05. The complete bar
plot also containing unidentified buckets is given in Figure S15.
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Figure 6. Percental change in the assigned aliphatic buckets in HEK-293 cells: The increasing/decreasing
levels of each bucket compared to the control in cells treated with 0.015 µM of DiRu-1 (blue) and
0.03 µM of DiRu-1 (red) are expressed in percentages. The buckets marked with * show p-values < 0.05.
The buckets marked with # show Benjamini–Hochberg-corrected p-values < 0.05. The complete bar
plot also containing unidentified buckets is given in Figure S16.
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Figure 7. Summary showing the most significant changes in identified metabolites observed in the
three cell lines upon treatment with DiRu-1: For a complete overview including the influence of the
dose see Figures 4–6, Figures S14–S25 and Table 3.

2.5. Correlation Analysis

Correlation analysis was performed on normalized integral averages using the Pearson algorithm.
The results are visualized as heatmaps. For every cell line, control and 0.03 µM DiRu-1 treated groups
were tested. For each identified metabolite, a representative bucket was chosen (Figures 8–10).

Figure 8. Heatmap of A2780cisR cells treated with 0.03 µM of DiRu-1 vs. control: The blue color
scale has been used for positive correlation, and the red scale is for negative correlation. “X” indicates
significances with p-values < 0.05. * Tentative assignment. (+) stands for the possibility that some other
metabolite is contained in the bucket in question in addition to the assigned metabolite.
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Figure 9. Heatmap of A2780 cells treated with 0.03 µM of DiRu-1 vs. control: The blue color scale
has been used for positive correlation, and the red scale is for negative correlation. “X” indicates
significances with p-values < 0.05. * Tentative assignment. (+) stands for the possibility that some other
metabolite is contained in the bucket in question in addition to the assigned metabolite.
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Figure 10. Heatmap of HEK-293 cells treated with 0.03 µM of DiRu-1 vs. control: The blue color
scale has been used for positive correlation, and the red scale is for negative correlation. “X” indicates
significances with p-values < 0.05. * Tentative assignment. (+) stands for the possibility that some other
metabolite is contained in the bucket in question in addition to the assigned metabolite.

The heatmaps give a complex overview over the correlations among a number of different
metabolites identified in the cell spectra. From the heatmaps, it is observed that the correlation of Glu
with Gln is, to some extent, positive in the A2780 and HEK-293 cell lines in contrast to the A2780cisR cell
line where negative correlation can be observed. GSH is positively correlated with Ura/UDP/UTP in all
three cell lines and in A2780cisR significantly. It is further negatively correlated with a bucket assigned
to nicotinamide adenine dinucleotide (NADH) in all three cell lines and in HEK-293 significantly. Lipid
levels based on β-CH2 and (–CH2)n seem to be correlated positively with acetate level as well as with
Glu and AMP and negatively with phosphocholine and Ura in the A2780cisR cell line. In the A2780
and HEK-293 cell lines, the correlations were not uniform across different lipid signals.

3. Discussion

Over the last years, our group developed a number of trithiolato bridged diruthenium p-cymene
complexes. The most active compound DiRu-1 showed significant cytotoxicity against different cancer
cell lines. Nevertheless, its mode of action is still not fully understood. It has been shown that it is able
to catalyze GSH oxidation, but this mechanism can only partly account for the measured cytotoxicity.
Interestingly, recent ICP-MS studies showed that up to 97% of Ru is localized in the mitochondria of
treated cancer cells [11].

In this study, three cell lines were treated with DiRu-1 and analyzed using 1H-HR-MAS NMR
spectroscopy. We show that the treatment of the cells with DiRu-1 at a dose of 0.03 µM (IC50) induces
significant changes in the metabolic profile of the A2780cisR cell line and to a less extent of the metabolic
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profile of the HEK-293 cell line. Interestingly, the metabolic profile of the A2780 cell line seems to
be less affected upon treatment with DiRu-1, suggesting a different mode of action in the two A2780
cell lines.

In A2780cisR cells, we have observed that (i) the GSH level increased significantly even after
treatment with the 0.015 µM dose of DiRu-1 and that (ii) the Gln level increased and (iii) the Glu level
dropped using the 0.03 µM dose. The Cys level drop with lesser significance was additionally observed.
The increase in GSH levels was observed to some extent in the other two cell lines as well but with less
significance. Similarly, an increase in GSH in both cancer cell lines has been observed in cells treated
with a Ru prism [26]. Elevated GSH levels can be commonly found in cells under oxidative stress.
Since reactive oxygen species (ROS) production is increased in cancer cells, it is followed by an increase
in levels of antioxidants such as GSH in response. More than 10% of the GSH synthesized within the
cell is located in the mitochondria, preventing apoptosis [27]. Since DiRu-1 is able to catalyze GSH
oxidation, it is likely that it leads to further increase in oxidized glutathione (GSSG) levels. In this
context, it would have been helpful if the ratio of GSSG and GSH could have been determined. While
GSH was identified, GSSG could not be clearly distinguished to provide this information. Similar
observations have been reported by Duarte et al. in 2010 [28].

Gln level increased while Glu showed a significant drop in the A2780cisR cell line while no such
consistent changes were observed in the other two cell lines. A negative correlation, yet not statistically
significant, has been observed in the heatmap for A2780cisR cells. On the contrary, the correlation in the
other two cell lines was positive for these two metabolites. Gln has multiple roles in cells. It serves as a
source of carbon; reduces nitrogen; and is involved in the production of GSH, nucleotides, and lipids.
Further, it seems to be involved in cell signaling. In cancer, it has multiple roles including neoplasm
manifestation, tumor progression, and metastasis. Gln metabolism varies with organs, and different
subtypes of cancer can show distinct metabolic patterns. Glu, the first product of Gln catabolism,
is either consumed or released from the cell. The efflux is coupled to Cys influx [29–31]. Both Gln
and Glu were found to be increased in ovarian cancer cysts, tissue, and serum as reported in the
literature [32]. The increase in the Gln level accompanied with a drop in the Glu level found here may
indicate decreased glutaminolysis.

Cys availability is one of key factors in the first step of GSH synthesis [33]. As reported by
Nunes et al., Cys, which has a protective role in ovarian cancer cells under hypoxic conditions, seems to
be involved in the chemoresistance of A2780cisR cells [34]. We observed decreased levels of Cys
in A2780cisR cells treated with DiRu-1, which may indicate the ability of DiRu-1 to overcome the
A2780cisR resistance, as highlighted by the identical IC50 values against both A2780 cell lines. Also,
Cramer et al. showed that the depletion of Cys following the introduction of a pharmacologically
optimized cysteinase resulted in cell death of cancer cells due to the depletion of GSH and the
accumulation of ROS [35]. The decrease in the Cys level can be related to increased levels of GSH.

The level of creatine increased significantly only in A2780cisR cells; this effect occurred even when
the lower of the doses was applied. Creatine plays a number of roles in a cell. Among other functions,
it is an antioxidant with possible protective activity on oxidatively damaged mitochondria [36–38].
It has been suggested to have an anticancer effect. Decreased creatine and creatine kinase levels, on the
other hand, have been reported in the development of sarcoma. Low serum creatine kinase has been
also observed in breast cancer patients [38–40]. The increased creatine level observed in A2780cisR cells
could have similar reasons as in the case of GSH. The presence of a Ru complex could lead to increased
production of creatine, which in turn could contribute to the protection of mitochondria from ROS.

Lipids, at least as represented by theω-CH3, (–CH2)n, lipid β-CH2, and α-CH2 groups, are another
group of metabolites that changed significantly only in A2780cisR cells. A similar effect, a decrease
in the detected level of lipids, has been earlier described for A2780 cells treated with a Ru prism.
The same study reported an increase in detected lipid levels in treated HEK-293 cells and inconsistent
changes in A2780cisR cells [26]. Herein, we report a significant decrease in detected lipid levels
observed, specifically in the A2780cisR cell line. Cancer cells are known to have an altered lipid
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metabolism. Elevated levels of carnitine and its derivatives were reported in patients with ovarian
cancer, and the long chain fatty acids content was found to be increased in serum and tissue in a number
of studies [16,32]. The decrease of the detected lipid content in A2780cisR cells treated with DiRu-1
may be related to a downregulation of their biosynthesis, decreased uptake, hindered distribution,
or storage in form of droplets, as shown by others [21,41–43].

The lactate level decreased significantly in both the A2780cisR and HEK-293 cell lines. A similar
effect has been earlier observed for a Ru prism [26]. Higher lactate levels are associated with
carcinogenesis as part of the Warburg effect, and lactate production has even been suggested to be its
purpose. Increased levels of lactate and lactate dehydrogenase in serum have been reported to be highly
associated with poor prognoses [44–46]. A higher content of lactate was reported also specifically for
ovarian cancer cyst fluids and primary and metastatic tissue in a number of studies [32]. Lowering
lactate levels upon DiRu-1 action could possibly be, therefore, a good sign. To get more insight into
the observed changes, it might be suitable to perform measurements of extracellular and intracellular
lactate levels which would be useful also for other metabolites but was beyond the scope of this study.

When evaluating the results of this study, certain limitations needs to be taken into account.
Analogously to the earlier study reported by our group [26], we chose the HEK-293 cell line as a
reference cell line. Limitations of HEK-293 need to be considered when comparing the results with
A2780 and A2780cisR as it does not have a stable karyotype and shows traits common with cancer cells
such as overexpression of certain genes [47]. Further, it is grown in a DMEM medium compared to
A2780 and A2780cisR, which are grown in RPMI-1640. As far as metabolite quantification is concerned,
there is a common problem with overlap of individual metabolite peaks which may lead to loss of
useful information. Fitting of single resonances would be an approach to address this problem; on the
other hand, it may lead to the disregard of unknown components. In this study, we applied correlation
analyses combined with significance tests of single buckets to support the finding of the PCA and PLS
analyses. Manual bucketing was applied prior to the assignment of metabolites in order to reduce
bias. Further options would be bucketing according to metabolite assignment and automated or
semi-automated assignment and quantification. Finally, it needs to be taken into account that the
results we report here derive from an in vitro study and may therefore differ from an in vivo study.

Most of the significant changes were observed in A2780cisR cells, and while the lower dose of
DiRu-1 (IC50/2) shows yet a number of significant changes, it appears that IC50 represents the necessary
dose to observe the most significant changes. Interestingly, there are significant differences in the
metabolic responses of A2780 and A2780cisR cells treated with DiRu-1 despite responding to the same
IC50 value of DiRu-1 as has been shown previously. It is possible that the mechanism of DiRu-1 action
differs in the two cell lines. The exact reasons behind this observation remain yet to be explained.

4. Materials and Methods

4.1. Synthesis

DiRu-1 was prepared according to formerly published procedures [10].

4.2. Cell Culture and Treatment

Human ovarian carcinoma cells A2780 and the Cis-Pt resistant variant cells A2780cisR were
obtained from the European Center of Cell Cultures (ECACC, Salisbury, UK). The HEK-293 cell line
was provided by Prof. Mühlemann, University of Bern.

A2780 cells were grown in Roswell Park Memorial Institute (RPMI) 1640 medium containing 10%
fetal calf serum (FCS), 2 mM Gln, and 1% antibiotics (penicillin/streptomycin) at 37 ◦C and 5% CO2.
HEK-293 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) with the same supplements
as in the previous case with additional 1% HEPES pH buffer.

Cytotoxicity tests of DiRu-1 for A2780 and A2780cisR were determined previously using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [10]. In this context,



Metabolites 2019, 9, 146 16 of 21

it should be also mentioned that cytotoxicity tests performed on other trithiolato bridged diruthenium
complexes closely related to DiRu-1 towards HEK-293 exhibited very similar IC50 values when
compared to ovarian cancer cells A2780, indicating no high selectivity [26,48,49].

In each group, 10 independently prepared samples have been measured, leading to a total number
of 90 measurements (10 × 3 × 3; 3 cell lines, 3 groups per cell line: control, low dose, and high dose).
The cells used for the metabolomics study were firstly seeded in 25 cm2 flasks with a density of
8 × 104 cells/cm2 and left to grow for 24 h at 37 ◦C in a humidified incubator in the presence of 5%
CO2. The incubation time of 24 h has been chosen as in our previous study on a similar Ru complex;
we have shown that 24 h incubation was adequate to observe a sufficient effect [26].

Afterwards, the medium in which the cells were grown was disposed. Subsequently, the cells
were washed with 5 mL of phosphate-buffered saline (PBS). For drug treatment, 5 mL of fresh DMEM
or RPMI-1640 medium were added to the flasks containing 3 µL aqueous solutions of DiRu-1 to reach
a final concentration of 0.03 µM or 0.015 µM, respectively, or solely H2O (controls).

After 24 h of incubation, the medium was disposed and cells were washed with 5 mL of PBS.
Subsequently, trypsin/ethylenediaminetetraacetic acid (EDTA) was added, and after ~5 min, when the
cells detached, 1 mL of DMEM was added and cells were transferred into new Falcon tubes. Cell viability
was determined using 10 µL of 0.4% Trypan Blue Stain for 10 µL of cell suspension. An automatic
cell counter was used for this purpose. The cells were further centrifuged and, after disposal of the
supernatant, resuspended in freezing medium (10 mL of FBS, 9 mL of DMEM, and 1 mL of DMSO).
The cell suspension was then transferred into cryovials and kept frozen at −80◦C.

To prepare the cell lysate samples for NMR analysis, the cells were thawed at 37 ◦C, transferred
into 1 mL of preheated medium, and washed three times with PBS. The pellet was resuspended in
20 µL of PBS-D2O, alternatingly sonicated for 30 s and dipped into liquid nitrogen for 15 s three times,
and finally frozen in liquid N2 and stored at −80 ◦C.

4.3. HR-MAS NMR

Each sample was thawed at 37 ◦C directly before measurements. The cell lysate was pipetted into
a 4-mm MAS rotor, and the volume was regulated with a 12-µL insert. The closed rotor was inserted
into a dual inverse 1H13C HR-MAS probe-head of a 500 MHz spectrometer (Avance II, Bruker BioSpin,
Fällanden, Switzerland) and left to equilibrate with the temperature set to 272 K while being spun at
5 kHz at the magic angle. Two types of one-dimensional 1H NMR spectra both with presaturation of
the water resonance have been recorded for each sample: a 1-D NOE spectrum, using the pulseprogram
noesypr1d taken from the Bruker pulse sequence library, and a 1-D PROJECT [23] spectrum, applying a
T2-filter of 102.4 ms for suppression of broad components. The spectra were recorded with a spectral
width of 6002 Hz (12 ppm), 32,768 data points, 4 s relaxation delay, and 512 scans for NOESY and
1024 scans for PROJECT, respectively. Additionally, 2-D 1H-1H TOCSY experiments (pulseprogram
dipsi2phpr from the Bruker pulse sequence library) and 2-D 1H J-resolved experiments (pulseprogram
jresgpprqf from the Bruker pulse sequence library) were recorded for two samples of each group to
help with the assignment of individual metabolites.

All spectra have been identically processed using an exponential multiplication with a line
broadening of 1 Hz. All spectra have been calibrated with respect to the phosphocholine resonance at
3.23 ppm. The baseline correction has been performed independently for two regions: the upfield
(0.350–4.793 ppm) part and the downfield (5.575–9.001 ppm) part for avoiding the residual water
resonance. The processed spectra have been exported as ascii files that served as an input for statistics.

4.4. Statistics and Data Analysis

The ascii files have been divided into groups (cell line and dose). The aliphatic and aromatic
regions were treated separately. The regions of spectra were divided into buckets, each bucket
representing resonances of individual metabolites wherever possible. Fifty-two buckets were defined
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in the aliphatic region in NOESY spectra. Forty-four buckets were defined for the aromatic region of
the PROJECT spectra.

Probabilistic quotient normalization (PQN) was applied to all integrals in the analyzed set.
The type of scaling used and further details on the analysis can be found in summary in Table 2 and
Table S10.

Division of the data into groups according to cell line and DiRu-1 dose enabled evaluation of
the effect of DiRu-1 and dose within one cell line, general differences in metabolism of three different
cell lines, and comparison of the treatment effect in different cell lines. The preprocessed data were
then used as an input for principal component analysis (PCA) of the groups. The highest contributing
principal components (PC-1-PC-3) have been plotted in PCA score plots. Outliers including cases
where the quality of the sample was insufficient and/or low S/N spectra have been excluded from the
analysis (Table 2 and Table S10).

Next, partial least squares (PLS) and/or partial least squares discriminant analysis (PLS-DA) were
performed using the PLS toolbox software (Eigenvector Research, Inc., Manson WA, USA). Similar as
in the case of PCA, the latent variables for PLS or PLS-DA that contributed the most to the models
have been plotted.

Venetian blinds method was used for cross-validation. Further details on statistical analysis are
summarized in Table 2 and Table S10.

A correlation matrix was calculated in each cell line for the control and 0.03 µM DiRu-1 groups
using the Pearson algorithm. Subsequently, corresponding heatmaps were produced.

The buckets contributing to a variance in the first two components of the PCA, PLS, or PLS-DA
models above an arbitrary threshold loading value of 0.2 were assigned—where possible—to
metabolites. Additionally, buckets above the same loading value of other components contributing
more than 10% to the variance were considered. The metabolites were identified using 1-D 1H NOESY,
PROJECT, and 2-D TOCSY spectra (Figures S11–S13). As reference metabolite databases, the Biological
Magnetic Resonance Data Bank (BMRB) and the Human Metabolome Database (HMDB) [50] were
used in addition to the internal metabolite library. Significance testing was performed using the t-test,
and corrections for multiple comparisons were performed using the Benjamini–Hochberg method [51].
For the buckets in question, a change upon treatment was considered significant for p-values < 0.05.

The following list of software programs was used: Topspin 3.5pl7 (Bruker Biospin, Billerica, MA,
USA); Matlab R2012a (Mathworks, Natick, MA, USA) and PLS Toolbox (Eigenvctor Research Inc.,
Manson, WA, USA) for Matlab; Python 3.7 (Python Software Foundation, Wilmington, DE, USA).
The data were stored using MetaboLights data repository [52].

5. Conclusions

In this study, we treated three cell lines with DiRu-1 and analyzed their lysed suspensions using
HR-MAS NMR spectroscopy. The treatment showed significant metabolic changes mainly in the
A2780cisR cell line. The A2780 cell line exhibited changes, which, however, were not significant.
It turned out that the full IC50 dose of 0.03 µM of DiRu-1 was required to observe the treatment effect
at a sufficient significance level.

The levels of GSH and creatine increased in the A2780cisR cell line upon treatment with DiRu-1.
The increase in GSH and creatine levels can be related to their function as antioxidants. Changes
affecting redox homeostasis can be related to the fact that DiRu-1 is able to catalyze GSH oxidation as
it has been shown earlier. Furthermore, the Gln level was increased in A2780cisR cells treated with
DiRu-1 while the Glu level decreased. The combination of increased Gln and decreased Glu could
mean reduced glutaminolysis.

Another group of metabolites affected were lipids. The overall decrease in detected lipid levels in
A2780cisR cells undergoing treatment with DiRu-1 could be explained by downregulated biosynthesis,
decreased uptake, or a lack of lipid storage and distribution.
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Last but not least, lactate levels have been observed dropping in A2780cisR cells treated with
DiRu-1. As high lactate has been reported to be a sign of poor prognosis for a cancer patient, we consider
a decrease in lactate a sign of positive drug response.

It can be concluded that DiRu-1 caused most metabolic changes in the A2780cisR cell line and that
the changes observed are partially related to the specific DiRu-1 structure and its related nature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/146/s1,
Figure S1: One-dimensional 1H NMR PROJECT spectra of the three untreated cell lines; Figure S2: Aromatic
region of PROJECT spectra of the three untreated cells lines; Table S1: The 52 buckets in the aliphatic region of
the 1-D 1H NMR spectra (0.79–4.40 ppm) and the corresponding metabolites; Table S2: The 44 buckets in the
aromatic region of the 1-D 1H NMR spectra (5.78–8.95 ppm) and the corresponding metabolites; Figure S3: PCA
score plots of the aromatic region of the three cell lines treated with DiRu-1; Figure S4: PLS-DA score plots of the
aliphatic region of the three cell lines treated with DiRu-1; Table S3: Summary of the parameters and statistical
results of PLS-DA shown in Figure S4; Figure S5: PLS analysis score plots of the aromatic region of the three cell
lines treated with DiRu-1; Figure S6: PCA loading plots for the PCA shown in Figure 3; Figure S7: PLS loading
plots for the latent variables (LV1-3) of the PLS plots shown in Figure 3; Figure S8: PLS-DA loading plots for the
latent variables of the PLS-DA plots shown in Figure S4; Figure S9: PCA loading plots of the PCA shown in S3,
Figure S10: PLS loading plots for the latent variables of the PLS plots shown in Figure S5; Figure S11: TOCSY
spectra of HEK-293 cells treated with a low dose (0.015 µM) of DiRu-1; Figure S12: TOCSY spectra of A2780 cells
untreated; Figure S13: TOCSY spectra of A2780cisR cells treated with a high dose (0.03 µM) of DiRu-1; Figure S14:
Percental change in the aliphatic buckets in A2780cisR cells: complete including unidentified buckets; Figure S15:
Percental change in the aliphatic buckets in A2780 cells: complete including unidentified buckets; Figure S16:
Percental change in the aliphatic buckets in HEK-293 cells: complete including unidentified buckets; Figure S17:
Percental change in the aromatic buckets in A2780cisR cells; Figure S18: Percental change in the aromatic buckets
in A2780 cells; Figure S19: Percental change in the aromatic buckets in HEK-293 cells; Figure S20: Comparison of
bucket means for aliphatic region of A2780cisR; Figure S21: Comparison of bucket means for aliphatic region
of A2780; Figure S22: Comparison of bucket means for aliphatic region of HEK-293; Figure S23: Comparison of
bucket means for aromatic region of A2780cisR; Figure S24: Comparison of bucket means for aromatic region of
A2780; and Figure S25: Comparison of bucket means for aromatic region of HEK-293.
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Highly cytotoxic trithiophenolatodiruthenium complexes of the type [(η6-p-MeC6H4Pr i ) 2Ru2(SC6H4-p-X)3]
+: Synthesis, molecular structure, electrochemistry, cytotoxicity, and glutathione oxidation potential. J. Biol.
Inorg. Chem. 2012, 17, 951–960. [CrossRef]

11. Basto, A.P.; Anghel, N.; Rubbiani, R.; Müller, J.; Stibal, D.; Giannini, F.; Süss-Fink, G.; Balmer, V.; Gasser, G.;
Furrer, J.; et al. Targeting of the mitochondrion by dinuclear thiolato-bridged arene ruthenium complexes in
cancer cells and in the apicomplexan parasite Neospora caninum. Metallomics 2019, 11, 462–474. [CrossRef]
[PubMed]

12. Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in The Body. J. Gen. Physiol. 1927, 8, 519–530.
[CrossRef] [PubMed]

13. Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [CrossRef] [PubMed]
14. Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016,

41, 211–218. [CrossRef] [PubMed]
15. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B.; Mammalian, P.; Exhibit, C.; Metabolism, A.

Understanding the Warburg Effect: Cell Proliferation. Science 2009, 324, 1029–1034. [CrossRef] [PubMed]
16. Fong, M.Y.; McDunn, J.; Kakar, S.S. Identification of metabolites in the normal ovary and their transformation

in primary and metastatic ovarian cancer. PLoS ONE 2011, 6, e19963. [CrossRef] [PubMed]
17. Vermeersch, K.A.; Styczynski, M.P. Applications of metabolomics in cancer research. J. Carcinog. 2013, 12, 9.

[CrossRef]
18. Hsu, M.C.; Hung, W.C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism,

transcriptional regulation to extracellular signaling. Mol. Cancer 2018, 17, 35. [CrossRef]
19. Wise, D.R.; DeBerardinis, R.J.; Mancuso, A.; Sayed, N.; Zhang, X.-Y.; Pfeiffer, H.K.; Nissim, I.; Daikhin, E.;

Yudkoff, M.; McMahon, S.B.; et al. Myc regulates a transcriptional program that stimulates mitochondrial
glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 2008, 105, 18782–18787.
[CrossRef]

20. Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed.
Eng. 2017, 19, 163–194. [CrossRef]

21. Long, J.; Zhang, C.-J.; Zhu, N.; Du, K.; Yin, Y.-F.; Tan, X.; Liao, D.-F.; Qin, L. Lipid metabolism and
carcinogenesis, cancer development. Am. J. Cancer Res. 2018, 8, 778–791.

22. Diserens, G.; Hertig, D.; Vermathen, M.; Legeza, B.; Flück, C.E.; Nuoffer, J.M.; Vermathen, P. Metabolic
stability of cells for extended metabolomical measurements using NMR. A comparison between lysed and
additionally heat inactivated cells. Analyst 2017, 142, 465–471. [CrossRef]

23. Aguilar, J.A.; Nilsson, M.; Bodenhausen, G.; Morris, G.A. Spin echo NMR spectra without J modulation.
Chem. Commun. 2012, 48, 811–813. [CrossRef]

24. Biological Magnetic Resonance Data Bank. Available online: http://www.bmrb.wisc.edu/ (accessed on 27
February 2019).

25. The Human Metabolome Database. Available online: http://www.hmdb.ca/ (accessed on 27 February 2019).
26. Vermathen, M.; Paul, L.E.H.; Diserens, G.; Vermathen, P.; Furrer, J. 1H HR-MAS NMR based metabolic

profiling of cells in response to treatment with a hexacationic ruthenium metallaprism as potential anticancer
drug. PLoS ONE 2015, 10, e0128478. [CrossRef]

27. Bansal, A.; Celeste Simon, M. Glutathione metabolism in cancer progression and treatment resistance. J. Cell
Biol. 2018, 217, 2291–2298. [CrossRef]

http://dx.doi.org/10.1021/jm010051m
http://dx.doi.org/10.1016/j.jorganchem.2014.10.050
http://dx.doi.org/10.1002/cmdc.201600315
http://dx.doi.org/10.1007/s00775-012-0911-2
http://dx.doi.org/10.1039/C8MT00307F
http://www.ncbi.nlm.nih.gov/pubmed/30620038
http://dx.doi.org/10.1085/jgp.8.6.519
http://www.ncbi.nlm.nih.gov/pubmed/19872213
http://dx.doi.org/10.1126/science.123.3191.309
http://www.ncbi.nlm.nih.gov/pubmed/13298683
http://dx.doi.org/10.1016/j.tibs.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26778478
http://dx.doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
http://dx.doi.org/10.1371/journal.pone.0019963
http://www.ncbi.nlm.nih.gov/pubmed/21625518
http://dx.doi.org/10.4103/1477-3163.113622
http://dx.doi.org/10.1186/s12943-018-0791-3
http://dx.doi.org/10.1073/pnas.0810199105
http://dx.doi.org/10.1146/annurev-bioeng-071516-044546
http://dx.doi.org/10.1039/C6AN02195F
http://dx.doi.org/10.1039/C1CC16699A
http://www.bmrb.wisc.edu/
http://www.hmdb.ca/
http://dx.doi.org/10.1371/journal.pone.0128478
http://dx.doi.org/10.1083/jcb.201804161


Metabolites 2019, 9, 146 20 of 21

28. Duarte, I.F.; Lamego, I.; Marques, J.; Marques, M.P.M.; Blaise, B.J.; Gil, A.M. Nuclear magnetic resonance
(NMR) study of the effect of cisplatin on the metabolic profile of MG-63 osteosarcoma cells. J. Proteome Res.
2010, 9, 5877–5886. [CrossRef]

29. Cluntun, A.A.; Lukey, M.J.; Cerione, R.A.; Locasale, J.W. Glutamine Metabolism in Cancer: Understanding
the Heterogeneity. Trends Cancer 2017, 3, 169–180. [CrossRef]

30. Yang, L.; Achreja, A.; Yeung, T.L.; Mangala, L.S.; Jiang, D.; Han, C.; Baddour, J.; Marini, J.C.; Ni, J.; Nakahara, R.;
et al. Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated
Cancer Cell Growth. Cell Metab. 2016, 24, 685–700. [CrossRef]

31. Altman, B.J.; Stine, Z.E.; Dang, C.V. Dang From Krebs to clinic: Glutamine metabolism to cancer therapy.
Nat. Rev. Cancer 2016, 16, 619–634. [CrossRef]

32. Turkoglu, O.; Zeb, A.; Graham, S.; Szyperski, T.; Szender, J.B.; Odunsi, K.; Bahado-Singh, R. Metabolomics of
biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics 2016, 12,
60. [CrossRef]

33. Lu, S.C. Glutathione Synthesis. Biochim. Biophys. Acta 2014, 1830, 3143–3153. [CrossRef]
34. Nunes, S.C.; Ramos, C.; Lopes-Coelho, F.; Sequeira, C.O.; Silva, F.; Gouveia-Fernandes, S.; Rodrigues, A.;

Guimarães, A.; Silveira, M.; Abreu, S.; et al. Cysteine allows ovarian cancer cells to adapt to hypoxia and to
escape from carboplatin cytotoxicity. Sci. Rep. 2018, 8, 9513. [CrossRef]

35. Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.;
et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses
tumor growth. Nat. Med. 2017, 23, 120–127. [CrossRef]

36. Wyss, M.; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2017, 80, 1107–1213.
[CrossRef]

37. Sestili, P.; Martinelli, C.; Colombo, E.; Barbieri, E.; Potenza, L.; Sartini, S.; Fimognari, C. Creatine as an
antioxidant. Amino Acids 2011, 40, 1385–1396. [CrossRef]

38. Patra, S.; Ghosh, A.; Roy, S.S.; Bera, S.; Das, M.; Talukdar, D.; Ray, S.; Wallimann, T.; Ray, M. A short review on
creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in
cancer therapy. Amino Acids 2012, 42, 2319–2330. [CrossRef]

39. Miller, E.E.; Evans, A.E.; Cohn, M. Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc. Natl.
Acad. Sci. USA 2006, 90, 3304–3308. [CrossRef]

40. Pan, H.; Xia, K.; Zhou, W.; Xue, J.; Liang, X.; Cheng, L.; Wu, N.; Liang, M.; Wu, D.; Ling, L.; et al. Low Serum
Creatine Kinase Levels in Breast Cancer Patients: A Case-Control Study. PLoS ONE 2013, 8, e62112. [CrossRef]

41. Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting lipid metabolism of cancer cells: A promising therapeutic
strategy for cancer. Cancer Lett. 2017, 401, 39–45. [CrossRef]

42. Petan, T.; Jarc, E.; Jusović, M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018,
23, 1941. [CrossRef]

43. Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J. 2012, 279, 2610–2623. [CrossRef]
44. San-Millán, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be

the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133. [CrossRef]
45. Wang, B.; Cao, J.; Wang, Z.; Liu, R.; Gao, X.; Hu, X.; Zhang, J.; Wang, L.; Guo, L. Overall survival of cancer

patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumor Biol. 2016, 37, 14083–14088.
46. Doherty, J.R.; Cleveland, J.L.; Doherty, J.R.; Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics

Find the latest version: Review series Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig.
2013, 123, 3685–3692. [CrossRef]

47. Stepanenko, A.A.; Dmitrenko, V.V. HEK293 in cell biology and cancer research: Phenotype, karyotype,
tumorigenicity, and stress-induced genome-phenotype evolution. Gene 2015, 569, 182–190. [CrossRef]

48. Giannini, F.; Geiser, L.; Paul, L.E.H.; Roder, T.; Therrien, B.; Süss-Fink, G.; Furrer, J. Tuning the in vitro cell
cytotoxicity of dinuclear arene ruthenium trithiolato complexes: Influence of the arene ligand. J. Organomet.
Chem. 2015, 783, 40–45. [CrossRef]

49. Giannini, F.; Bartoloni, M.; Paul, L.E.H.; Süss-Fink, G.; Reymond, J.L.; Furrer, J. Cytotoxic peptide conjugates
of dinuclear arene ruthenium trithiolato complexes. MedChemComm 2015, 6, 347–350. [CrossRef]

50. Ellinger, J.J.; Chylla, R.; Ulrich, E.L.; Markley, J.L. Databases and Software for NMR-Based Metabolomics.
Curr. Metab. 2013, 1, 28–40.

http://dx.doi.org/10.1021/pr100635n
http://dx.doi.org/10.1016/j.trecan.2017.01.005
http://dx.doi.org/10.1016/j.cmet.2016.10.011
http://dx.doi.org/10.1038/nrc.2016.71
http://dx.doi.org/10.1007/s11306-016-0990-0
http://dx.doi.org/10.1016/j.bbagen.2012.09.008
http://dx.doi.org/10.1038/s41598-018-27753-y
http://dx.doi.org/10.1038/nm.4232
http://dx.doi.org/10.1152/physrev.2000.80.3.1107
http://dx.doi.org/10.1007/s00726-011-0875-5
http://dx.doi.org/10.1007/s00726-011-0974-3
http://dx.doi.org/10.1073/pnas.90.8.3304
http://dx.doi.org/10.1371/journal.pone.0062112
http://dx.doi.org/10.1016/j.canlet.2017.05.002
http://dx.doi.org/10.3390/molecules23081941
http://dx.doi.org/10.1111/j.1742-4658.2012.08644.x
http://dx.doi.org/10.1093/carcin/bgw127
http://dx.doi.org/10.1172/JCI69741
http://dx.doi.org/10.1016/j.gene.2015.05.065
http://dx.doi.org/10.1016/j.jorganchem.2015.02.010
http://dx.doi.org/10.1039/C4MD00433G


Metabolites 2019, 9, 146 21 of 21

51. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]

52. Kale, N.S.; Haug, K.; Conesa, P.; Jayseelan, K.; Moreno, P.; Rocca-Serra, P.; Nainala, V.C.; Spicer, R.A.;
Williams, M.; Li, X.; et al. MetaboLights: An Open-Access Database Repository for Metabolomics Data.
Curr. Protoc. Bioinform. 2016, 53, 14.13.1–14.13.18.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Lipid Metabolism 
	Amino Acid and GSH Metabolism 
	Sugar-Containing Compounds 
	Other Metabolites 
	Correlation Analysis 

	Discussion 
	Materials and Methods 
	Synthesis 
	Cell Culture and Treatment 
	HR-MAS NMR 
	Statistics and Data Analysis 

	Conclusions 
	References

