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Abstract

The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and

one of the most highly conserved DNA repair proteins. With an apparent role in the repair of

stalled or collapsed replication forks, the molecular function of this protein family remains

obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair

of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of

ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA

damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induc-

tion, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that

RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in

a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired

ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB

inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps

rather than in double strand break repair. Inactivating rarA, ruvB and recG together is syn-

thetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA

ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence

of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination

intermediates created by RecA protein in post-replication gaps within the broader RecF

pathway. One of these paths involves RarA.

Author summary

The RarA protein is part of a widespread protein family that is highly conserved from bac-

teria to humans. While the family clearly plays an important role in genome stability in all

organisms, its molecular function remains undefined. Part of the reason for the lack of

progress is genetic redundancy, where overlapping molecular functions render it difficult

to discern the genetic effects of a gene when it is absent. In this study, we pinpoint a series

of enzymes that must be absent to observe a strong effect of a deletion of the gene
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encoding RarA. In particular, a loss of RuvB function renders a rarA deletion highly sensi-

tive to DNA damage. An additional loss of recQ or recG makes the cell inviable. Suppres-

sion of these defects by inactivation of proteins that load RecA protein indicate that RarA

is somehow involved in the processing or reversal of branched DNA structures created by

RecA and that RarA is part of an expanded version of the classic RecFOR pathway for

repair.

Introduction

DNA replication, indispensable to the survival and reproduction of all living organisms, is a

highly coordinated and complex process. The progress of replication forks is regularly chal-

lenged by barriers extrinsic and intrinsic. These include DNA lesions produced by reactive

oxygen species (ROS) or other DNA damaging agents and protein-DNA complexes. Encoun-

ters with such barriers can result in replication fork stalling or collapse. In some unknown

fraction of encounters, a fork engages in “lesion-skipping”, disengaging and then re-initiating

downstream and leaving the lesion behind in a post-replication gap [1–10]. These events rep-

resent a major source of mutagenesis and, if unresolved, can result in cell death. If post-replica-

tion gaps are not processed and closed prior to the next replication cycle, subsequent fork

encounters will generate a double strand break.

Whereas the formation of post-replication gaps was among the earliest recognized out-

comes of fork-lesion encounters [11–15], it remains arguably the most enigmatic. In principle,

lesion-skipping prevents prolonged replisome stalling events. However, it is not known how

often postreplication gaps are formed, how they are formed, how large they are, or what types

of lesions are most proficient in triggering their formation. There appear to be three major

paths for filling post-replication gaps in bacteria: (a) RecA-mediated homologous recombina-

tion [16–19], (b) translesion DNA synthesis [9, 17, 20], and (c) a RecA-independent template

switching process [21–24]. Based on the effects of gene inactivation, RecA-mediated homolo-

gous recombination is probably the most important of these processes. However, RecA is mul-

tifunctional [25–28] and the proportion of the effect of a recA deletion that can be assigned to

post-replication gap filling deficiency is difficult to parse.

In most cases, the primary pathway for the resolution of post-replication gaps is RecA-

mediated recombinational repair via the RecFOR pathway [17]. Any pathway for recombina-

tional DNA repair has three main steps. RecA is first loaded on a ssDNA substrate, normally

pre-coated with SSB. In gaps, the loading of RecA onto SSB-coated ssDNA is facilitated by the

RecO and RecR proteins, augmented by the RecF protein in a manner that has not yet been

defined [25, 29–38]. The second step is pairing and exchange of homologous DNA strands by

the loaded RecA nucleoprotein filament [39–42]. The joint molecules produced in this step are

stabilized in some manner by the RecJ ssDNA 50!30 exonuclease [43–48]. The recombination

intermediates created by RecA have the potential to interlink daughter chromosomes and

block cell division. For cells to survive their creation, they must either be resolved or reversed

in a third step. Resolution or reversal may be complex and context dependent. It is not clear

that all the enzymes involved have been identified. The resolution/reversal phase is our focus

in this report, along with proteins involved in it. Those proteins include the RuvABC proteins,

the RecG and RecQ helicases, and the still enigmatic RarA protein.

In many cases, the RecA-mediated DNA strand exchange step can generate a four-armed

Holliday junction. Processing of such junctions is a specialty of the RuvA, RuvB, and RuvC

proteins, sometimes grouped in a complex called the RuvABC resolvasome [49–53]. RuvA is a
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Holliday structure-specific DNA binding protein. It interacts with and recruits the RuvB pro-

tein. RuvB is a powerful ATPase-driven DNA translocase. The RuvAB complex promotes a

rapid and efficient branch migration [54–59]. The RuvC protein interacts with RuvAB [19, 60,

61]. RuvC is an endonuclease that interacts with RuvAB and introduces symmetrically

opposed nicks across the branching point, resolving the Holliday junction into viable recombi-

nation products [49, 52, 62–64]. DNA ligation completes the process.

The RecG protein is a 76kDa SF2 multifunctional helicase. Although it can utilize a wider

range of branched DNA substrates, RecG exhibits some functional overlap with the RuvAB

branch migration complex. It carries a DNA-dependent ATPase activity that facilitates the

remodeling of various branched DNA structures. In vitro studies of RecG have documented

replication fork reversal [65–69] although a role in this process has not been confirmed in vivo

[70, 71]. RecG is also involved in Holliday junction branch migration activity [72–76], resolu-

tion of structures formed in replication termination [77–79], and double strand break repair

[80, 81]. Deletion of recG is linked with the increased accumulation of Holliday junctions at

the replisome stalling site [82].

The existence of negative epistasis between the ruvAB and recG genes has been demon-

strated [60, 72, 83, 84]. Cells devoid of either RuvAB or RecG alone display modest defects–

small reductions in homologous recombination efficiency and weak sensitivity to DNA dam-

age. However, a double deletion of the ruv genes and recG produces a synergistic decline in

both parameters and reduces viability even in the absence of DNA damaging agents, suggest-

ing that some redundancy exists in the function of the two systems [60, 72, 83, 84].

A second pathway for filling post-replication gaps is translesion DNA synthesis. This pro-

cess is executed by specialized translesion DNA polymerases, including DNA polymerases II,

IV, and V [17, 85]. DNA polymerase V is not normally present except when high levels of

DNA damage led to an extended SOS response [86–89]. It is not clear how often DNA poly-

merases II and IV participate in the filling of post-replication gaps. Genetic results suggest that

RecA-mediated recombination predominates the gap filling process [17].

The third pathway for post-replication gap filling is RecA-independent template switching.

This process has been documented by examination of recombination events between relatively

short, repeated DNA sequences [21, 22, 90, 91]. Although most of the homologous recombina-

tion in bacteria is carried out by RecA recombinase, a measurable level of recombination

events has been documented in ΔrecA cells [21, 22, 90, 91]. This homology-dependent but

RecA-independent recombination is increased in cells with defective DNA replication and

restart pathways [24, 92].

The Escherichia coli RarA protein is required for most of this RecA-independent recombi-

nation [24]. RarA is a highly conserved AAA+ ATPase protein, sharing roughly 40% identity

and 56–58% similarity with its Saccharomyces cerevisiae (Mgs1) and Homo sapiens (WRNIP1)

homologs [93, 94]. The RarA protein family (RarA, Mgs1, and WRNIP1) is among the most

widespread and conserved of any family with a putative role in DNA repair. Considerable

research has been conducted on RarA and its homologs in the past two decades, but the molec-

ular function of these proteins is still unknown. RarA family members are recruited to the

replisome or nearby regions through an interaction either with SSB or PCNA [93–100]. They

have been implicated broadly in genome maintenance [94, 101–109]. The RarA protein will

bind to DNA gap or duplex ends and engages in an ATP-dependent DNA strand separation

activity [110]. RarA is homologous to the DnaX clamp loader [93], but it functions as a tetra-

mer [99]. These functional clues have not yet led to a demonstrable molecular function.

The RarA protein plays a prominent role in RecA-independent intermolecular recombina-

tion, especially at the regions carrying <200 bp homologous regions [24]. These events likely

occur in post-replication gaps. However, the RarA-mediated recombination events are rare
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(much less frequent than RecA-mediated events), and it is not clear whether this is a major

function of RarA or reflects an outcome that is incidental to the normal function of RarA.

The contribution of RarA to normal DNA metabolism has been largely overlooked due to

the absence of major phenotypes accompanying its deletion from the cell. Inactivation of RarA

has no significant impact on growth rate or sensitivity to DNA damaging agents [24]. How-

ever, the high degree of conservation evident in this gene family argues for a significant role.

The answer may lie in genetic redundancy. RarA shares significant similarity not only with

DnaX, the DNA polymerase III clamp loader, but also a 26% sequence similarity with RuvB.

To explore the cellular role of RarA, we set out to define the genetic interactions of rarA with

other known genes involved in DNA repair. In this screen, strong effects of a rarA deletion in

a ruvB deleted background caught our attention and provided the genesis of the study pre-

sented here.

Results

The following work examines the effects of rarA deletions and mutations in a variety of genetic

backgrounds. We note that the rarA deletion strains described below utilize rarA ΔN406,

which inactivates the gene by eliminating the first 406 codons but retains the final 40 codons

of the gene. As will be described elsewhere, the final 40 codons of the gene include sequences

that affect expression of the downstream gene serS. Deletion of the entire rarA gene affects serS
expression and triggers a stringent response that can greatly obscure the normal effects of rarA
gene inactivation. The protein has also been referred to as MgsA, a reference to its homology

with the yeast protein Mgs1 [107]. As the RarA designation was proposed first [93], we use the

rarA nomenclature.

Elimination of both RarA and RuvB has a synergistic and deleterious effect

on DNA metabolism

The Escherichia coli RarA AAA+ ATPase protein shares 26% sequence identity and 46% simi-

larity with the E. coli clamp loader DnaX [93]. RarA also shares 26% sequence identity and

44% similarity with the RuvB DNA translocase [93]. An alignment of E. coli RarA and RuvB

via CLUSTAL X multiple sequence alignment illustrates the well-conserved nucleotide-bind-

ing sites with Walker A and Walker B motifs (Fig 1A). Our examination of the effects of ruvB
deletions in a rarA deletion background revealed strong effects on many levels.

Growth defect

We began by measuring the growth rate of ΔrarA, ΔruvB and a double mutant ΔrarA ΔruvB
strain. The initial cultures were normalized to an OD600 of 0.005 and growth was monitored

every 10 min for 24 h at 37˚C. Deletion of rarA or ruvB alone does not significantly affect cell

growth. However, deleting both rarA and ruvB causes significant growth defects (Fig 1B). The

doubling time during exponential phase increased by approximately 10 min (Fig 1B). Station-

ary phase was reached much earlier, with only 1/3 the number of cells (measured by cfu)

present.

Sensitivity to DNA damaging agents

We tested the ΔrarA, ΔruvB, and ΔrarA ΔruvB strains for hypersensitivity to DNA damaging

agents. Nitrofurazone (bulky guanine base adducts), ciprofloxacin (gyrase inhibitor), mitomy-

cin C (DNA crosslinks), H2O2 (oxidation of Fe-S centers and Cys residues, plus strand breaks)

and UV radiation (pyrimidine dimers), were all tested. Deleting rarA alone produced no
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significant defect on cell fitness with any of the DNA damaging agents at the concentrations

employed (Fig 2A). Deleting ruvB alone produced modest effects on growth rate and/or viabil-

ity with some of the DNA damaging agents. Elimination of both RarA and RuvB function

increased the cells’ sensitivity to every DNA damaging treatment. A 2 to 3 log fold difference

was evident in most cases between double and single mutants. Elimination of only the ATPase

activity of RarA is sufficient to generate all of these effects (Fig 2B). Combining the rarA K63R

mutant, which replaces a key residue in the Walker A box and eliminates ATP hydrolysis [99],

with a ruvB deletion, replicates the results seen in the ΔrarA ΔruvB work almost exactly. The

evident rarA epistasis seen with ruvB extends to ruvC (Fig 2C). The results suggest that, in con-

cert with rarA, the response to DNA damage reflects the entire RuvABC system and not simply

ruvB. The deleterious effects generally reflect decreased viability but slower growth rates also

contribute, as seen when plates are incubated for longer times (S1 Fig)

These results indicate that RarA and RuvB exhibit some degree of functional homology that

may reflect the existence of multiple pathways for resolution or reversal of recombination

intermediates. Removal of both RarA and RuvB-dependent DNA repair processes greatly

decreases the damage tolerance capacity of the cell and results in a growth defect in the absence

of exogenous damage.

Suppression of effects by elimination of recF, recO functions

The function of the RuvABC complex is generally to process recombination intermediates cre-

ated by RecA protein. A failure to process these intermediates has the potential for toxicity. As

RecA protein loading is mediated by the RecF, RecO, and RecR proteins in single strand DNA

gaps, we explored the effects of recF and recO deletions on the phenotypes observed for the

ΔrarA ΔruvB double mutants. Results are presented in Fig 3.

In general, introduction of a deletion of recF or recO alone did not increase sensitivity to

any DNA damaging agent at the levels employed, except for modest effects with UV irradia-

tion observed previously [25, 37, 111–116]. We note that the absence of recF or recO function

does result in sensitivity to higher levels of NFZ or MMC than used here [113, 117]. There was

little to no effect of an introduction of recF or recO deletions on DNA damage sensitivity when

introduced into strains carrying rarA or ruvB deletions alone. In contrast, large effects were

seen when recF or recO were introduced to the ΔrarA ΔruvB double mutant to create triple

mutants. In all cases, the recF and recO deletions strongly suppressed the effects of the double

mutants, generally decreasing sensitivity to levels seen with ruvB deletions alone. For example,

In Fig 3A and 3B, panel 3, when the cells were treated with Ciprofloxacin, the addition of

ΔrecF or ΔrecO mutations suppressed the sensitivity of ΔrarA ΔruvB cells by 2 to 3 logs.

To confirm if the suppression of the rarA ruvB phenotype by recF or recO deletions reflects

the function of RecA loading on ssDNA, we further tested the effect of reducing RecA concen-

tration on the sensitivity of ΔrarA ΔruvB cells. A point mutation (T to C) in the first position

of the six-nucleotide Pribnow box sequence of the recA promoter was introduced to reduce

expression of the recA gene [118]. As observed with the recF and recO deletions, addition of

this mutation rescued the damage sensitive phenotype of rarA ruvB cells (S2 Fig). The results

suggest that both RarA and RuvB are acting downstream of RecA, and that toxicity is avoided

Fig 1. RarA shares similarity with RuvB protein and absence of both causes a growth defect. (A) RarA and RuvB share 26% sequence similarity

as determined via BLAST alignment tool. (B) Elimination of RarA decreases the growth rate of ΔruvB cells. Growth curves for WT, ruvB, rarA,

ruvB rarA grown at 37˚C in LB medium for 1000 minutes are shown. Doubling time and cell counts per ml were calculated at exponential and

stationary phase respectively. Error bars on the graph and in reported doubling times represent the standard deviation of at least three

independent repeats carried out on the same day in the same microtiter plate. Each experiment was also repeated on three different days (each

time in triplicate) with consistent results to confirm the phenotype.

https://doi.org/10.1371/journal.pgen.1009972.g001
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if RecA-generated recombination intermediates are not formed. The suppression was also

seen in the growth curves (Fig 3C and 3D). The growth defect was eliminated when a recF
deletion was introduced, reduced when recO was deleted.

Effects on cell filamentation

The effects of rarA and ruvB function loss can also be seen in cell filamentation (Fig 4). Com-

pared to wild type cells, loss of rarA or recO function has no discernible effect on cell length.

Cells have a somewhat greater average length if recF or ruvB are inactivated. Loss of rarA and

ruvB together has the largest effect on average cell length and results in the presence of a signif-

icant number of cells over 10 μm in length. The effects of the loss of rarA and ruvB were again

suppressed by inactivating recO or recF. Loss of recF function in the double mutant decreases

average cell length approximately to the level seen when recF alone was deleted. Loss of recO
function in the double mutant decreases average cell length to the level seen in wild type cells.

Suppression of effects by elimination of recJ
The RecJ protein is an exonuclease that degrades ssDNA 50!30, with a limited capacity to

degrade into a duplex DNA [45, 119, 120]. RecJ has a role in stabilizing the formation of RecA-

generated joint molecules [38, 43]. To complement our work with recF and recO, we examined

the effects of deletions in the gene recJ along with another encoding the 30!50 ssDNA exonu-

clease exoI. The recJ deletion was essentially as effective as the recF and recO deletions in sup-

pressing the sensitivity to DNA damaging agents (Fig 5A). The results suggest that RecJ plays

an important role at early stages of RecA-mediated repair of post-replication gaps and that its

action is toxic when the intermediates generated cannot be resolved or reversed by RarA or

RuvB. Deleting the gene encoding exonuclease I had a modest suppression effect with respect

to NFZ and ciprofloxacin (Fig 5B, panel 2 and 3), with a significant effect difficult to discern

with MMC and peroxide. The effect of a recJ gene deletion is clearly greater.

SOS induction

We next explored whether the difference between the ΔrarA ΔruvB and ΔrarA ΔruvB ΔrecF or

ΔrecO phenotypes to the different DNA damaging agents was also reflected in SOS induction

levels. SOS induction requires the creation of ssDNA and the loading of RecA protein onto

that ssDNA. Once loaded, RecA can both promote steps in recombination and also facilitate

LexA cleavage to induce SOS [25, 27]. SOS induction is thus a (very) indirect indication of the

presence of ssDNA as long as RecA is present and can be loaded. We used plasmid pEAW903

carrying SuperGlo GFP under the regulation of the SOS-inducible recN gene promoter. Dele-

tion strains carrying pPrecN-gfp plasmid were grown to O.D. = 0.2. Replicate cultures were

then treated or not with a UV dose of 50 J/m2. GFP expression along with absorbance was

recorded every 10 mins for 16 h. SOS response was calculated by dividing the fluorescence

intensity with OD for each time point to account for a difference in the growth rate in the

strains tested. An absence of RarA function did not substantially alter the observed SOS signal,

with or without UV treatment (Fig 6A and 6B). Elimination of RuvB function produced an

increase in the SOS signal, both with or without UV treatment. Including a rarA deletion with

the ruvB deletion resulted in a further increase in the SOS signals.

Fig 2. Synergistic sensitivity of strains lacking both RarA and RuvB/RuvC function to DNA damage. (A) Spot assays to test susceptibility

of WT, ruvB, rarA, ruvB rarA (B) WT, ruvB, rarA, ruvB rarA, rarAK63R, ruvB rarAK63R, to test role of the RarA ATPase (C) WT, ruvC,

rarA, ruvC rarA sensitivity. The concentration or dose of each DNA damaging agent is listed.

https://doi.org/10.1371/journal.pgen.1009972.g002
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Fig 3. Suppression of rarA ruvB deficiencies by inactivation of RecF or RecO. (A and B) Sensitivity analysis of ΔrecF and

ΔrecO deletion in rarA, ruvB and rarA ruvB backgrounds on exposure to different drugs. (C and D). Growth curves of WT,

recF, recF rarA, recF ruvB, recF rarA ruvB, recO, recO rarA, recO ruvB, recO rarA ruvB mutants in LB medium. OD600 vs time
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In the absence of UV, the recF or recO deletions produced substantial SOS signals on their

own. Addition of deletions in rarA or ruvB somewhat decreased the signals seen with recF,

whereas the signal seen with a recO deletion was increased by the presence of rarA or ruvB
deletions. The ΔruvBΔrarA combination produced the greatest signal, and this was suppressed

significantly by including either a recO or recF deletion. If the SOS signal is taken as a reflection

of single-stranded DNA availability, a complex interplay is evident in which SOS may be

reduced if RecA loading into gaps that occur during normal growth is limited and increased if

RecA-generated intermediates in single-stranded DNA gaps cannot be processed properly.

When measured for the first hour after UV treatment, a loss of RecF or RecO function can

result in slower SOS induction [37, 121]. This occurred in our system as well, although it was

difficult to discern with SOS expression viewed over an extended period of time (Fig 6B, 6D

and 6F). After that initial lag, deletion of recF or recO greatly increased the expression level of

SOS-controlled genes even in the absence of UV or other induction. UV treatment of cells

lacking recO or recF function can result in substantial genome degradation and very high SOS

induction levels [122–125]. The presence of rarA and/or ruvB deletions did little to change the

high levels of SOS induction (Fig 6B, 6D and 6F). The results suggest that RecA-mediated

DNA repair, with loading from RecO and associated proteins, addresses the post-replication

gaps created when UV lesion levels abruptly increase. If RecA loading into gaps is blocked by

the absence of RecO or RecF, the SOS response is delayed and the gaps are not repaired. As a

significant number of the cells survive (Fig 3), another repair path must eventually resolve

some of the problems. This may be double strand break repair which is triggered by subse-

quent replisome encounters with the gaps leading to the generation of double strand breaks.

Processing of these breaks by RecBCD and RecBCD-mediated loading onto the processed

ssDNA could be responsible for the large increase in SOS induction seen after the first hour.

Introducing a recB deletion to ΔruvB ΔrarA double mutant increases

sensitivity to DNA damaging agents

In double strand break repair, the enzyme that prepares the ssDNA and loads RecA protein is

the RecBCD nuclease/helicase [126–128]. We wished to determine how the RecBCD repair

pathway might be contributing to the observations described above for cells lacking rarA and

ruvB function. Rather than suppressing the effects of a ΔruvB ΔrarA double mutant, the addi-

tion of a recB deletion to these cells increased sensitivity to most DNA damaging agents (Fig 7,

row 4 and row 6). This suggests that (a) the toxic intermediates being produced by RecA pro-

tein and resolved by RarA and RuvB are not being produced during double strand break repair

and (b) that most of the cells that survive high levels of DNA damage in a ΔruvB ΔrarA double

mutant are relying on double strand break repair.

Introducing a recG deletion to ΔruvB ΔrarA double mutant produces

synthetic lethality

We first checked if deletion of rarA alone affects the sensitivity of ΔrecG cells substantially.

Elimination of rarA modestly increases the sensitivity of recG cells to NFZ and MMC (Fig 8A).

for each strain is shown in comparison to a wild type (in black). Using the data from the exponential (log) phase of these

growth curves, the doubling time of the different strains was calculated and is presented as a table. Error bars on the graph

and reported doubling time represent the standard deviation of three independent repeats carried out on the same day in the

same microtiter plate. Each experiment was also repeated on three different days (each time in triplicate) with consistent

results to confirm the phenotype.

https://doi.org/10.1371/journal.pgen.1009972.g003

PLOS GENETICS A role for RarA in the resolution of recombination intermediates

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009972 December 22, 2021 10 / 31

https://doi.org/10.1371/journal.pgen.1009972.g003
https://doi.org/10.1371/journal.pgen.1009972


PLOS GENETICS A role for RarA in the resolution of recombination intermediates

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009972 December 22, 2021 11 / 31

https://doi.org/10.1371/journal.pgen.1009972


ΔrecG ΔruvB cells were extremely sensitive to all kinds of damage and exhibited reduced viabil-

ity, as has been observed previously (Fig 8B) [60, 72, 83, 84].

We found it impossible to construct a triple mutant strain with deletions in the rarA, ruvB
and recG genes. To confirm synthetic lethality, we used a mini-F plasmid-based assay to fur-

ther characterize this genetic relationship. The unstable pRC7 plasmid that is employed in this

study is a mini-F derivative that carries the lac operon and an antibiotic resistance gene for

selection [118, 129, 130]. This unstable plasmid is rapidly lost in media without selection. In a

Δlac background, cells containing the plasmid are blue when grown on X-gal and IPTG plates.

Colonies arising from cells that lost the plasmid are white. Inserting a wild type allele of genes

of interest on this plasmid will act as a form of selection in an antibiotic free media. We used

three different pRC7 derivatives to validate our observation. Those were pJJ100, carrying a

wild type copy of recG; pEAW1012, featuring a wild type copy of rarA and pEAW1193, a ruvB
+ derivative of pRC7. Cells lacking either rarA, ruvB or recG alone or double mutants ΔrarA
ΔrecG, ΔrarA ΔruvB or ΔruvB ΔrecG lost the plasmid expressing RarA and produced white col-

onies at a frequency range of 33%-50% after 24 hrs of growth (Fig 8C). To construct a triple

mutant chromosomal background, we introduced the deletion only after transforming the

cells with one of the pRC7 derivatives expressing one of the three proteins. When a ΔrarA
ΔrecG ΔruvB strain was grown with pRC7 derivatives containing either ruvB, rarA or recG and

plated on X-gal and IPTG plates, almost all of the colonies were blue after 24 h of growth, indi-

cating strong plasmid retention. The results are quantified in Fig 8D. These observations

Fig 4. Deletion of RecF or RecO decreases the filamentation of ΔrarA ΔruvB cells. Deletion of rarA filaments the ruvB- cell.

Morphological analysis of WT, ruvB, rarA, ruvB rarA was conducted using N-storm microscope as described in Methods. The effect of a

deletion of recF or recO on the cell size of rarA, ruvB and rarA ruvB were also determined. Removal of recF or recO suppressed the

filamentation defect of rarA ruvB cells. Reported error in cell length measurements represent the standard deviation of at least three

independent repeats. n> 300 cells for each strain used.

https://doi.org/10.1371/journal.pgen.1009972.g004

Fig 5. Deleting recJ (50-30 exonuclease) suppresses the sensitivity of rarA ruvB cells. (A) Susceptibility of rarA, ruvB and rarA ruvB with and without a recJ
deletion to different drugs was tested (B) Deletion of Exonuclease I function has a small to negligible effect on the sensitivity of rarA, ruvB and rarA ruvB to

damaging agents.

https://doi.org/10.1371/journal.pgen.1009972.g005
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indicate that RarA, RuvB and RecG share a functional relationship, and the presence of at least

one is a prerequisite for cell survival.

Introducing a recQ deletion to ΔruvB ΔrarA double mutant produces

synthetic lethality

RecJ often acts in concert with the RecQ helicase to process DNA ends at double strand breaks

[44, 46, 47, 82, 131, 132]. We thus determined what the effects of a recQ deletion would be in a

ΔrarA ΔruvB background. Unlike the recJ deletions, the elimination of recQ function did not

Fig 6. The SOS response is induced in ΔrarA ΔruvB cells, even in the absence of external stress. SOS induction profiling of different mutants with and

without UV exposure was conducted. (A and B) SOS levels are increased substantially in rarA ruvB double mutants compared to any single mutants both with

and without stress. SOS induction levels of (C and D) rarA ruvB recF and (E and F) rarA ruvB recO triple mutants were compared to their respective double

and single mutants with and without UV exposure of 50J/m2. Addition of ΔrecF or ΔrecO partially suppresses the SOS levels of rarA ruvB cells under normal

conditions. Error bars on the graph represent the standard deviation of three independent repeats carried out on the same day in the same microtiter plate.

Each experiment was also repeated on three different days (each time in triplicate) with consistent results to confirm the phenotype.

https://doi.org/10.1371/journal.pgen.1009972.g006
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suppress the effects of a ΔrarA ΔruvB double mutant (S3A Fig). Instead, the recQ deletion, like

the recG deletion, produced synthetic lethality (Fig 8C and 8E). In this genetic context, the

effects of recJ and recQ are quite different as deletion of recJ in the rarA ruvB background did

not increase the retention rate of pRC7-rarA plasmid as deletion of recQ clearly did (S3 Fig).

Synthetic lethality with ruvB and rarA thus extends to the RecQ helicase, which has a function

that is essential in a ΔrarA ΔruvB background to process intermediates produced by RecA,

RecF, RecOR, and RecJ. RecQ can reverse RecA-mediated strand invasion [133] and this func-

tion may be especially important in ΔrarA ΔruvB cells.

Elimination of RecF, RecO, or RecJ, suppresses the inviability of ΔruvB
ΔrarA ΔrecG cells

Next, we determined if the loss of the RecA-loading system rescued viability in this triple

mutant. The recF or recO deletions were first introduced into the ΔruvB ΔrarA background fol-

lowed by the incorporation of a ΔrecG mutation. We observed that deletion of either recF or

recO permits survival of ΔruvB ΔrarA ΔrecG triple mutant under normal growth conditions.

However, these quadruple mutants displayed acute sensitivity to all DNA damaging agents.

Thus, even though growth could be restored with this quadruple mutation under normal con-

ditions in rich media, it remained highly sensitive to elevated levels of DNA damage (Fig 9A)

as all of the main paths for DNA repair in gaps were lost. These results indicate that RecFOR

mediated RecA-dependent recombinational DNA repair is toxic when RarA, RuvB, and RecG

mediated resolution systems are all absent.

Deletion of recJ also suppressed the synthetic lethality of the ΔruvB ΔrarA ΔrecG triple

mutant (Fig 9Β). This result helps to cement the role of RecJ in the creation of the intermedi-

ates that produce toxicity in cells lacking any pathway to resolve those intermediates.

Fig 7. Addition of recB increases the sensitivity of rarA ruvB cells to DNA damage. Sensitivity check of rarA, ruvB
and rarA ruvB cells with and without recB deletion towards various DNA damaging agents.

https://doi.org/10.1371/journal.pgen.1009972.g007
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Discussion

This work leads to two primary conclusions. First, loss of both RarA and RuvABC function

causes a growth defect and synergistically increases cell susceptibility to almost all DNA dam-

aging agents used in this study. This observation indicates that RarA exhibits some functional

redundancy with the RuvABC proteins. The suppression observed by elimination of the RecF

or RecO activities suggests a RarA function downstream of RecA protein. Second, the presence

Fig 8. Deletion of recG or recQ renders ΔruvBΔrarA strains inviable. (A and B) Drug sensitivity analysis of a recG deletion in the absence of RarA or

RuvB function. Deletion of recG in ruvB and somewhat rarA increases the cell sensitivity to many DNA damaging agents. (C) X-gal IPTG plate images

showing the results of pRC7 assays in single, double and triple mutants of rarA, ruvB, recG, and recQ genes. pRC7 plasmid carrying the wild type copy of

either rarA, ruvB or recG was employed. Many of the results are quantified in panels D and E. B: (B+W) = ratio of blue to total colonies.

https://doi.org/10.1371/journal.pgen.1009972.g008
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of both RecQ and RecG is essential in a cell lacking the function of RarA and RuvB. Deletion

of either the recG or recQ genes in the ΔrarA ΔruvB background makes the cell inviable.

Again, if one assumes that RecF and RecO are needed to establish RecA filaments in post-repli-

cation gaps, suppression of the lethality by eliminating RecF or RecO suggests that in this

genetic context, we are observing pathways that function in the resolution or reversal of inter-

mediates created by the RecA recombinase. The role of RecJ in creation of those intermediates

is less well understood but clearly important. Overall, the results suggest the presence of multi-

ple pathways for resolution or elimination of RecA-generated intermediates during recombi-

national repair of post-replication gaps (Fig 10).

Our conclusion that the results of this study primarily reflect deficiencies in the repair of

post-replication gaps is based on previous work with rarA [24] and the common assignment

of the RecF and RecO proteins to gap repair [11, 34, 116, 134, 135]. All three of these proteins,

RarA, RuvB, and RecG, have additional roles in DNA metabolism and some of the observed

effects may reflect those roles in part. RarA is required for most RecA-independent recombi-

nation involving short DNA repeats [24]. This suggests an activity for RarA that may overlap

with that of RecA [24, 107]. However, RecA-independent recombination is rare and RarA can

support cell growth in a ruvB recG background. At first, the capacity of RarA to occasionally

facilitate a RecA-like outcome when RecA is absent seems to conflict with a RarA function in

the resolution or reversal of intermediates created by RecA. We suggest that the function of

RarA downstream of RecA may be more important, with recombination in the absence of

RecA merely incidental–a rare outcome of the still-enigmatic RarA activity. RuvB can function

in double strand break repair as well as gap repair [58, 136–140] and it is not clear how much

that role contributes to the deficiencies noted here. RecG has roles in post-replication gap

repair [118, 141], but also in the regression of stalled forks [66, 68, 142–144] and avoiding

over-replication at the replication terminus [78, 79, 145]. The suppression of effects here by

elimination of RecF and RecO functions helps us focus on its role in post-replication gaps.

Decades of research has accorded the recF, recO, and recR genes the status of an epistasis

group, often labeled RecFOR [31]. However, small differences observed in this work between

the results seen with recO and recF should not be surprising. RecR forms complexes alterna-

tively with RecO or RecF [16]. RecO, in complex with RecR, is clearly implicated in loading

Fig 9. Addition of recF, recO, or recJ deletion restores the viability of the rarA ruvB recG mutant. (A) Effect of deletion of recF or recO on the viability

and DNA damage sensitivity of rarA ruvB recG. (B) Effects of the deletion of recJ on the viability of the triple mutant.

https://doi.org/10.1371/journal.pgen.1009972.g009
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RecA protein onto SSB-coated ssDNA and promotes this reaction in vitro [16, 34–36].

Although RecF can affect (both positively and negatively) RecOR-mediated loading of RecA

under limited conditions in vitro [16, 34–36], RecF or the RecFR complex does not facilitate

RecA loading on its own. A complex containing all three proteins has never been observed.

The RecF and RecO proteins rarely co-localize in vivo [31] and the molecular function of RecF

is still enigmatic.

In principle, RecA-mediated gap filling can proceed in one of two ways (Fig 10). Both paths

are replete with topological complexities. First (Fig 10A), the RecA filament may form on the

ssDNA gap and promote strand invasion of that gap ssDNA into a homologous duplex. As the

ssDNA bound by RecA in this instance has no free end, formation of a stable joint molecule

would require the activity of a nuclease, topoisomerase, or both. Resolution of the stable joint

molecule would entail additional topological problems as well as branch migration. Second

(Fig 10B), the 30-ending strand at one end of the gap can be used by RecA for strand invasion.

This would require that RecA filaments NOT form in the gap but instead form on a 30-ending

strand created by a helicase and perhaps functions not yet defined. Stabilization and successful

extension of the invading strand would again require the activities of a nuclease and/or a topo-

isomerase, as well as some function that would direct RecA to the unwound strand and away

Fig 10. Recombinational DNA repair of a post-replication gap. This model is presented in part to illustrate the complexities inherent in using recombination

to provide an undamaged strand against which a lesion in a post-replication gap can be repaired. (A) If RecA protein binds in the gap itself, as often presumed,

DNA pairing and creation of a stable joint molecule must overcome a large topological barrier. (B) If RecA instead catalyzes strand invasion by an unwound 30-

ending DNA strand, topological barriers are still evident. A complex combination of enzymatic activities would be needed to support these reactions. There are

many potential roles for undefined enzymatic activities such as RarA.

https://doi.org/10.1371/journal.pgen.1009972.g010
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from the gap itself. Topoisomerase III has a role in post-replication gap repair via RecA-medi-

ated recombination and could provide the topoisomerase function [114, 146–149]. In concert

with RecQ, topoisomerase III can catenate DNA in a way that might facilitate one or both

pathways in Fig 10 [147, 148]. Following strand invasion, if a break can be introduced into the

displaced strand and the resulting 50-ending strand degraded by RecJ, many of the joint mole-

cule stabilization and topological problems inherent to these pathways could be alleviated. It is

not clear what enzyme might contribute the postulated break or if it indeed occurs. There are

many points in these pathways where RarA could participate, highlighted in Fig 10. They

involve either the processing or reversal of branched DNA intermediates.

In the processing of double strand breaks, RecJ and RecQ can operate together to unwind

the end (RecQ) and resect the 50-ending strand [38, 47, 132]. In gap repair, the roles of these

enzymes may be more distinct as suggested by these results, or not. RecQ may function with

RecJ in the production or stabilization of joint molecules but its genetic effects as seen here

could reflect a different function, the reversal of potentially toxic strand invasion events when

their productive resolution is not possible. Alternatively, RecQ might collaborate with RecG in

a recombination intermediate resolution process that requires both proteins.

RarA has sequence homology to both the RuvB DNA translocase and the DnaX clamp

loader. The actual structure of the protein [99] suggests that the clamp-loader relationship

could provide the more fruitful conceptual path. In both of the schemes of Fig 10, final repair

of the gap will eventually require extension of a 30 end by a DNA polymerase. In these path-

ways, there is no lesion in the template strand so polymerases I or III may be operative. A pos-

sible function for RarA would be clamp-loading to facilitate that step. Such a function has not

been demonstrated to date, a failure that may reflect a requirement for a particular context of

DNA structures and proteins not yet reconstituted. Alternatively, if strand invasion is followed

closely by the installation of a DNA polymerase and a β-clamp to facilitate extension of the

invading strand, then RarA might participate in reversal of that process by functioning as a

clamp unloader. Of course, the function of RarA may be entirely different.

Overall, the results are reminiscent of the “death by recombination” observed by Rosenberg

and coworkers in ΔuvrD ΔrecG or ΔuvrD Δruv strains [82]. Many of the same functions,

including RecA, RecF, RecO, and RecR, are required to produce toxic recombination interme-

diates that are not resolved in these cells. RecQ and RecJ both contribute to the deleterious

effects. In the ΔrarA ΔruvB background explored here, RecQ plays a supportive role that allows

some cells to survive. We speculate that the capacity of RecQ to reverse RecA-mediated strand

invasion may be more important in this background.

The results highlight once again the need for recombinational DNA repair during virtually

every replication cycle when cells are grown in rich media, as noted elsewhere [7, 118]. Post-

replication gaps also appear in virtually every replication cycle, even when added DNA damag-

ing agents are not present. Resolution of these gaps is important and represents a first response

to DNA lesions that the replisome has bypassed. Failure to initiate gap repair leads inevitably

to double strand break repair when the subsequent replication fork arrives, with RecBCD pro-

viding a backstop to gap repair failures. Failure to complete gap repair can lead to fixation of

DNA recombination intermediates behind the replication fork, which can block cell division

and eventually trigger cell death.

With the links evident to RecF, RecO, and RecR, we propose that RarA should be added as

a contributor to an expanded RecFOR recombination pathway for the repair of post-replica-

tion gaps. This expanded pathway should be viewed as one with multiple paths to the resolu-

tion of crossover intermediates created by RecA.

RarA, RuvB and RecG (or RecQ) provide parts of three pathways, perhaps overlapping, for

the resolution or reversal of recombination intermediates created by RecAFORJ. RarA shares
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56% homology with its human homolog, WRNIP1. In humans, WRNIP1 interacts with an

ATP-dependent helicase gene called Werner helicase (WRN). WRN is a member of the RecQ

DNA helicase family and is involved in many DNA transactions such as DNA recombination,

repair, transcription, and telomere maintenance. Mutation in this gene causes the rare autoso-

mal recessive disorder Werner’s syndrome, which is characterized by premature aging and

early onset of age-related diseases [150–153]. The activity of WRNIP1 remains undefined,

although it is clearly present in many key repair contexts [154–158]. We do not yet have a

defined molecular function for RarA that conforms to its in vivo effects. A role in the process-

ing or reversal of crossover intermediates created by RecA, as described above, seems likely

based on the results of the current study. Ongoing research in bacteria should provide more

detailed answers.

Materials and methods

Strain construction

All strains used in this study are E. coli MG1655 derivatives and are listed in Table 1. The

rarAΔN406 and rarAK63R strains were constructed using a galK+ selection-based recombi-

neering method as described by Warming and Copeland [159]. The lamba red recombination

Table 1. List of strains used in this study.

Strain Genotype Parent strain Source/Technique

MG1655 rarA+ recA+ exoI+ recJ+ recF+ recO+ recR+ polB+ dinB+ umuDC
+

George Weinstock

EAW1097 ΔruvB MG1655 Transduction of MG1655 with P1 grown on EAW401 (ruvB)

EAW1445 ΔruvC MG1655 Lambda RED recombination

EAW974 ΔrarA MG1655 Gal K+ recombineering with no antibiotic markers

KJ642 ΔrarA ΔruvB EAW974 Transduction of ΔrarA with P1 grown on ΔruvB
KJ689 ΔrarA ΔruvC EAW974 Transduction of ΔrarA with P1 grown on ΔruvC
EAW907 rarAK63R MG1655 Gal K+ recombineering with no antibiotic marker

KJ660 rarAK63R ΔruvB EAW907 Transduction of rarAK63R with P1 grown on ΔruvB
EAW629 ΔrecF MG1655 Transduction of MG1655 with P1 grown on ΔrecF
EAW114 ΔrecO MG1655 Lambda RED recombination

EAW989 ΔrecF ΔrarA EAW974 Transduction of ΔrarA with P1 grown on ΔrecF
EAW984 ΔrecO ΔrarA EAW974 Transduction of ΔrarA with P1 grown on ΔrecO
KJ746 ΔrecF ΔruvB EAW629 Transduction of ΔrecF with P1 grown on ΔruvB
KJ747 ΔrecO ΔruvB EAW114 Transduction of ΔrecO with P1 grown on ΔruvB
KJ691 ΔrecF ΔrarA ΔruvB KJ643 Transduction of ΔruvB ΔrarA with P1 grown on ΔrecF
KJ742 ΔrecO ΔrarA ΔruvB KJ643 Transduction of ΔruvB ΔrarA with P1 grown on ΔrecO
EAW820 ΔrecJ MG1655 Lambda RED recombination

EAW1150 ΔexoI MG1655 Transduction of ΔrarA with P1 grown on EAW326 (ΔexoI)
EAW1147 ΔrarA ΔrecJ EAW974 Transduction of ΔrarA with P1 grown on ΔrecJ
KJ773 ΔrarA ΔexoI EAW974 Transduction of ΔrarA with P1 grown on ΔexoI
KJ776 ΔruvB ΔrecJ EAW1097 Transduction of ΔruvB with P1 grown on ΔrecJ
KJ772 ΔruvB ΔexoI EAW1097 Transduction of ΔruvB with P1 grown on ΔexoI
KJ775 ΔrarA ΔruvB ΔrecJ KJ643 Transduction of ΔrarA ΔruvB with P1 grown on ΔrecJ
KJ774 ΔrarA ΔruvB ΔexoI KJ643 Transduction of ΔrarA ΔruvB with P1 grown on ΔexoI
EAW102 ΔrecB MG1655 Transduction of MG1655 with P1 grown on EAW81 (ΔrecB)
EAW995 ΔrecB ΔrarA EAW974 Transduction of ΔrarA with P1 grown on ΔrecB
KJ696 ΔrecB ΔruvB EAW1097 Transduction of ΔruvB with P1 grown on ΔrecB

(Continued)
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method described by Datsenko and Wanner [160] was used to construct all other strains.

When required, antibiotic resistance of a given strain was eliminated using FLP recombinase

encoded by the pLH29 plasmid as described previously [161]. For strains containing multiple

deletions, P1 transduction was used to introduce multiple alleles. To construct the quadruple

mutant like ΔrarA ΔruvB ΔrecF ΔrecG strain, the recF deletion was first introduced into the

ΔrarA ΔruvB strain by P1 transduction. The ΔrecG mutation was then transduced into this

strain via P1. All chromosomal mutations were confirmed by PCR amplification around all

relevant deletion sites and/or using Sanger sequencing.

Growth curves and doubling time calculations

LB (3 ml) was inoculated with the indicated strains directly from the freezer stock to minimize

the suppressor accumulation and growth before testing. Each culture was then diluted to give a

starting OD600 of 0.005 and 100 μl of each culture was added to a 96-well plate. Growth was

monitored at 37˚C while shaking in a H1 Synergy Biotek plate reader. Optical density readings

were taken every 10 min for 24 h. For doubling time calculations, semi-log curves of OD600 vs

time were plotted. The slope (B) was estimated during the exponential phase for each strain. B

is the slope of an exponential regression line for the semi-log curve. For example, if a quantity

X increases from X0 at time t0 to 2�X0 at some future time t0 + Δt, Δt denotes the doubling

time. Δt was calculated using the equation below,

B ¼ ½ðlogð2Þ þ logðX0ÞÞlogðX0Þ�=Dt

B ¼ logð2Þ=Dt:

For cell count estimation, each strain was inoculated in LB to an OD600 of 0.01 and grown

at 37˚C till the OD600 reached 1.5 (stationary phase). A 1 mL culture aliquot of each strain was

pelleted and resuspended in 1X PBS buffer. The cultures were serially diluted and 100μl of

10−7 and 10−8 dilutions of each culture were plated on LB plates. The total number of colonies

was counted and total cell count per mL was estimated for each strain.

SOS induction

To monitor SOS induction, a plasmid expressing SuperGlo GFP under the control of the early

SOS recN promoter (pEAW903), was employed. Each strain was transformed with pEAW903

Table 1. (Continued)

Strain Genotype Parent strain Source/Technique

KJ694 ΔrecB ΔrarA ΔruvB KJ643 Transduction of ΔruvB ΔrarA with P1 grown on ΔrecB
EAW505 ΔrecG MG1655 Lambda RED recombination

KJ732 ΔrecG ΔrarA EAW974 Transduction of ΔrarA with P1 grown on ΔrecG
KJ666 ΔrecG ΔruvB EAW1097 Transduction of ΔruvB with P1 grown on ΔrecG
KJ883 ΔrarA ΔruvB ΔlacZYAI +pRC7-rarA KJ879 Transformation of pRC7-rarA into ΔruvB ΔrarA ΔlacZYAI
KJ893 ΔrecG ΔrarA ΔruvB ΔlacZYAI +pRC7-rarA KJ887 Transduction of ΔruvB ΔrarA ΔlacZYAI + pEAW1012 with P1 grown on ΔrecG
KJ910 ΔrecG ΔrarA ΔruvB ΔlacZYAI +pRC7-ruvB KJ884 Transduction of ΔruvB ΔrarA ΔlacZYAI + pEAW1193 with P1 grown on ΔrecG
KJ894 ΔrecG ΔrarA ΔruvB ΔlacZYAI +pRC7-recG KJ879 Transduction of ΔruvB ΔrarA ΔlacZYAI + pJJ100 with P1 grown on ΔrecG
KJ923 ΔrecQ ΔrarA ΔruvB ΔlacZYAI +pRC7-rarA KJ887 Transduction of ΔruvB ΔrarA + pEAW1012 with P1 grown on ΔrecQ
KJ692 ΔrecG ΔruvB ΔrarA ΔrecF KJ691 Transduction of ΔruvB ΔrarA ΔrecF with P1 grown on ΔrecG
KJ736 ΔrecG ΔruvB ΔrarA ΔrecO KJ735 Transduction of ΔrecG ΔrarA ΔrecO with P1 grown on ΔruvB
KJ825 ΔrecG ΔruvB ΔrarA ΔrecJ KJ802 Transduction of ΔruvB ΔrarA ΔrecJ with P1 grown on ΔrecG

https://doi.org/10.1371/journal.pgen.1009972.t001
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and the transformants were selected on ampicillin plates. Transformants were then inoculated

in a 3 ml LB media containing ampicillin and the cultures were grown until they reached an

OD600 of 0.2. Each culture was then split in two, and half of the culture of each strain was

exposed to a UV dose of 50 J/m2. GFP fluorescence at 488/515nm and absorbance at 600 nm

was then monitored every 10 mins for 24 h at 37˚C using an H1 Synergy Biotek plate reader.

SOS induction was calculated by dividing the GFP fluorescence values via absorbance. Statisti-

cal analysis was based on at least three replicates in all experiments.

DNA damage sensitivity assay

All strains were grown in 3 ml LB culture overnight at 37˚C with continuous shaking. 30 μl of

overnight cultures of indicated strains were inoculated in fresh 3 ml LB medium and grown at

37˚C until the OD600 measured 0.2. Aliquots (1 mL) were taken from each culture and were

serially diluted in 1X PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM

KH2PO4, 1 mM CaCl2 and 0.5 mM MgCl2) to 10−6. After each dilution, 10 μL were spotted on

freshly made agar plates containing the indicated DNA damaging agents. Plates were incu-

bated overnight at 37˚C and imaged the next day using a 700 FOTO/Analyst Apprentice Digi-

tal Camera System (Fotodyne, Inc.). All experiments were repeated at least three times with

comparable results.

Mini-F pRC-7 plasmid assay

The pRC7 plasmid is a lac+ mini-F low copy derivative of pFZY1 [118, 129, 130]. Two deriva-

tives of pRC7 were constructed, pEAW1012 that expresses a WT copy of the rarA gene and

pEAW1193 that expresses a copy of ruvB. Another derivative, pJJ100 that harbors recG, was a

generous gift from Christian Rudolph and was constructed as described previously [129, 130].

All indicated strains were transformed with pEAW1012, pEAW1193 or pJJ100 and selected on

0.5X ampicillin (Amp 50) plates before P1 transducing the final mutation in strains suspected

of synthetic lethality. After P1 transduction, the cells were plated on Kan 40 and Amp50 plates

to select for the cells that carry all the desired mutations with rarA/recG/ruvB copy expressed

on a the appropriate pRC7 derivative. Following selection, overnight cultures of each strain

were set in 3 ml LB media containing Amp 50 to select for the cells that retain the pRC7 plas-

mid. The next day, 5 ml fresh LB with no antibiotic was inoculated with 50ul of overnights.

Cultures were grown till an OD600 reached 0.2. The culture was then placed on ice for 5 min

followed by serial dilution in 1X PBS buffer and an appropriate dilution was spread on X-gal

+ IPTG plates. Plates were incubated at 37˚C for 24 hrs, and the number of blue and white col-

onies were counted. All experiments were conducted at least three times and the total number

of colonies counted was reported.

Microscopy imaging

For all measurements of cell filamentation, a STORM/TIRF inverted microscope ECLIPSE Ti-

E (Nikon), ORCA Flash 4.0 Hamamatsu camera and an oil objective (100X) was used. Image

acquisition was performed at room temperature. Bright field and dsRed were used for image

capturing. 0.16 mm thick borosilicate glass made coverslips (Azer scientific) were used for

these experiments. Cells were grown overnight at 37˚C in LB media. Secondary cultures were

then reset using overnight saturated culture, 30 μl of overnight in 3ml LB media, and grown

out till OD reaches 1.0. The cultures were then pelleted down, and cells were suspended in

1XPBS buffer. 2 μl of FM-64 dye (conc. 0.33M) were then added in 200 μL of culture and incu-

bated on ice for at least 30 mins. For imaging, 2 μl of this mixture was loaded on the coverslip

and covered with an agar pad (1.5% agarose in dH2O). A single bright field image (100ms
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exposure) and dsRed image (50 ms exposure) was taken at multiple fields of view. All experi-

ments were repeated in triplicates and at least 300 cells were counted and analyzed for each

strain.

Supporting information

S1 Fig. Distinguishing between the slow growth and reduced viability phenotype of differ-

ent strains when treated with different DNA damaging agents. (A and C) Sensitivity analy-

sis of rarA, ruvB, ruvC, rarA ruvB, andrarA ruvC cells towards various DNA damaging agents.

Deletion of rarA in ΔruvB or ΔruvC cells slows growth at relatively low concentrations of DNA

damaging agents and affects viability at higher concentrations. (B and C) Deletion of recF, recJ,
or recO in rarA ruvB cells rescues its cell growth and viability under different DNA damaging

conditions. Deletion of recB in rarA ruvB cells reduces viability.

(TIF)

S2 Fig. Addition of precA decreases the sensitivity of rarA ruvB cells to DNA damage. Sen-

sitivity analysis of rarA, ruvB, and rarA ruvB cells with decreased levels of recA towards various

DNA damaging agents.

(TIF)

S3 Fig. Difference between recQ and recJ deletions on rarA, ruvB, and rarA ruvB pheno-

type. (A) Sensitivity analysis of rarA and ruvB cells with recQ deletion towards various DNA

damaging agents. Deletion of recQ does not affect the sensitivity of rarA or ruvB cells to differ-

ent damaging agents, like recJ. (B) Deletion of recJ in rarA ruvB cells does not decreases the

retention rate of pRC7-rarA plasmid, like recQ.

(TIF)

S1 Data. This document provides the raw data for the experiments shown in Figs 1, 3, 4, 6

and 8.

(XLSX)
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