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ABSTRACT 

It is human nature to try to recognize patterns and to make sense of that 
which we observe. Unfortunately, our intuition is often wrong, and so there is 
a need to impose some objectivity on the methods by which observations are 
converted into knowledge. One definition of biostatistics could be precisely this, 
the rigorous and objective conversion of medical and/or biological observations 
into knowledge. Both consumers of biostatistical principles and biostatisticians 
themselves vary in the extent to which they recognize the need to continue the 
improvement. Some may not recognize the need for (some or all of) the methods 
that have already been developed; others may accept these as they find them 
completely sufficient; still others recognize both the value and the shortcomings 
of these methods, and seek to develop even better methods to ensure that future 
medical conclusions are less subject to biases than current ones are. 
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Introduction 

Two Classic Examples And A Definition 

With or without biostatistical principles, it is human nature to try to 
convert observations into knowledge. It is also human nature to try to 
recognize patterns and make sense of observations. So, biostatistics could 
be defined initially as the descriptive enterprise of observing patterns in 
biomedical data. However, we argue that this is too broad a definition 
because observations often mislead and our intuitions are often wrong. 
Thus, we define it as follows: 

Biostatistics is the discipline concerned with how we ought to make decisions 
when analyzing biomedical data. It is the evolving discipline concerned with 
formulating explicit rules to compensate both for the fallibility of human intuition 
in general and for biases in study design in particular. 

To see why we need such a discipline, consider the example of having 
observed a long run of heads when a fair coin is tossed. Many would bet 
on tails next, arguing that it is due. The more enlightened would recognize 
the independence of the tosses, and how this translates into the inability 
of the past tosses to predict future ones. The even more enlightened would 
recognize the ease with which the word “fair” may be attached to a coin, 
whether or not the coin actually is fair. These individuals would use the 
past data to test the hypothesis that the coin is fair, and may find that in 
fact it comes up heads with a probability much larger than 50%; so they 
would bet heads next, and on every future toss of this coin. 

Another classic example of fallible intuition concerns the famous 
question, “What is the probability that both children [in a family] are boys 
given that we know at least one of them is a boy?” If the probabilities of 
a boy and of a girl are 50% each, and if the genders of the two children are 
independent of each other, then one could argue that the first is a boy and 
the second has a 50% chance either way, so the answer is 50%. This answer 
confuses the question asked with another similar question, specifically, 
“What is the probability that both children are boys given that we know 
that the first one is a boy?” The second question excludes two of the a 
priori possible arrangements, GB and GG, leaving only BB and BG, each 
equally likely. So, 50% is the answer. Our original question did not exclude 
GB, however, and rather excluded only GG. The remaining possibilities 
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are BB, BG, and GG, all equally likely, and the answer is 33%. Even this 
answer is not necessarily correct, however, because it is still based on two 
assumptions, specifically, that boys and girls are equally likely and that 
the genders of consecutive children are independent. The veracity of these 
assumptions was tested by Senn (2003, page 6), who examined a data set 
consisting of 6089 families with at least one child. Of these families, 2444 
had exactly two children, with two boys in 582, two girls in 530, and one 
of each gender in 1332. Based on this data set, the estimate of the 
probability we seek is 1332/(1332+582)=70%, which is reasonably close 
to our theoretical 2/3. 

These two classic examples have analogues in biostatistics, which we 
will consider in the next section. We will then discuss the necessity, but 
not the sufficiency, of current biostatistical principles. That is, the methods 
that are currently available do control the biases they were meant to 
control, but it is impossible to anticipate every bias that can occur, and to 
enumerate them. There will always be a need for diligence in checking 
that nothing unexpected goes wrong. When something amiss is found, 
one will need to use novel methods for dealing with this problem, and to 
salvage reliable comparisons. 

Classic Examples Applied To Medical Data 

For the first example, tossing a “fair” coin, consider an unmasked 
randomized clinical trial using the popular and frequently used permuted 
blocks method of randomization. Suppose further that the block size is 
two (meaning that the first two patients constitute a block, as do the next 
two, and so on, and each treatment is allocated to one patient per block). 
Finally, suppose that the patient population is sufficiently heterogeneous 
so as to allow for better responders and worse responders. What would 
one conclude upon observing a long run of “healthier” patients being 
assigned to the active treatment group, and a long run of “sicker” patients 
being assigned to the control group? Is the control group due when the 
next “healthier” patient is to be enrolled? Is the active treatment due 
when the next “sicker” patient is to be enrolled? Does the process have 
any memory at all? Are the long runs in some way informative? 

It is common knowledge that in a two-arm randomized clinical trial 
with 1:1 allocation to the two groups, each participant has the same chance 
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of receiving either treatment. That is, until one really thinks about it. In 
our hypothetical unmasked trial with blocks of size two, the investigator 
will know the identity of every second allocation before a patient is selected 
to receive it. That is, if the first patient receives the control, then the next 
patient must necessarily receive the active treatment, and vice versa. 
Moreover, this pattern will repeat for each block, so the identity of the 2nd, 
4th, 6th, and every other even-numbered allocation can be predicted based 
on the one preceding it (they will be opposites). 

In such a case, it is certainly possible for the investigator to enroll 
“average” patients for the odd-numbered (unpredictable) accession 
numbers, “healthier” patients when it is known that the allocation will be 
to the active treatment, and “sicker” patients when it is known that the 
allocation will be to the control group (Berger, 2005a). This can be 
accomplished by judicious use of discretion in denying enrollment to 
patients who are not “suitable” for the treatment due to be assigned next, 
or by projecting doubts onto patients regarding the trial being in their 
best interest. It is even possible to defer the enrollment of a patient until 
the “matching” treatment is due to be assigned. Moreover, there is 
evidence that such subversion has actually occurred in many randomized 
clinical trials (Berger, 2005a; Berger and Weinstein, 2004). 

If this type of subversion occurs, then clearly the metaphorical coin is 
not a fair one. There would be a systematic tendency for healthier patients 
to receive the active treatment and for sicker patients to receive the control 
treatment, a clear violation of the idea that each patient has an equal chance 
to receive each treatment. Moreover, this pattern observed in the past 
would be suggestive of the pattern continuing in the future (within the 
same trial); there would be no compensation, nor is there independence 
suggesting a lack of memory of the process. 

In one formulation of our second example, we tried to determine the 
probability that both children are boys given that we know that at least 
one is a boy. This question was analyzed based on the assumption that 
each birth was independent. More specifically, as in the example of tossing 
a fair coin, the fact that the first child turned out to be a boy did not affect 
the probability that the second child would be a boy—which would still 
be 50%. In general, it is easy to make a sweeping claim that two processes 
operate independently, without recognizing either the subtlety or the 
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context-dependent nature of the concept of independence. For example, 
everyone knows that height and weight are dependent. But is this true if 
the variation is with respect not to individuals, but rather to measurement 
times for a given individual? Here, the two would actually be 
independent. So the same two variables can be dependent or independent 
depending on the context. 

Likewise, caution may be needed in concluding that two diseases are 
dependent. Consider observing, in a hospital setting, that those patients 
with cancer tend to present with heart disease less often than do those 
patients without cancer. On the surface, this might suggest that one disease 
protects against the other. However, suppose we represented the presence 
of these two diseases in a 2x2 contingency table thus: 

Table 1. 2x2 Contingency Table 

Cancer No Cancer 

Heart Disease (1,1) (0,1) 

No Heart Disease (1,0) (0,0) 

In this notation “0” represents the absence of disease and “1” 
represents the presence of disease with the 1st space in the parenthesis 
reserved for cancer and the second space reserved for heart disease. Then, 
this table would represent all possible outcomes (or “contingencies”) by 
which heart and cancer patients could be present in the hospital setting. 
Although there are reasons other than cancer and heart disease for being 
admitted to the hospital, for simplicity assume that these were the only 
two reasons to be admitted. In such a case, one would see three types of 
patients in the hospital, including (1,1) patients with both cancer and heart 
disease; (0,1) patients with heart disease but not cancer; and (1,0) patients 
with cancer but not heart disease. One would not see the (0,0) patients 
with neither disease in the hospital, because these would not be 
hospitalized. 

Now suppose that cancer and heart disease are both independent 
and the chance of having or not having each disease is equally likely, so 
that the three types of patients that could be seen in the hospital, (0,1), 
(1,0), and (1,1), would be equally likely. From the table, it is easy to see 
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that, among this hospital population, the probability of heart disease is 
50% for those patients with cancer [half of the patients would be in cell 
(1,0) and half in cell (1,1)] and 100% for those patients without cancer [the 
only cell being counted is (0,1), and 100% of the patients in that cell have 
heart disease by definition]. On this analysis, the two diseases would 
appear to be negatively correlated, or that one is protective for the other. 
However, this is merely an artifact of the missing (0,0) cell, corresponding 
to patients with neither cancer nor heart disease (Berkson, 1946). 

Assisting Intuition: 
Controlled Studies, Randomization, Allocation 

Concealment And Masking 

Recognition that our intuitions need to be supplemented, and that 
data can mislead, has created the necessity for a science that concerns 
itself with distinguishing valid inferences from spurious ones. This has 
led to the widespread use of improvements such as controlled studies, 
randomization, allocation concealment, and masking. 

To see why these are important, consider evaluating the efficacy of 
an elective surgery. The most obvious way to do this is to count the 
number of successes among patients receiving the surgery. But this will 
not suffice, because the surgery is “good” or “bad” not in a vacuum but 
rather relative to the lack of the surgery. So the evaluation must necessarily 
be comparative, and the real question is whether or not one is better off 
with the surgery. 

So we need a control group, and we need to compare the experiences 
of those with the surgery to the experiences of those without the surgery. 
The most obvious way to do this is to simply compare the outcomes of 
those electing to receive the surgery to those electing not to receive the 
surgery. But this comparison is still problematic, because it confounds 
the surgery itself with the underlying differences in severity of disease 
that would lead one to elect the surgery. It is not unreasonable to suppose 
that those patients who choose the surgery are more in need of it, so the 
groups being compared would not be comparable. Finding a difference 
in outcomes would not lead to the desired conclusion, because this could 
be reflective of either the surgery itself or underlying differences across 
the comparison groups at baseline. These underlying differences would 
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include not only the severity of the disease (or injury) but also potentially 
other health-seeking behaviours, which could also differ across groups. 

So the solution is to randomize patients to the two groups, thereby 
ensuring that the two groups are comparable to start with, and that any 
differences observed at the end are due exclusively to the surgery itself. 
This is the objective of randomization, but unfortunately, randomization 
by itself falls short of attaining this rather lofty goal. As we saw, the use 
of permuted blocks within the context of a randomized clinical trial can 
lead to prediction of future allocations, which in turn can allow for a 
selection bias that creates systematically different treatment groups (i.e., 
one group will be healthier overall than the other). So the solution to this 
problem is allocation concealment, meaning the inability for the investigator 
to predict upcoming allocations. This would involve, among other steps, 
the use of a better randomization procedure than permuted blocks. 
Perhaps the maximal procedure (Berger, 2005) would be used instead, to 
control the ability of investigators to predict upcoming allocations. But 
without masking, there is still the potential for patients in one group to be 
rated differently than those in the other group. 

Many endpoints are subjective, and are not measured but rather are 
rated, or scored. If the rater or scorer is aware of the treatment received 
by the patient being rated or scored, then the treatment group could 
influence the rating. That is, even two identical patients may receive 
different ratings based only on the fact that one received the surgery and 
one did not. Moreover, this could be a problem even for objective 
endpoints, including mortality, because patients in one treatment group 
may receive more ancillary care and/or attention than patients in the other 
group, and this could lead to better outcomes for the one group, even 
when these outcomes are measured objectively. The solution to this 
problem is masking, or concealing the identities of the treatments for each 
patient until all the data are collected. 

Control groups, randomization, allocation concealment, and masking 
are all tools of the biostatistician, and all help in assisting intuition where 
it otherwise could go wrong. One could argue that the effort to develop 
tools such as these, to assist our intuition, has been going on since well 
before the term “biostatistics” was coined. Yet today we may still refer to 
all of these activities, in aggregate, as the essence of biostatistics. 
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Whether conducted by biostatisticians per se or by others, biostatistics 
remains crucial. Medical research is too important for any medical 
researcher not to function as a biostatistician, at least to some extent. 

Implications For The Future 

The set of methods discussed in the last section, specifically control 
groups, randomization, allocation concealment, and masking, form a 
collection of mutually supporting strategies to minimize bias. The residual 
bias that remains tends to diminish with the introduction of each additional 
method. It is important to note that even with all of these methods 
operating in conjunction, some residual bias may still remain. This means 
that even now, biostatistics must not be viewed as a static enterprise. 
Rather, it needs to be an ongoing process of trying to improve the 
inferences that we make from data, because even the currently best set of 
statistical methods sometimes generate results that are (objectively) 
“wrong”. This is because it is not possible to enumerate every conceivable 
type of bias that could occur. But the impossibility of complete success 
should not be taken as an indication of the futility of the exercise. By 
identifying biases and correcting for them on an ongoing basis, we can 
make studies better and better. Hence, the “best set of methods” needs to 
constantly evolve. 

Null Hypothesis, Type I and Type II Errors 

When looking at data, biostatisticians start from the assumption that 
“nothing is going on here,” and these observations occurred randomly, 
or just by chance. This position is known as the null hypothesis. Then, 
biostatisticians ask, “How likely would this observed pattern in the data 
be, given that the null hypothesis is true?” If they conclude that there is a 
very small probability that the state of affairs observed could have occurred 
by chance, then the null hypothesis is rejected in favour of an alternative 
hypothesis. However, sometimes rare events do occur by chance, which 
cause researchers to reject the null hypothesis even when the null 
hypothesis is true; this is called Type I error. Conversely, researchers 
sometimes conclude that they cannot reject the null hypothesis even 
though an alternative hypothesis is true; this is called Type II error. By 
returning to the coin-flipping example, we can see how these types of 
error can occur. Assuming that a fair coin is being used, the probability 
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of heads on any given flip is 0.5. Because each coin flip is independent, 
the probability of two successive heads would be 0.5*0.5=0.25; the 
probability of three successive heads would be 0.5*0.5*0.5=0.125; and the 
probability of four successive heads would be 0.5*0.5*0.5*0.5=0.0625. In 
other words, the probability of a fair coin coming up heads four times 
successively is rather low, which means that a research question could be 
formulated as the following decision rule: we will assume that this coin 
is fair unless, in four successive flips, the coin always comes up heads. 

Under this scenario, the null hypothesis is that the coin is fair and the 
outcome of the four successive flips would be the data that would be 
marshaled to test whether the null hypothesis should be rejected. However 
0.0625 is not zero, which means that, even with a fair coin, the rare event 
of four successive heads can occur, which would cause the researcher to 
reject a true null hypothesis (Type I error). Alternatively, a coin can be 
unfair because it has been weighted to come up heads more frequently 
than tails. However, as long as the coin does occasionally come up tails, 
there might not be four successive heads in a row, which would cause the 
researcher not to reject the claim that the coin is fair—even though this 
claim is false (Type II error). With more and more tosses, it is possible to 
make the error rates smaller and smaller. 

As we have seen, biases may make it likely that the wrong conclusion 
will be reached. If two treatments are equally effective, so that the null 
hypothesis of their equality is true, then the wrong conclusion could be 
reached for either of two reasons. This could be a rare occurrence (by 
chance, the healthier patients all ended up in one treatment group and 
artificially made that treatment look better than it really is), or it could be 
a bias (the healthier patients were differentially recruited to one group). 

Outcome And Process 

So, statistical techniques do not offer us absolute certainty. 
Nevertheless, there is still a connection between statistical methods and 
objectivity. To see this, it is important to draw a distinction between 
outcome and process in thinking about biostatistics. As the coin-flipping 
example illustrates, it is quite true that a particular statistical test may 
lead to the wrong conclusion in a particular instance. The data themselves 
may mislead due to an unfortunate sample that fails to reflect the reality 
of the population from which it is drawn. Good design aims to make 
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such misleading data unlikely, but not impossible. And certainly rare 
events do occur. But this fact does not invalidate the procedural correctness 
of statistical techniques, in general, provided (and this is an important 
stipulation) that the most appropriate statistical tests are performed given 
the data at hand. This means that professional statisticians should be 
consulted in all phases of a clinical trial—from design, to implementation, 
to interpreting the results. 

Biostatistics is an ongoing process to improve the quality of scientific 
inference. If one becomes aware of a bias, and of a way to correct for it, 
then one must do so, even if unbeknownst to the researcher, there was 
another bias that already compensated for the identified one. As the 
examples of Type I and Type II error illustrate, doing the right thing may 
lead to the wrong result. But one still must do the right thing because one 
would never know if the result is right or wrong in any given situation. 
While we cannot say that any particular conclusion is “right,” what we 
can say is that the right procedures are defined as “right” because they 
lead to less biased conclusions more often than other procedures would. 
This attempt to minimize the probability of error is about all one can hope 
for in scientific inference. 

In the endeavour to produce methods that will in turn produce correct 
results, the progress that we, as a discipline, have made so far, though 
substantial, remains but a drop in the ocean compared to the work yet to 
be done. While words such as “rigorous” are thrown around with 
regularity, the fact is that almost all medical studies – even randomized 
clinical trials – are susceptible to biases that offer a compelling competing 
explanation for apparent treatment effects. That is, even with modern 
designs and analyses, results still cannot generally be accepted at face 
value. One must distinguish between biases that are preventable and 
those that are not. This line of demarcation varies with time, as one effort 
of biostatistics is to expand the set of biases that can be prevented. But at 
any one point in time, there will be a set of biases that can be prevented, 
and inevitably there will be many studies that make no effort to prevent 
them. 

For example, the first classic challenge to intuition discussed above 
related to long runs of heads in tosses of a fair coin, and this may occur in 
blocked randomized trials due to a lack of allocation concealment. The 
resulting selection bias could lead to the spurious conclusion that the active 
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treatment is effective when in fact it is not. This bias can be prevented by 
using randomization methods other than permuted blocks (Berger, 2005a; 
Berger, Ivanova and Deloria-Knoll, 2003), so as to help ensure allocation 
concealment. But in practice this is rarely done, in part because the initial 
definition of “allocation concealment” was grossly inadequate, and dealt 
with only direct observation of allocations to be made, as opposed to their 
prediction through the patterns in the allocation sequence that arguably 
constitute the greater threat (Berger, 2005b). Many researchers incorrectly 
believe that the methods aimed at preventing only the direct observation 
of the allocation sequence and assignments in sealed envelopes suffice to 
ensure allocation concealment, and so they make no further effort to 
improve the overall process. This error in judgment is what allows trials 
to lack allocation concealment and for the resulting selection bias to remain 
undetected. 

Clearly, a current trial without allocation concealment is no more 
susceptible to selection bias than is an older trial conducted prior to the 
identification of allocation concealment. And yet the quality of the two 
studies should not be treated interchangeably. There are elements that 
affect trial quality and reliability that can never be checked, and 
investigators have discretion in either doing the best job possible or not. 
We would like to give the benefit of doubt to the investigators, and honest 
mistakes allow us to validly do so. It is not ideal to allow for a bias in a 
study even if that bias has yet to be discovered, but this would be an 
unavoidable error that does not call into question the integrity of the entire 
undertaking. In contrast, conducting a study that allows for a bias that is 
both known and preventable does not permit so favourable a view. 

This discussion illustrates the important activities in which 
biostatisticians may engage, including: 

1) Identifying biases;


2) Identifying methods to prevent, detect, and correct for these biases;

and 

3) Arguing for using these specialized methods as the situation warrants. 

Clearly, all the efforts go to waste if the methods developed are not 
used when they should be. These three activities encapsulate the meaning 
of “biostatistics” for us. The activities involve the curiosity to ask: 
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What can go wrong even when everything seems to be right? 

It also involves the mathematical training to develop methods to 
address whatever biases may be found, and the willingness to then fight 
the good fight against inertia and the reluctance to deviate from precedent. 

Concluding Remarks 

Many researchers view biostatistics as merely an annoyance, only for 
satisfying journal editors, regulatory authorities, or funding agencies. But 
the necessity of biostatistics is apparent when considering the relationship 
between our intuitions and formal analytical methods. Laplace observed 
that the theory of probability is:

 …at bottom only common sense reduced to calculus; it makes us appreciate 
with exactitude that which exact minds feel by a sort of instinct without being 
able ofttimes to give a reason for it. It leaves no arbitrariness in the choice of 
opinions and sides to be taken; and by its use can always be determined the most 
advantageous choice (Laplace, 1951). 

The implication is that few of us have sufficiently “exact minds” to 
always intuit the correct answer—which is where analytical decision tools 
come into play. Given this, is there a sense in which intuition can combine 
with biostatistical methodology to improve understanding? The answer 
depends on the context in which the question is asked. As Reichenbach 
noted (1938), there is a “context of discovery” and a “context of 
justification.” That is, when a researcher is formulating a hypothesis (the 
“context of discovery”), a researcher can draw on any number of insights— 
intuition, the opinion of esteemed colleagues, peer-reviewed journal 
articles etc.—in formulating the hypothesis to be tested. However, when 
the researcher must justify the conclusion reached while testing that 
hypothesis (the “context of justification”), the appropriate biostatistical 
methodology rather than intuition must be relied on. In such a situation, 
not using proper biostatistical principles is rushing to obtain answers to 
important questions without bothering to ensure the integrity or accuracy 
of these answers. This would be akin to shunning a map on the basis of 
being a driver, and not a navigator. Yes, you will still arrive at a 
destination, but that destination may not be the one for which you set 
out. When driving to the wrong location, this fact becomes immediately 
apparent upon arriving there. In medical studies, the ability to check 
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obtained results against the truth is never available, so the only recourse 
is to become the best navigator possible. 

Only by navigating towards the truth can we hope to find the truth. 
Because our intuition often can be wrong even when steps are taken to address 
this very problem, this lesson has to be learned anew by each new generation 
of researchers. The process of continually trying to improve on past 
methods is what “biostatistics” means to us. 
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Questions That This Paper Raises 

1)	 Given our current state of knowledge, what are the known and 
preventable biases that should be controlled for in designing clinical 
trials? 

2) 	 From a broader societal perspective, why would the failure to try 
continually to improve on past methods in research design be ethically 
problematic? 

3)	 What is the danger in assuming that we know more than we actually 
do? 

4)	 What biases cannot be prevented in medical research? 

5)	 In any given study, are there other biases, not yet identified, that could 
interfere with validity? 
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