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Abstract

General use and popularity of over-the-counter supplemental antioxidants have rapidly spread all 

over the world and are believed to promote cardiovascular health and wellbeing. However, there is 

a paucity of information and lack of proof that physiological and above-physiological levels of 

oxidants do harm at the cellular and organismal levels. Instead, several reports demonstrated that 

reduction in Reactive Oxygen Species (ROS) did not improve vascular function. Interestingly, 

recent studies show that increased ROS levels play protective role in vascular endothelium and 

may improve coronary endothelial function. In the current review, we introduce the concept that 

increased ROS levels, often seen in association with cardiovascular disease, probably is an 

endothelial-way or ‘oxidative response’ to cope with vascular pathology.
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Introduction

Vascular health depends on both structural and functional well-being of the blood vessels. 

Pathological changes can take place at the level of vascular endothelium, vascular smooth 

muscle cells (VSMC) and connective tissue surrounding the blood vessels [1–4]. Decreased 

bioavailability of nitric oxide (NO), resulted from decreased synthesis of NO, reduced 

activation of endothelial nitric oxide synthase (eNOS) or increased quenching of NO by 

reactive oxygen species (ROS) [5], is believed to be one of the major determinants of 

microvascular endothelial dysfunction in aging, hypertension, diabetes, hyperlipidemia, and 

smoking [6–9]. Other pathological changes that follow endothelial dysfunction may include 

increase in microvascular tone, neointimal thickening, myogenic hypertrophic remodeling of 

resistance arterioles and small arteries [2,10].
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Oxidants and vascular health

The notion that increased levels of reactive oxygen species (ROS) are detrimental to 

cardiovascular health has come into being for several reasons (Figure 1). Higher levels of 

ROS are often observed with microvascular pathology in Cardiovascular Diseases (CVD) 

including Coronary Artery Disease (CAD) and Ischemic Heart Disease (IHD) [11–15]. At 

first, these observations helped establish the paradigms that reduction in ROS levels in the 

vessel walls should improve cardiovascular functions [16]. However, several clinical trials 

using antioxidants, e.g. Alpha-Tocopherol Beta-Carotene (ATBC), Heart Outcomes 

Prevention Evaluation (HOPE) [17–22], have produced negative results in reducing primary 

endpoints of cardiovascular mortality and morbidity [17,23–26]. Other studies using animal 

models and/or antioxidants in Endothelial Cells (ECs) demonstrated that reduction in ROS 

levels failed to improve vascular functions [27–29]. Recent reports from several groups 

showed that ROS reduction resulted in the disruption of signal transduction leading to 

reduced Nitric Oxide (NO) generation in vascular endothelium [30–32] and decreased 

vasodilatation [30,31]. Surprisingly, a recent report demonstrated that increase in EC-

specific ROS induces AMPK-eNOS-mediated endothelium-dependent coronary 

vasodilatation, and AMPK-mTOR-mediated protective autophagy [33].

The redox paradox

So, why there is still a notion that ROS are harmful for cardiovascular health? There is no 

simple answer to this question. One reason would be that (i) ROS are found at increased 

levels in pathological condition involving cardiovascular system including CAD, myocardial 

ischemia, and myocardial infarct; (ii) another may be that our initial understanding of ROS 

is associated with their bactericidal effects in phagocytes, and (iii) the fact that there are 

many in vitro studies using ROS-inducing chemical agents that demonstrated apoptosis and 

other damages in vascular cells including ECs and VSMCs. If we look carefully and 

systematically, we will find that the first ‘reason’ is simple association, the second one does 

not take cell type and phenotypic differences into consideration, and the last one can simply 

be nonspecific effects of the so-called ROS-inducing chemicals that may have several other 

‘indirect’ effects on vascular cell signal transduction, cell cycle and/or metabolism. It is thus 

critical to examine the sources and functions of vascular ROS. We will mostly focus on EC-

specific ROS in the current review. There are several sources for intracellular ROS in EC 

including NADPH oxidases, mitochondria, cytochrome P450 and xanthine oxidase. The 

multi-subunit NADPH oxidase, which contains membrane-bound gp91phox (Nox2) and 

p22phox subunits, and cytosolic p47phox, p67phox and Rac1, is a major source of 

endothelial ROS [34–36]. NADPH oxidase is present in different subcellular compartments 

in ECs including cell and perinuclear membrane, and endoplasmic reticulum (ER) [36,37]. 

Several other NADPH oxidases e.g. nox4, nox1, nox5 are also present in ECs [38–42].

Recent work from others and our labs has shown a critical role for NADPH oxidase-derived 

ROS in the activation of downstream eNOS to synthesize NO [28,42–47]. Taken together, 

above findings suggest that NADPH oxidase-derived ROS play an important role in 

survival, health and growth of vascular ECs. We are yet to understand the precise 

mechanisms involving ROS-mediated signal transduction in ECs. Several reports showed 
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that oxidants play crucial roles by activating signaling intermediates including PI3K-Akt-

eNOS, PLCγ1, PKC and ERK1/2 in ECs [27,43,48]. Recently, pro-survival kinase AMPK 

that becomes activated during cellular stress including starvation and reduction in 

AMP/ATP ratio, has been shown to be regulated by ROS produced during hypoxia and fluid 

shear stress in ECs [49–51]. AMPK is involved in regulating a number of signaling 

intermediates and transcription factors including FOXO1, HIF-1α and PGC-1α [52–58], 

resulting in increased EC survival and proliferation (Figure 2). The protective role of AMPK 

is carried out through its regulatory role in autophagy, a process crucial for cell survival 

[51,59–62]. Autophagy helps recycle and re-utilize damaged macromolecules and organelles 

using lysosomal degradation pathway [59,63]. In a recent study from our lab using increase 

in EC-specific endogenous ROS in adult animals (a novel binary Tet-ON/OFF transgenic 

mouse) that induces 1.8 ± 0.42-fold increase in Nox2/gp91phox (NADPH oxidase 2)-

derived ROS, we demonstrated that EC-ROS induced AMPK-eNOS-mediated endothelium-

dependent coronary vasodilatation and AMPK-mTOR-mediated protective autophagy in EC 

[33]. However, several studies were performed using cultured ECs in vitro, global 

knockdown animal models of NADPH oxidase (p47phox−/− or gp91phox−/−), or 

constitutive overexpression of NADPH oxidases (e.g. Nox4) in ECs [28,35,43,44,64–66] 

that resulted in a wide variety of conclusions ranging from essential to harmful roles for 

ROS. These approaches, although yielding important information, may have precluded 

precise determination of endothelial contribution for redox-sensitive modulation of vascular 

functions. In brief, a reductionist view or an all-or-none theory may not apply to the roles for 

ROS in vascular function. One has to take the source, subcellular localization, intensity and 

temporal state of the redox molecule into consideration while studying the roles/effects of 

ROS in/on vascular function.

Oxidative stress or oxidative compensation?

One may ask why does the prevailing dogma still support a negative role for ROS? To 

address this question, we need to go back to the origin of the oxidative stress ‘theory’ in 

cardiovascular system. We must remember that the notion that increased levels ROS are 

detrimental to cardiovascular health has come into being for ROS’ association with several 

different cardiovascular pathology including CAD, myocardial ischemia-reperfusion, and 

myocardial infarct. We know that the most potent way myocardium employs to defend itself 

from ischemic insults is by preserving the existing capillary endothelial cells (EC) and/or by 

inducing growth of coronary blood vessels in the ischemic area [67]. Once the ischemic 

insult has occurred, survival of the affected cardiac tissue depends on the speed with which 

coronary vessels can increase blood flow through alternate means, namely vasodilatation, 

increase in vessel density, and/or preservation of the existing microvessels. Given the recent 

findings by others and our lab (as mentioned above), we propose a novel concept that 

vascular endothelium addresses this critical issue by attempting to ‘pre-condition’ the 

coronary vessels for better vasodilatory and angiogenic response by increasing oxidant 

levels in the vascular cells. This concept, a ‘compensatory’ role for ROS, is in contrast to the 

prevailing dogma and suggests that redox positively regulates endothelial signaling and 

selective vascular functions [30,31,68–72] in health and disease. This novel ‘oxidative 

compensation’ concept also derives its support from the findings that NADPH oxidase-
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derived ROS, a major source of EC-ROS, have also been shown to play crucial role in 

vascular endothelial growth factor (VEGF) signaling and coronary vascular functions 

[30,31,70]. As a molecular mechanism, it was shown that c-Src activation and its interaction 

with VEGFR-2 were dependent on the redox-mediated thiol oxidation of c-Src (sulphenic 

acid modification) in human coronary artery ECs [27]. Recent findings that increase in 

endogenous EC-ROS enhance protective autophagy by activating AMPK further supports a 

pre -conditioning or compensatory role for ROS to lead ECs towards a pro-survival mode 

(Figure 2). AMPK is also known to be activated in a state of calorie restriction. Caloric 

restriction or nutrition deprivation slows down energy-consuming processes and induces 

autophagy to provide amino acids for the synthesis of essential proteins, which in turn 

improves cell survival and inhibits apoptosis under stressful conditions including high 

oxidant state in many cell types. Autophagy is essential for cellular survival, homeostasis, 

differentiation, and tissue remodeling in pathophysiological condition. Depending on the 

pathophysiological settings, autophagy may play a protective role or contribute to cell 

damage. Thus, our recent findings demonstrating increased ROS levels elicit a ‘caloric 

restriction’-like response (AMPK-mediated mTOR inhibition and induction of autophagy) in 

endothelium may also have important clinical implication [33] and may further support the 

notion that ROS play a compensatory role during vascular insult. Activation of AMPK and 

induction of autophagy may well be a mechanism by which endothelium copes with higher 

redox state by slowing down endothelial metabolism and/or by recycling the oxidant-

damaged cellular organelles. This compensatory mechanism may more appropriately be 

termed as ‘oxidative response’ of vascular endothelium. Future studies are required to 

address the tissue- and vascular bed-specific response to oxidants, and the outcomes of these 

studies are likely to bring a major shift in our attitude towards the high ROS levels that are 

found in many microvascular diseases and may generate enthusiasm to examine whether 

high oxidant level in the microvascular wall in IHD/CAD and other microvascular 

pathophysiology is an undesirable by-product (resulting in oxidative stress) or a homeostatic 

response (oxidative response) to an inflammatory environment. The delicate balance 

between the beneficial (oxidative response) and detrimental (oxidative stress) roles of ROS 

may be compartmentalized within the cell (subcellular localization). In addition, different 

tissues and vascular beds may respond to oxidants differently depending on the types of 

oxidants (O2, H2O2, HO2, ONOO), their subcellular source/localization, intensity and 

duration of the exposure. Outcomes of the studies addressing these critical issues will help 

guide investigators whether or not to interfere with redox levels (e.g. by antioxidants) in 

coronary and other microvascular disease, which if used inadvertently, may paradoxically 

affect redox-dependent signaling and may thus predispose patients to further ischemia. In 

conclusion, one should not consider increased ROS level as an “all or none” phenomenon or 

as oxidative stress. Each condition with increased oxidant levels should be assessed 

independently before initiating any antioxidant therapy, because interference with oxidative 

response may do more harm than good.
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Figure 1. Sources of Endothelial ROS and NO
It also demonstrates how increased ROS may tip the balance of NO vs. ONOO in vascular 

pathological conditions.
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Figure 2. Model for EC-specific ‘Oxidative Response’ to improve endothelial function
NADPH oxidase-derived ROS activates CaMKKβ-AMPK, which in turn, activates eNOS to 

induce NO-mediated vasodilatation and inhibits mTOR resulting in protective autophagy in 

vascular endothelium.
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