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Topological non-Hermitian origin of surface
Maxwell waves
Konstantin Y. Bliokh1,2, Daniel Leykam3, Max Lein4 & Franco Nori 1,5

Maxwell electromagnetism, describing the wave properties of light, was formulated 150 years

ago. More than 60 years ago it was shown that interfaces between optical media (including

dielectrics, metals, negative-index materials) can support surface electromagnetic waves,

which now play crucial roles in plasmonics, metamaterials, and nano-photonics. Here we

show that surface Maxwell waves at interfaces between homogeneous isotropic media

described by real permittivities and permeabilities have a topological origin explained by the

bulk-boundary correspondence. Importantly, the topological classification is determined by

the helicity operator, which is generically non-Hermitian even in lossless optical media. The

corresponding topological invariant, which determines the number of surface modes, is a Z4

number (or a pair of Z2 numbers) describing the winding of the complex helicity spectrum

across the interface. Our theory provides a new twist and insights for several areas of

wave physics: Maxwell electromagnetism, topological quantum states, non-Hermitian wave

physics, and metamaterials.
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C lassical and quantum waves underlie the most funda-
mental entities in nature: light, sound, fields, and matter.
Recently, an important role of topology in wave systems

was revealed, describing the appearance of surface waves at
interfaces between topologically different media1–3. This brought
about the explanation of various physical phenomena (e.g., the
quantum Hall effect4,5), the prediction of new phenomena (e.g.,
topological insulators1,2), and eventually resulted in the Nobel
Prize in physics in 2016. While it was initially believed that
topological effects are particular to quantum systems, they are
universal wave phenomena, which since then have been realized
in a wide range of classical waves, including electromagnetic6–8,
acoustic9, mechanical10, and hydrodynamic11 systems.

Optics and electromagnetism provide one of the best platforms
for studying fundamental relativistic wave phenomena, because
classical Maxwell equations represent relativistic wave equations
for massless spin-1 particles, i.e., photons within the first-
quantization approach12–14. (This explains the mathematical
similarities to the Dirac equation, even though Maxwell equations
describe classical electromagnetic fields.) Moreover, studies of
surface electromagnetic waves at interfaces between different
media resulted in the rapid development of several areas of
modern photonics, such as plasmonics15,16 and negative-index
metamaterials17–19. Not surprisingly, the discovery of topological
wave phenomena generated the rapidly developing field of
topological photonics20,21.

Topological electromagnetic modes have been predicted and
demonstrated in rather complicated nanostructured metamater-
ials, which mimic condensed-matter crystals with topologically
nontrivial electron Hamiltonians. This approach requires con-
siderable engineering efforts and suffers from inevitable losses,
imperfections, etc. In contrast, in this paper, we reveal nontrivial
topological properties for the most basic form of Maxwell equa-
tions involving only isotropic lossless homogeneous media
characterized by the permittivity ε and permeability μ.

In this work, we show that all surface Maxwell waves
appearing at interfaces between media with different signs of
ε and μ are topological in nature. Here the term “topological” is
justified in two ways. First, we describe the bulk-boundary
correspondence, where the number of surface modes is deter-
mined by the contrast of a topological bulk invariant across the
interface1–3,20,21. Importantly, this bulk invariant originates
from the helicity operator of photons in a medium. This is the
central difference of our work as compared with previously
described topological systems based on the Hamiltonian
operator. Furthermore, this helicity operator is generically non-
Hermitian22,23 and has purely imaginary eigenvalues in
“metallic” media with εμ < 024. The topological bulk invariant is
a Z4 number (or a pair of Z2 numbers), which describe the
phase of the gapped helicity spectrum in a medium. The
winding of this spectrum across the interface exactly corre-
sponds to the number of surface electromagnetic modes, which
are zero-helicity transverse-electric (TE) or transverse-magnetic
(TM) polarized waves. Second, we connect the topology of the
bulk system to the topology of the parameter (ε,μ) space; this is
analogous to earlier works3,25,26 in the condensed-matter con-
text. For Maxwell waves, the parameter space is split into four
simply connected quadrants excluding the ε= 0 and μ= 0 lines,
where the helicity is ill-defined. The helicity-based topological
bulk invariant labels these quadrants of the parameter space. In
addition to the topological invariant that provides the number
of surface modes, we introduce a pair of non-topological Z2
indices, which separate the zones of the TE and TM polariza-
tions in the phase diagram of surface modes.

Our non-Hermitian topological theory allows us to fully
explain the nontrivial phase diagram of Maxwell surface modes,

which includes well-known examples of surface plasmon-
polaritons at metal-dielectric and negative-index interfaces, and
to augment it with previously overlooked evanescent surface
waves decaying along the propagation direction or/and in time.
Although this diagram can be obtained from the standard Max-
well equations and boundary conditions, only the present topo-
logical theory explains why surface Maxwell modes of TE and TM
polarizations exist in the corresponding regions of the parameter
(ε,μ)-space.

Results
Winding of the helicity spectrum of photons in a medium. We
start with the simplest example of topological surface modes,
namely, the Jackiw-Rebbi edge states in the Dirac equation1–3,27.
The bulk spectrum E pð Þ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
of the Dirac equation is

characterized by the energy gap 2m (we use ħ= c= 1 units)
determined by the mass m. Then, an interface between two media
with opposite masses m1=−m2 supports a topological surface
state with massless spectrum Esurf= ±psurf (Fig. 1a). This edge
mode is protected by the difference of the Z2 topological winding
number w ¼ 1

2 sgn mð Þ in the two media1–3,27. The transition
between the two media can be viewed as a π rotation (i.e.,
winding) of the rest energies E0≡ E(0)= ±m→ ±eiπm=∓m in
the complex-energy (mass) plane (Fig. 2a), which illuminates the
Möbius-strip-like Z2 topology.

Consider now electromagnetic waves (photons) described by
the source-free Maxwell equations. Photons do not have mass but
they possess another fundamental property: helicity, which can be
associated with the projection of the photon’s spin S onto the
direction of its momentum: S ¼ S � p= pj j24,28–31. It is known
that the helicity of free-space photons has two eigenvalues σ= ±1,
corresponding to the right-hand and left-hand circularly
polarized waves (Fig. 1b), whereas the independent zero-helicity
state is forbidden because of the transversality of electromagnetic
waves28. Thus, one can say that Maxwell bulk eigenmodes are
characterized by the helicity gap (Fig. 2b).

In this paper, we deal with Maxwell waves in isotropic lossless
media characterized by a real-valued permittivity ε and perme-
ability μ. The possible dispersion of these parameters does not
affect most of our considerations and is neglected hereafter. We
will also use the refractive index n and dimensionless impedance
Z of the medium, with nj j ¼ ffiffiffiffiffiffiffi

εμj jp
; Zj j ¼ ffiffiffiffiffiffiffiffiffiffi

μ=εj jp
, and the signs

defined as shown in Fig. 2c for four possible types of media18. The
opposite refractive-index signs in the positive-index and negative-
index materials reflect the fact that the complex-energy flux
(Poynting vector) and momentum (wavevector) are parallel and
anti-parallel in such media (see Supplementary Note 1)17,18. The
gapless bulk energy spectrum of electromagnetic waves is
determined by the dispersion relation: ω2= k2/(εμ) (ω is the
frequency, k is the wavevector), so that the bulk modes are
propagating in transparent media with εμ > 0, and become purely
evanescent, with imaginary wavevector or frequency, in “metallic
media” with εμ < 0.

Maxwell equations for monochromatic light in a medium
can be written in a quantum-like form as a Weyl-type
equation12–14,24,31,32:

Ŝ � p̂� �
ψ ¼ �ωσ̂ðmÞψ; σ̂ðmÞ ¼ 0 �iμ

iε 0

� �
; ψ ¼ E

H

� �
: ð1Þ

Here ψ is the six-component “wavefunction”, p̂ ¼ �i∇ is the
momentum operator, Ŝ is the vector of 3 × 3 spin-1
matrices, acting on the Cartesian components of the fields as
Ŝ � p̂ ¼ ∇ ´ , whereas the matrix σ̂ mð Þ, describing the properties of
the medium, acts on the “electric-magnetic” degrees of freedom,
i.e., intermixes the E and H fields. The presence of a medium
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modifies the scalar product in this quantum-like approach, so
that ψh jψi ¼ ~ψy � ψ with the adjoint “left” vector being
~ψ ¼ εE; μHð ÞT� D;Bð ÞT24,33. Using this formalism, it was
recently shown that the helicity remains a fundamental physical
property of electromagnetic waves in isotropic dispersive media24.
Consider circularly polarized plane waves ψ(σ) with the electric
field EðσÞ ¼ 1; iσ; 0ð Þ exp i k � r� iωtð Þ (σ= ±1 determines the
sign of the circular polarization), and the corresponding magnetic

field H(σ)=−iσZ−1E(σ) (see Supplementary Note 1). These are
eigenmodes of the helicity operator in the medium, Ŝ24,
Ŝψ σð Þ ¼ Sψ σð Þ, with complex eigenvalues:

Ŝ ¼ � σ̂ðmÞ

nj j ¼ 0 iηZ

�iηZ�1 0

� �
; S ¼ ησ: ð2Þ

Here η= n/|n| indicates the phase of the refractive index, and we
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Fig. 1 Schematics of topological surface modes in the Dirac and Maxwell equations. a The Dirac equation with a finite mass m is characterized by the
gapped bulk spectrum E(p). An interface between “media” with opposite-sign masses ±m, and bulk spectra (schematically shown in red and blue),
supports topological surface modes with massless spectrum (shown in green)1–3,27. b Maxwell equations possess massless bulk spectra (not shown here),
which are double-degenerate with respect to opposite helicity states. These bulk helicity eigenmodes have opposite circular polarizations, i.e., chiral spatial
distributions of the electric or magnetic field (shown in red and blue here). An interface between two media with different helicity properties (controlled by
the signs of the permittivity ε and permeability μ of the medium) supports zero-helicity surface waves with transverse-electric or transverse-magnetic
linear polarizations (shown in green)15–19
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Fig. 2Winding of the energy and helicity spectra in the Dirac and Maxwell equations. a Changing the sign of the mass m in the Dirac equation is equivalent
to a π rotation (shown by the arrows) of the rest-energy spectrum E0≡ E(0)=m in the complex-mass plane, which results in a single zero-mass surface
mode (shown by the star symbol) protected by the topological Z2 winding number1–3,27. The dot and star symbols with their colors correspond to the rest-
energy spectra of the bulk and surface modes shown in Fig. 1a. b Changing the signs of the permittivity ε and permeability μ in Maxwell equations produces
±π/2 and π rotations of the helicity spectrum in the complex helicity (S) plane Eq. (2). This results in the appearance of one or two zero-helicity
(transverse-electric and transverse-magnetic) surface modes15–19,34–36 (shown by the star symbols) described by the topological Z4 number (3). c The
medium-index diagram showing the signs of the refractive index n and impedance Z in four possible types of media (see Supplementary Note 1)
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note that imaginary helicity makes physical sense because the
canonical momentum (wavevector) becomes imaginary (while
the spin remains real) in metallic media24. Remarkably,
the helicity S always equals 1 in absolute value, but its phase
essentially depends on the signs of ε and μ, i.e., is different in the
four types of optical media mentioned above. At the dividing lines
ε= 0 and μ= 0, separating different phases, the helicity is ill-
defined (as well as the diverging energy eigenvalue ω).

Thus, the “helicity gap” is always present in optical media
(apart from the singular ε= 0 and μ= 0 cases), whereas the
media with different signs of (ε,μ) are related by π/2, π, and −π/2
rotations in the complex helicity plane, as shown in Fig. 2b. This
suggests that electromagnetic media are split into four topologi-
cally different classes, described by the topological bulk invariant,
which is a Z4 number or, equivalently, a pair of Z2 numbers:

w ε; μð Þ ¼ 2
πArg η ε; μð Þ½ � or

wTM ε; μð Þ;wTE ε; μð Þ� � ¼ 1
2 1� sgn εð Þ; 1� sgn μð Þf g: ð3Þ

Here the Z4 number w takes on values 0, ±1, 2 in the four types of
media shown in Fig. 2c, while the Z2 numbers wTM,TE take on
values 0, 1. We will refer to the invariant w as the helicity winding
number, because the contrast of this invariant between two
optical media describe the winding of the complex helicity
spectrum across the interface.

Most importantly, interfaces between different media indeed
support surface electromagnetic modes15–19,34–36, which are in
agreement with the differences of the topological numbers, Eq.
(3), across the interface. First, surface Maxwell modes always have
zero helicity, Ssurf � 0, similarly to the zero-mass modes in
topological insulators1–3,27 (Fig. 1). Indeed, surface Maxwell
waves are either TE or TM, so that the product of the magnetic
and electric wave fields, which determines the expectation value
of the helicity operator Eq. (2), vanishes identically:
S / H� � E � 024,32 (in agreement with this, the spin of these
modes is orthogonal to the wavevector: S ⋅ k= 036). Second, the
number of TE and TM surface modes at the interface is exactly
determined by the differences of the topological numbers Eq. (3):

Nsurf ¼ w ε2; μ2
� �� w ε1; μ1

� �		 		 ¼ w εr; μr
� �		 		 ¼ NTE

surf þ NTM
surf ;

ð4Þ

NTM;TE
surf ¼ wTM;TE ε2; μ2

� �� wTM;TE ε1; μ1
� �		 		 ¼ wTM;TE εr; μr

� �		 		:

ð5Þ

where the subscripts “1”, “2”, and “r” indicate the parameters of
the two bulk media and the relative parameters characterizing the
interface: (εr,μr)= (ε2/ε1,μ2/μ1). Note that in Eq. (4) the difference
should be considered within the cyclic Z4 group: e.g. 2−(−1)=
−1 rather than 3, because the helicity spectra of the correspond-
ing media are related by a −π/2 rather than 3π/2 rotation.
Equations (4) and (5) determine the bulk-boundary correspon-
dences for the topological numbers Eq. (3) and surface Maxwell
waves. In simple words, Eqs. (4) and (5) state that a single TM
(TE) surface mode exists at an interface where only the
permittivity ε (permeability μ) changes its sign, and two surface
modes (TE and TM) exist at interfaces where both ε and μ change
sign. This is shown in the phase diagram in Fig. 3a and is in
perfect agreement with the properties of surface Maxwell waves
known in plasmonics and metamaterials15–19.

Remarkably, the helicity winding number Eq. (3) can also be
associated with the phase of the topological Chern number of
photons36, which is also intimately related to the helicity and can
become complex in metallic media that only support evanes-
cent bulk modes. In free space (ε= μ= 1), the Berry curvature for

photons is a monopole of charge σ at the origin of the momentum
space: Fσ= σk/k3. Integrating it over momentum-space sphere
yields the helicity-dependent Chern number Cσ= 2σ36. Extending
this construction to isotropic media, we find that the momentum
space becomes complex (assuming real frequency ω, the
wavevectors k become imaginary in metallic media with εμ < 0).
This results in the substitution k/k→ ηk/k, and the Chern
number becomes Cσ ¼ 2ησ ¼ 2S (see Supplementary Note 2).
Thus, transitions between media with different signs of ε or μ are
accompanied by discrete changes of the phase of the complex
Chern numbers, and the topological number Eq. (3) is
determined by the phase of the spin Chern number:
w ¼ 2=πð ÞArg σCσð Þ. This illuminates the topological helicity
properties of Maxwell equations in media and shows that these
are quite different compared to Hermitian topological insulators
with gapped energy spectra and real Chern numbers.

Non-Hermitian features of the helicity and Maxwell equations.
The above consideration reveals another fundamental peculiarity
of the helicity-based description of photons in a medium.
Namely, the helicity operator Eq. (2) is essentially non-Hermitian,
as it is clearly seen from its purely imaginary spectrum in metallic
media with εμ < 0. Therefore, the corresponding helicity-based
form of Maxwell equations, Eq. (1), is also effectively non-
Hermitian. Indeed, expanding the matrix σ̂ðmÞ ¼ � nj jŜ in terms
of the Hermitian Pauli matrices σ̂i, we write Maxwell equations
as:

Ŝ � p̂� �
ψ ¼ �ω

2
εþ μð Þσ̂2 þ i ε� μð Þσ̂1½ �ψ: ð6Þ

Despite the non-Hermiticity of the operator in the right-hand
side of this equation, its spectrum can be real (in transparent
media with εμ > 0) because there is time-reversal symmetry K̂ σ̂3,
where K̂ is the complex conjugation22,23,37. Notably, it is known
that Maxwell equations in a medium can be treated as a Her-
mitian energy eigenvalue problem, i.e., the frequency ω can
always be chosen to be real (with the wavevector k becoming
imaginary in metallic media)6,24,33. However, an important fact is
missing in this Hermitian consideration with the modified inner
product ψh jψi ¼ ~ψy � ψ: it is valid for arbitrary (ε,μ) apart from
the ε= 0 and μ= 0 values. The energy eigenvalues diverge at
these values, ω→∞, while the inner product coefficients vanish.
Remarkably, these singular ε= 0 and μ= 0 values correspond to
exceptional points23,38 of the operator σ̂ mð Þ in the helicity-based
form (1) and (6) of Maxwell equations. The bulk helicity spec-
trum changes from real (εμ > 0) to imaginary (εμ < 0) at these
points. Moreover, in each of the exceptional points, the bulk
modes (ψ= (E,H)T∝(1,−iσ)T are the eigenstates of σ̂2 in the
vacuum) tend to a single “chiral”mode38–40 (the eigenstate of σ̂3):
ψc / 1; 0ð ÞT or ψc∝ (0,1)T, having only an electric or magnetic
field (see Supplementary Note 1). These chiral modes play crucial
roles in the epsilon-near-zero or mu-near-zero materials41.

It is known in the theory of non-Hermitian systems that
exceptional points are spectral degeneracies with nontrivial
topological structure23,38,42,43. Namely, they have the topology
of branch points, and it is impossible to introduce an
unambiguous global labeling of eigenvalues in the vicinity of
exceptional points. Thus, the parameter (ε,μ) space of Maxwell
equations is actually split into four simply connected domains
(quadrants) separated by the “exceptional lines” ε= 0 and μ= 0.
The effective Hermitian description6,24,33 is possible in each of
these domains but not globally over the whole (ε,μ) space. The
helicity winding number (3) labels these topologically different
quadrants of the parameter space, and has essentially non-
Hermitian origin.
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Additional polarization indices. As mentioned above, the
quantum-like formalism for Maxwell equations (1) determines
the biorthogonal set of “right” and “left” eigenvectors ψ and ~ψ 24.
However, this choice is not unique. Alternatively, Maxwell
equations can be formulated for the vectors ψ′= (E,B)T and
~ψ′ ¼ D;Hð ÞT . In this case, Eq. (3) becomes:

Ŝ � p̂� �
ψ′ ¼ �ω

2
εμþ 1ð Þσ̂2 þ i εμ� 1ð Þσ̂1½ �ψ′: ð7Þ

The non-Hermitian operator in the right-hand side of Eq. (7) has
the same exceptional points as in Eq. (6). However, the Hermitian
and non-Hermitian parts of the operators in Eqs. (6) and (7)
differ from each other. Recently, analyzing topological edge
modes in non-Hermitian quantum systems44, we showed that the
sign of the non-Hermitian part of the operator can play an
important role in this problem. For the operators in Eqs. (6) and
(7), this results in a pair of Z2 indices:

v ε; μð Þ ¼ 1
2

sgnðε� μÞ; sgnðεμ� 1Þf g: ð8Þ

As we show below, these indices describe the polarization TE/TM
properties of surface modes, and therefore we will refer to these as
“polarization indices”. Importantly, for a single medium, one can
scale the electric and magnetic fields such that this will remove
the non-Hermitian σ̂1-term in Eq. (6) or (7). In particular, scaling
ψ= (αE,βH)T with β/α= Z yields �nωσ̂2ψ in the right-hand side
of Eq. (6). However, such scaling is singular at the exceptional
points ε= 0 and μ= 0, and, furthermore, it cannot remove the
σ̂1-term simultaneously in two media. Applying the above scaling
to the first medium, β/α= Z1, we find that the Maxwell equations
in the second medium are given by Eqs. (6) and (7) with the

substitution

ε2; μ2
� � ! εr; μr

� �
; ω ! n1ω: ð9Þ

Thus, the fundamental interface properties and surface modes
must depend on the polarization indices Eq. (8) involving the
relative permittivity and permeability: v(εr,μr). In contrast to the
topological numbers Eq. (3) and the bulk-boundary Eqs. (4)
and (5), the polarization indices of the relative interface para-
meters, v(εr,μr), cannot be expressed via differences of the cor-
responding bulk indices v(ε1,μ1) and v(ε2,μ2). This shows that the
polarization indices Eq. (8) are not topological numbers, and
there is no bulk-boundary correspondence for these. The role of
these indices is revealed below.

Phase diagrams for surface Maxwell waves. The detailed phase
diagram of surface Maxwell modes can now be constructed using
the topological invariants Eq. (3) with the bulk-boundary corre-
spondences Eqs. (4) and (5), augmented by the polarization
indices Eq. (8) and simple symmetry arguments. First, as it was
mentioned above, the helicity winding number Eq. (3), w(εr,μr),
yields a diagram in the (εr,μr)-plane (Fig. 3a), which determines
the number of surface modes according to Eqs. (4) and (5). These
modes must have vanishing helicity: Ssurf / H� � E � 0. Taking
into account the symmetry of a planar interface between two
isotropic media implies that the surface modes must be TE or TM
polarized, i.e., having electric and magnetic fields parallel and
perpendicular to the interface and orthogonal to each other.

Second, the indices v(εr,μr)≡ {v1,v2} determine the separation
between the TE and TM phases. Indeed, from the dual
symmetry between the electric and magnetic quantities (εr↔ μr,
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Fig. 3 Phase diagrams of surface Maxwell waves. a Zones of the existence of zero, one, and two surface zero-helicity modes described by the topological
helicity winding number Eq. (3) and the bulk-boundary correspondences Eqs. (4) and (5), see Fig. 2b. b Phase separation of the transverse-electric (TE)
and transverse-magnetic (TM) modes described by the polarization indices Eq. (8). c The phase diagrams resulting from the combination of a and b. The
two-mode quadrant (εr < 0,μr < 0) has both TE and TM modes in every point, but only one of these is propagating (i.e., having real wavevector ksurf ), while
the other one is evanescent (having imaginary ksurf). d Splitting the phase diagram (c) with real ksurf into zones with real (bright areas) and imaginary (dark
areas) frequency ωsurf . These zones swap upon the inversion of the sign of the squared refractive index of the first medium, n21 ¼ ε1μ1
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TE↔ TM) and the spatial inversion symmetry, which exchanges
the two media, 1↔ 2, and produces the substitution (εr,μr)→
(1/εr,1/μr), one can conclude that the TE and TM modes must
swap upon the sign flip of the non-Hermitian indices Eq. (8):
v1→−v1 or v2→−v2. This results in the diagram (Fig. 3b),
where the lines εr= μr and εrμr= 1 divide the (εr,μr)-plane into
alternating zones of TE and TM polarizations.

Note that according to the helicity winding diagram (Fig. 3a),
both TE and TM surface waves exist at every point of the two-
mode zone (εr < 0, μr < 0), but only one of these modes is shown
in Fig. 3b. Showing both of these modes results in the two
diagrams in Fig. 3c, but only the first diagram corresponds to the
propagating surface modes. Indeed, direct calculations show that
the wavevectors of the surface modes have the form ksurf / ffiffiffiffiffiffiffiffi

v1v2
p

and ksurf / ffiffiffiffiffiffiffiffiffiffiffiffi�v1v2
p

for the TM and TE polarizations, respectively
(see Supplementary Note 3). Hence one of these is always real
(propagating modes in the first diagram Fig. 3(c)) while the other
one is imaginary (evanescent surface modes in the second
diagram (Fig. 3c)). Although these evanescent surface modes have
never been considered before, these are observable, e.g., in the
near-field scattering of surface electromagnetic waves. Further-
more, ksurf ! 0 for both propagating and evanescent surface
modes at interfaces involving epsilon-near-zero or mu-near-zero
materials, where the contribution of evanescent surface modes
can become crucial.

Finally, there is one more feature in the characterization of
surface modes, which is not determined by the topological
invariants Eq. (3) and polarizations indices Eq. (8). Up to now, we
have allowed any frequencies ωsurf of surface modes; however,
because of the non-Hermitian character of the problem, these
can also be either real or imaginary. In fact, the zones with real
and imaginary frequencies are separated by the lines εr=−1 and
μr=−1, which correspond to surface-plasmon resonances for
a planar interface (see Supplementary Note 3). Furthermore,
since we reduced the non-Hermitian interface problem (6)
and (7) to the problem with relative parameters (εr,μr) and
substitution ω→ n1ω, as indicated in Eq. (9), the real-frequency
and imaginary-frequency zones must swap upon the substitution
n21 ! �n21. This splits the phase diagram of Fig. 3c into two
diagrams for the n21>0 and n21<0 cases, as shown in Fig. 3d.
Considering only propagating surface modes with real ωsurf
and ksurf , we find that the phase diagrams of Fig. 3d exactly
coincide with rather sophisticated diagrams previously obtained
in refs. 34–36 by directly solving Maxwell equations. Importantly,
the imaginary-k and imaginary-ω surface waves were ignored in
the previous studies, which resulted in truncated phase diagrams.
Taking these modes into account makes the picture complete and
fully consistent with the simple diagram in Fig. 3a described by
the topological helicity winding number Eq. (3) and bulk-
boundary correspondence Eqs. (4) and (5).

Discussion
We have shown that surface Maxwell waves have a fundamental
topological origin, which is described by the helicity winding
number (Z4 or a pair of Z2 numbers) and bulk-boundary corre-
spondence (Eqs. (3)–(5)). On the one hand, the underlying
mechanism resembles the Z2 winding number for the Dirac
topological insulators with opposite-mass interfaces1–3. On
the other hand, the situation is fundamentally different because we
deal with the winding of the helicity spectrum, S, rather than that
of the energy spectrum E. Moreover, the helicity operator in a
medium is essentially non-Hermitian, and its spectrum can be
either real or imaginary in lossless media. The helicity winding
number labels the four topologically different quadrants of the
parameter (ε,μ) space, which are separated by the exceptional

points ε= 0 and μ= 0 of the helicity-like Maxwell operator in Eq.
(6). In terms of momentum-space quantities, the non-Hermitian
helicity leads to complex Chern numbers of photons in a medium,
and their phase rather than the magnitude (as in the Hermitian
case) corresponds to the helicity winding number.

The difference of the helicity winding number (3) between
two media describes the number of surface Maxwell waves at
the interface. Using different representations of the non-
Hermitian helicity-based form of Maxwell equations, we intro-
duce an additional pair of polarization Z2 indices (8). These
are not topological numbers, they do not affect the number
of surface modes, but these indices describe the separation of
the TE and TM polarizations in the phase diagrams of surface
modes (Fig. 3). Indeed, linking the polarization indices (8) to
the phase diagram involves a spatial symmetry between the two
media, which is broken when we replace the planar interface
with a curved interface. In contrast, true topological phenomena
are expected to survive at interfaces that break crystallographic
symmetries.

Notably, due to their non-Hermitian origin, surface Maxwell
waves are also essentially non-Hermitian modes. This means that
these can have either real or imaginary frequencies and/or wave
numbers. All previous studies of surface Maxwell waves con-
sidered only propagating surface waves with real parameters.
This resulted in rather sophisticated and truncated phase dia-
grams34–36. Our theory augments this diagram with evanescent
surface modes with imaginary parameters, which results in a very
simple fundamental phase diagram (Fig. 3a) described solely by
the topological helicity winding number (3).

Our theory provides new twists to several areas of wave phy-
sics: Maxwell electromagnetism, topological insulators, non-
Hermitian quantum mechanics, and metamaterials. It shows
that topological surface modes have been known and observed in
electromagnetism long before the formulation of topological
properties (e.g., surface plasmon-polaritons15,16). Furthermore,
interfaces between the positive-index and negative-index metallic
media (i.e., ε < 0, μ > 0 and ε > 0, μ < 0) provide “electromagnetic
topological insulators” with no propagating bulk modes and
topologically-protected surface modes18,45. We have also shown
that macroscopic Maxwell equations in the helicity-based form
naturally possess exceptional points in the (ε,μ)-space and
“chiral” non-Hermitian bulk modes in these points, which cor-
respond to the epsilon- and mu-near-zero materials18,41. Finally,
we note that our approach can be applied to other wave equa-
tions, providing an efficient model for systems described by non-
Hermitian massless wave equations with helical bulk modes.

Data availability
The data that support the findings of this study are available from
the corresponding authors upon request.
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