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Abstract

Background: The potential reversibility of aberrant DNA methylation indicates an opportunity for oncotherapy. This
study aimed to integrate methylation-driven genes and pretreatment prognostic factors and then construct a new
individual prognostic model in hepatocellular carcinoma (HCC) patients.

Methods: The gene methylation, gene expression dataset and clinical information of HCC patients were
downloaded from The Cancer Genome Atlas (TCGA) database. Methylation-driven genes were screened with a
Pearson’s correlation coefficient less than − 0.3 and a P value less than 0.05. Univariable and multivariable Cox
regression analyses were performed to construct a risk score model and identify independent prognostic factors
from the clinical parameters of HCC patients. The least absolute shrinkage and selection operator (LASSO)
technique was used to construct a nomogram that might act to predict an individual’s OS, and then C-index, ROC
curve and calibration plot were used to test the practicability. The correlation between clinical parameters and core
methylation-driven genes of HCC patients was explored with Student’s t-test.

Results: In this study, 44 methylation-driven genes were discovered, and three prognostic signatures (LCAT,
RPS6KA6, and C5orf58) were screened to construct a prognostic risk model of HCC patients. Five clinical factors,
including T stage, risk score, cancer status, surgical method and new tumor events, were identified from 13 clinical
parameters as pretreatment-independent prognostic factors. To avoid overfitting, LASSO analysis was used to
construct a nomogram that could be used to calculate the OS in HCC patients. The C-index was superior to that
from previous studies (0.75 vs 0.717, 0.676). Furthermore, LCAT was found to be correlated with T stage and new
tumor events, and RPS6KA6 was found to be correlated with T stage.

Conclusion: We identified novel therapeutic targets and constructed an individual prognostic model that can be
used to guide personalized treatment in HCC patients.
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Background
Liver cancer is the sixth most common cancer and was
the third major cause of cancer-related death in 2018
[1]. Hepatocellular carcinoma (HCC), the most common
type of primary liver cancer, is the fourth most com-
monly diagnosed cancers in men and the fourth leading
causes of cancer-related death among both women and
men in China; the global incidence of HCC is predicted
to exceed a million cases per year by 2025 [2, 3]. Alcohol
abuse, hepatitis B virus or hepatitis C virus infection are
the main causes of HCC. At present, surgical resection,
ablative electrochemical therapies, chemoembolization,
and radioembiolization are the most common treatments
for HCC patients [4]. However, the 5-year survival rate of
HCC patients remains poor due to intrahepatic spread
and recurrence [5]. Therefore, exploring novel therapeutic
targets and developing a prognosis module to guide
personalized treatment are still needed.
Aberrant epigenetic changes could inappropriately

inhibit or activate signaling pathways, which lead to the
beginning of cancer. Epigenetic changes are considered
to be a crucial step in the advancement of genetic
alterations and the early stage of tumor progression [6].
DNA methylation, a covalent modification of the nucleo-
tide cytosine at the 5′ position, is the most commonly
studied epigenetic mechanism. DNA hypo- or hyperme-
thylation could result in the occurrence of malignant
tumors. DNA hypomethylation is considered to be an in-
dication of cancer cells and affects chromosomal stability
and activates oncogenes [7, 8]. DNA hypermethylation is
believed to contribute to decreased gene expression and
transcriptional suppression [9]. DNA methylation is an
important role in tumorigenesis, and drugs that target
DNA methylation are being developed based on the
characteristic that DNA methylation can potentially be
reversed [10].
In the present study, we initially filtered methylation-

driven genes with stricter standards, which provides a
compelling foundation for the study. By using univariate
and multivariate Cox analyses, a prognostic module was
constructed to predict the risk score of prognosis in
HCC patients, then internal and external validation were
performed to assess the prognostic model. Next, we
conducted univariate and multivariate Cox analyses to
identify independent predictors from clinical factors,
including risk score, in HCC patients. Moreover, we
included more comprehensive clinical information com-
pared to that provided in previous studies and utilized
the least absolute shrinkage and selection operator
(LASSO) algorithm to build a nomogram that could be
used to predict an individual’s OS. To our knowledge,
there are no previous studies exploring the relationship
between the OS of HCC patients and these clinical
parameters. The C-index, ROC curve and calibrate plot

were used to validate that the nomogram is superior to
that from previous studies. Moreover, Student’s t-test
was conducted to analyze the correlation between the
core methylation-driven genes and clinical parameters in
HCC patients.

Methods
Patients and clinical data collection
In the present study, mRNA sequencing and DNA
methylation data of HCC patients were obtained from
The Cancer Genome Atlas (TCGA; https://portal.gdc.
cancer.gov/) database. RNA sequencing data included
374 HCC samples and 50 normal liver samples. DNA
methylation data (Illumina Human Methylation 450 k)
included 380 HCC samples and 50 normal liver samples.
In addition, we downloaded the clinical information of
HCC patients (n = 377) from the TCGA database.

Identification of differentially methylated and expressed
genes
The limma package was used to screen the differentially
methylated genes, and the edgeR package was used to iden-
tify the differentially expressed genes [11, 12]. To improve
the accuracy, the differential methylation level between
HCC samples and normal liver samples (△β) greater than
0.1, false discovery rate (FDR) < 0.05, fold change> 1 were
used as the cutoff criteria to identify the differentially meth-
ylated genes, and FDR < 0.05 and fold change > 2 were used
to identify differentially expressed genes.

Identification of methylation-driven genes
The match function was carried out to identify the
hypermethylation-low expressed genes and hypomethylation-
high expressed genes. To further improve the credit-
ability, a correlation coefficient less than − 0.3 with a P value
less than 0.05 was used to screen the methylated-driven
genes [13].

Construction of the risk score predictive model
To screen the methylation-driven genes related to OS,
we matched survival data with follow-up more than 90
days and corresponding methylation-driven gene expres-
sion of 329 HCC patients. Univariate Cox proportional
hazard analysis was utilized to filter methylation-driven
genes related to OS (P < 0.05), and the core candidate
genes to construct the risk score predictive model were
identified with multivariable logistic regression analysis
(P < 0.05). HCC patients were separated into high-risk
and low-risk groups, and the K-M method was used to
analyze the groups. Moreover, Receiver operating char-
acteristic curves (ROC) for 1 year, 2 years and 3 years
were performed to assess the prognostic model.
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Internal and external validation of the predictive model
The 329 HCC patients were randomly separated into
training and testing groups by“caret” package for internal
validation of the predictive model [14]. K-M analysis and
ROC curves for 1 year, 2 years and 3 years were conducted
to assess internal validation. Moreover, the prognostic risk
model was further validated in the liver cancer database
(LIRI-JP) from International Cancer Genome Consortium
(ICGC; https://dcc.icgc.org/) database, K-M analysis and
ROC curves for 1 year, 2 years and 3 years were performed
to assess the external validation.

Integrated analysis of the risk score and clinical
parameters in HCC patients
To completely identify pretreatment-independent pre-
dictors in HCC patients, the inclusion criteria for clinical
factors were as follows: 1) neoadjuvant treatment was
not received before the operation; and 2) the follow-up
time was more than 90 days. The clinical information
(age, sex, race, BMI, HCC risk factors, and surgical
method) and risk score of HCC patients (n = 243) were
integrated according to the patient ID of HCC patients
after excluding missing data. Then, univariate and multi-
variable Cox regression analyses were conducted to
identify independent prognostic indicators from the 13
clinical parameters.

The development and assessment of the nomogram
To avoid overfitting, LASSO logistic regression was used
to filter key factors from clinical factors and build a
nomogram that could be used to predict an individual’s

OS. C-index, ROC curve and calibration plot were used
to weigh the prognostic ability of the nomogram.

Correlation analysis between clinical factors and
methylation-driven genes
To further explore the correlation between the core
methylation-driven genes that were selected to construct
the risk score module and clinical factors that were
screened by the LASSO algorithm, Student’s t-test was con-
ducted, and P < 0.05 was considered statistically significant.

Results
Identification of methylation-driven genes
A total of 3751 highly expressed genes, 1081 lowly
expressed genes (Fig. 1a), 977 hypermethylated genes and
2828 hypomethylated genes of HCC were extracted from
the TCGA database (Fig. 1b), and 43 hypermethylation-
low expressed genes and 210 hypomethylation-high
expressed genes were identified (Fig. 2). Then, 44
methylation-driven genes were filtered with a correlation
less than − 0.3 and P < 0.05, and the genes were identified
to be negatively correlated with methylation level (Fig. 3).

Construction of the risk score model
To identify methylation-driven genes related to OS of
HCC patients, survival data of 329 HCC patients and 44
methylation-driven gene expression were integrated, and
C5orf58, LCAT, ADH1B, RPS6KA6, SFN and ZDBF2
were identified with univariate Cox regression analysis.
The 6 methylation-driven genes were significantly related
to the OS of HCC patients. To further explore the
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Fig. 1 Identification of differentially expressed and methylated genes in patients with hepatocellular carcinoma. a The highly expressed and lowly
expressed genes in hepatocellular carcinoma. b The hypermethylated and hypomethylated genes in hepatocellular carcinoma
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Fig. 2 The identification of methylation-driven genes in hepatocellular carcinoma. The blue bar represents low methylated and high expressed
genes. The orange bar represents high methylated and low expressed genes

Fig. 3 Representative methylation-driven genes in hepatocellular carcinoma. a Correlation between DNA methylation and genes expression of
top 3 hypermethylated genes. b Correlation between DNA methylation and genes expression of top 3 hypomethylated genes
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independent predictive factor, multivariable Cox regres-
sion analysis was performed based on univariate Cox ana-
lysis, and C5orf58, LCAT, and RPS6KA6 were selected
(Fig. 4). Then, the risk score module was completed after
the coefficients of three genes were assigned by the Cox
algorithm, as follows: risk score = (0.001295 × gene level of
C5orf58) + (− 0.0001 × gene level of LCAT) + (0.002257 ×
gene level of RPS6KA6). A total of 329 HCC patients were
separated into high-risk and low-risk groups by the me-
dian risk score as the cutoff. The areas under the curves
(AUC) in the prognostic model for 1 year, 2 years and 3
years were 0.742, 0.697 and 0.661, respectively (Fig. 5).
The OS of the two groups was significantly different in K-
M analysis (Fig. 6).

Internal and external validation of the predictive model
The 329 HCC patients were randomly separated into
training group and (n = 233) testing group (n = 96). As
shown in Fig. 7a-b, the OS between high risk and low
risk groups was significantly different in training and
testing groups (P = 0.040; P = 0.006). Meanwhile, the
AUCs in training cohort for the 1 year, 2 years and 3
years were 0.720, 0.654 and 0.664 (Fig. 7c-e), the AUCs
in testing cohort for 1 year, 2 years and 3 years were
0.815, 0.821 and 0.674(Fig. 7f-h). Moreover, external
validation also suggest the optimistic prognostic ability.
The P value of K-M analysis of the high-risk and low-
risk groups was 0.003 in ICGC database (Fig. 8a). The

AUCs for 1 year, 2 years and 3 years were 0.695, 0.638
and 0.655, respectively (Fig. 8b-d).

The identification of independent predictive indicators
To further assess the independence of the risk score as a
predictive factor in HCC patients, risk score, age, sex,
grade, T stage, BMI, race, other cancer, cancer state,
HCC risk factor, surgical method, residual tumor, and
new tumor events were integrated with survival informa-
tion of HCC patients (n = 243) after excluding missing
data, the characteristics of HCC patients were shown in
Table 1. The 13 clinical parameters were included in
univariate Cox regression analysis, and 5 clinical factors
(T stage, risk score, cancer status, surgical method and
new tumor events) were filtered and found to be corre-
lated with the OS of HCC patients (Table 2). Next, four
independent predictors of HCC patients (T stage, risk
score, surgical method and new tumor events) were
identified by the multivariable Cox regression algorithm
(Table 3).

The development and assessment of the nomogram
To determine the effect of the clinical factors for HCC
patients, 13 clinical characteristics were analyzed with
the LASSO logistic regression algorithm. Seven clinical
factors (T stage, risk, BMI, cancer status, HCC risk
factors, surgical method and new tumor events) were
filtered (Fig. 9), from which a nomogram was built to
predict an individual’s 3- and 5-year OS rates (Fig. 10).

Cancer Normal

0.0

0.1

0.2

value

Cancer Normal

50

100

150
value

Cancer Normal

0

1

2

3

4

value
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The reliability of the model was demonstrated by AUC
(0.776, 0.791), C-index (0.75) and calibration plot
(Fig. 11).

Correlation analysis between clinical factors and
methylation-driven genes
For further analysis of the correlation between the clin-
ical factors that were used to construct the nomogram
and the selected methylation-driven genes, Student’s
t-test was performed. RPS6KA6 and LCAT were
found to be correlated with T (P = 0.015; P = 0.042),
and LCAT was significantly related to new tumor
events (P = 0.028) (Fig. 12).

Discussion
Currently, the most common treatment for HCC
patients is surgical operation. However, approximately
half of HCC patients with hepatectomy experience
recurrence within 3 years, even at stage A [15–18]. Fur-
thermore, metastasis before diagnosis and incomplete
resection for HCC patients further reduce the 5-year
survival rate. To facilitate the identification of HCC

+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++
+++++

+
++ +

++
p=1.07e−03

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time(years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Risk + +High risk Low risk

164 120 60 40 28 17 12 2 2 1 1
165 134 66 49 35 23 13 6 4 2 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10
Time(years)

R
is

k

Fig. 6 Kaplan–Meier survival analysis between high risk and low
risk groups

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve for 1 year ( AUC =  0.742 )a

d

b c

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ROC curve for 2 years ( AUC =  0.697 )

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve for 3 years ( AUC =  0.661 )

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Fig. 5 Assessment of the prognostic model in HCC patients. a-c The AUCs of the prognostic model for 1 year, 2 years and 3 years. d Distribution
of survival status based on the prognostic model in HCC patients

He et al. BMC Cancer          (2021) 21:599 Page 6 of 13



patients with poor prognosis and timely intervention
implementation, the identification of predictors related
to OS is urgent.
Based on the characteristic of the reversibility of DNA

methylation, a large number of drugs for DNA methyla-
tion and demethylation are currently being researched.

Azacitidine (AZA), a hypomethylating agent, has been
suggested to be beneficial to myelodysplastic syndromes
(MDS) and acute myeloid leukemia (AML) patients [19–
21], and the drug is licensed for clinical treatment in the
US, Europe and China. Our study used stricter criteria
to identify methylation-driven genes and integrated
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more comprehensive clinical information, including
BMI, new cancer events, surgical method, cancer state,
and HCC risk factors, to predict an individual’s progno-
sis, which further improved the reliability of the study.
In this study, we tried to explore the biological targets

of HCC that can be applied by methylation-targeted
drugs. After differentially expressed genes and differen-
tially methylated genes were identified, we found more
hypomethylated genes than hypermethylated genes
(2828 vs 977) and more highly expressed genes than
lowly expressed genes (1821 vs 1493). Interestingly, the
numbers of hypomethylated genes and highly expressed
genes were greater than those in the control group,
which is roughly consistent with the fact that methylation
is negatively correlated with gene expression. Univariate
and multivariable Cox regression analyses filtered three
independent predictive genes. The high-risk group and
low-risk group were separated into HCC patients using the
three central methylation-driven genes. In this study,

LCAT was expressed at low levels and hypermethylated in
HCC samples. Lecithin-cholesterol acyltransferase (LCAT)
is an important gene that is correlated with poor prognosis
in many cancers, such as ovarian cancer [22], Hodgkin
lymphoma [23], and breast cancer [24]. LCAT is related to
fatty metabolism in males, and its activity is reduced in pa-
tients with liver disease [25]. Ribosomal protein S6 kinase
A6 (RPS6KA6) is a protein in the 90-kDa ribosomal
protein S6 kinase (RSK) family that participates in a series
of cellular biological processes, such as cellular survival,
proliferation, differentiation, mobility, nuclear signaling
and protein synthesis [26–28]. RPS6KA6 plays a differen-
tial role in cancers and was reported to be an oncogene in
lung squamous cell carcinoma and renal cell carcinoma
[29, 30]. In contrast, RPS6KA6 works as a tumor suppres-
sor in endometrial cancer, acute myeloid leukemia, ovarian
cancer, and breast cancer [31–34]. Furthermore, the
low expression of RPS6KA6 was the result of DNA
hypermethylation in endometrial cancers [31]. However,
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the role of RPS6KA6 in HCC has not been reported in
previous studies. In our study, RPS6KA6, is a hypermethy-
lated and lowly expressed gene, was identified as a core
methylation-driven gene correlated with prognosis in
HCC patients. Consistent with RPS6KA6, chromosome 5

open reading frame 58 (C5orf58) was hypermethylated
and expressed at low levels in HCC. However, the roles of
C5orf58 have not been previously reported. C5orf58 maps
on chromosome 5 at 5q35.1 according to Entrez Gene
[35]. The roles of these three genes, especially RPS6KA6
and C5orf58, have not been sufficiently elucidated in
HCC. Given the potentially reversible characteristic of
DNA methylation, we filtered the three core methylation-
driven genes to identify high-risk HCC patients, which
might be therapeutic targets of epigenetic drugs and re-
duce the risk score of HCC patients.
There are several comprehensive studies related to

methylation-driven genes in HCC. However, few studies
have integrated clinical parameters and core
methylation-driven genes in HCC. The advantage of the
study was that stricter criteria were used to obtain more
precise methylation-driven genes. Then, the prognosis
module based on three genes was built, and the number
of genes to build the module increased the feasibility
and reduced the clinical cost. The expression, methyla-
tion and clinical data were retrieve from matched HCC
patients, the feature strengthens the persuasiveness of
the prognostic module based on the methylation-
driven genes in HCC patients. The internal and

Table 1 Clinial characteristics of screened HCC patients

parameters patients, n(%)

Age (years)

< 60 163 (67.1%)

> =60 80 (32.9%)

Gender

Female,n(%) 69 (28.4%)

Male,n(%) 174((71.6%)

Grade

1–2,n(%) 143 (58.8%)

3–4,n(%) 100 (41.2%)

T grade

T1–2,n(%) 182 (74.9%))

T3–4,n(%) 61 (25.1%)

Risk score

Low,n(%) 123 (50.6%)

High,n(%) 120 (49.4%)

BMI

< 24,n(%) 115 (47.3%)

> =24,n(%) 128 (52.7%)

Race

Asian,n(%) 126 (51.9%)

Non-Asian,n(%) 117 (48.1%)

Other Tumor

No,n(%) 225 (92.6%)

Yes,n(%) 18 (7.4%)

Cancer status

Tumor Free,n(%) 162 (66.7%)

With Tumor,n(%) 81 (33.4%)

HCC risk factor

No,n(%) 55 (22.6%)

Yes,n(%) 188 (77.4%)

Surgical method

Lobectomy,n(%) 94 (38.7%)

Non-Lobectomy,n(%) 149 (61.3%)

Residual tumor

R0,n(%) 230 (94.7%)

No R0,n(%) 13 (5.3%)

New tumor event

No,n(%) 105 (43.2%)

Yes,n(%) 138 (56.8%)

Table 2 Univariate COX regression analyses of clinicopathologic
factors associated with OS

Parameters univariate analysis
HR(95% CI)

P value

T stage 2.845 (1.768–4.580) < 0.001

New tumor events 5.222 (2.584–10.555) < 0.001

Cancer status 2.460 (1.519–3.982) < 0.001

BMI 0.680 (0.424–1.090) 0.109

Risk score 1.814 (1.123–2.930) 0.015

HCC risk factors 0.737 (0.437–1.243) 0.252

Surgical method 0.409 (0.251–0.667) < 0.001

Residual tumor 1.415 (0.513–3.899) 0.502

Race 1.175 (0.726–1.903) 0.512

Grade 1.130 (0.670–1.825) 0.617

Gender 0.887 (0.538–1.462) 0.639

Other tumor 1.150 (0.496–2.668) 0.744

Age 0.933 (0.567–1.536) 0.785

Table 3 Multivariate COX regression analyses of
clinicopathologic factors associated with OS

Parameters Multivariate analysis
HR(95% CI)

P value

T stage 2.316 (1.352–3.968) 0.002

New tumor events 3.437 (1.476–8.001) 0.004

Risk score 1.948 (1.151–3.296) 0.013

Surgical method 0.519 (0.302–0.890) 0.017
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external validation of the prognostic module also
shown optimistic predictive capacities. Next, we first
included more comprehensive clinical information
than that included in previous studies to construct a
nomogram and calculate an individual’s prognosis. The
nomogram to predict prognosis in HCC patients was
more accurate than that in a previous study (C-index:
0.75 vs 0.717, 0.676) [36, 37]. Furthermore, T stage,
new tumor event, surgical method and risk score were
filtered to be the independent prognosticators, which
further strengthens the result that risk score might be
utilized to calculate the prognosis in HCC patients.

Finally, LCAT was found to be correlated with T stage
and new tumor events, and RPS6KA6 was found to be
related to T stage. It is worth further exploring
whether the T stage and new cancer events were re-
versed by regulating LCAT and RPS6KA6. Overall, the
nomogram, independent prognosticators and potential
treatment targets are beneficial for individualized
treatment of HCC patients.
Certainly, the potential limitations of the study should

be noted. The biological mechanisms of LCAT, RPS6KA6
and C5orf58 remain to be explored. In addition, the study
was based only on research data from the TCGA database,
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which might contribute to selection bias. Therefore, a
multicenter and large-scale study should be implemented
to further validate our model.

Conclusions
In summary, a risk score module based on three core
methylation-driven genes was developed, and it might
be an independent predictor in HCC patients. In
addition, we first included more comprehensive

clinical information to construct the nomogram,
which might be beneficial for predicting an individ-
ual’s OS. Moreover, the independent predictors were
identified from clinical parameters. Finally, core
methylation-driven genes related to clinical parame-
ters were demonstrated.
To the best of our knowledge, a risk score module and

nomogram have been proposed for the first time, and it
might be beneficial to explore potential therapeutic
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targets and develop individualized treatments for HCC
patients.
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