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Abstract: SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcrip-
tion factors, play important roles in plant developmental regulation and stress response adaptation.
Although mulberry is a commercially valuable tree species, there have been few systematic studies on
SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were
distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five
plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa)
into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the
MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of
MnSPLs within a group, whereas there were significant structure differences among groups. Gene
quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had
much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed
that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm
herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through
promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin
synthesis genes (F3′H, DFR, and LAR).

Keywords: mulberry; SPLs; phylogenetic analysis; silkworm herbivory; MnSPL7/MnTT2L2 module

1. Introduction

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode plant-specific
transcription factors and are typified by highly conserved SQUAMOSA promoter-binding
(SBP) domains. SBP domains contain 75–79 amino acid residues with two Zn2+-binding
sites (Cys–Cys–His–Cys and Cys–Cys–Cys–His) and a nuclear location signal (NLS) which
is involved in DNA binding and nuclear localization [1,2]. SPL genes were first identified
in the floral organs of Antirrhinum majus while screening the nuclear protein interactions
within the promoter of the SQUAMOSA gene by electrophoretic mobility shift assay
(EMSA) [3].

Importantly, SPL genes are distributed in a vast majority of green plants, including
single-celled algae, mosses, gymnosperms, and angiosperms [4–6]. To date, since the
completion of genome sequencing and the thorough development of the functional genome,
17, 19, 56, 16, and 14 SPL genes have been systematically identified in A. thaliana, O. sativa,
Triticum aestivum, Peaonia suffruticosa, and Paeonia suffruticosa, respectively [7–11].

As unique plant transcription factors, SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE (SPL) genes play important roles in plant vegetative phase transition [12–14], flowering
regulation [15,16], leaf morphogenesis [17], and root development [18–20]. Moreover, SPL
genes can respond to various biotic and abiotic stresses by regulating the abundances
of anthocyanin [21,22], abscisic acid [23], and jasmonate [24]. SPL genes have a higher
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expression level in relatively more mature tissues. In Antirrhinum, SPL1 and SPL2 were
detected in inflorescences but not in the tissues of juvenile plants [25]. In Arabidopsis, the
expression profiles of SPL genes increased as plants aged and were regulated by sequence-
conserved microRNAs (miR156/157) [12,15,26,27]. AtSPL9 and AtSPL10, which were
directly repressed by miR156/157, controlled the juvenile-to-adult phase transition [12].
AtSPL3/4/5 were also directly suppressed by miR156/157 and positively regulated floral
meristem identity and influenced the trichome distribution [16,28]. Additionally, AtSPL9
and AtSPL15 affected leaf shape [12], while AtSPL3, AtSPL9, and AtSPL10 were involved in
the repression of lateral root growth, and AtSPL10 played a dominant role in the primary
root meristem activity regulation [18–20]. In addition, the expression levels of SPL genes
fluctuated significantly under adverse conditions including salt stress, drought stress,
heat stress, nitrogen starvation, and viral defense [29–31]. The overexpression of miR156
repressed the expression of SPL genes and further increased anthocyanin accumulation
in the stems of Arabidopsis and the stem apex of poplar. The increased expression of
miR156 also improved the accumulation of flavonoids in poplar [21,22,32]. In Arabidopsis,
high levels of SPL9 under salt and drought stress treatment suppressed anthocyanin
accumulation by directly repressing the expression of anthocyanin biosynthetic genes,
such as ANS, F3′H, DFR, and UGT75C1, through interfering with the integrity of the
MYB-bHLH-WD40 transcriptional activation complex [21,22].

Mulberry, also known as Morus alba, is widely distrusted around the world [33]. In
addition to its use for breeding silkworms, mulberry is also a traditional fruit tree and
Chinese herbal medicine that has significant economic value in food and medicine produc-
tion [34–36]. Abundant flavonoids have been detected in mulberry leaves and fruits, which
indicates the medicinal properties and high stress resistance of mulberry [37,38]. Research
has shown that flavonoid (anthocyanins, proanthocyanidins, flavones, and flavonols) accu-
mulation is regulated by the MYB-bHLH-WD40 ternary activation complex in plants [39].
In mulberry, the TT2L1 and TT2L2 proteins interact with bHLH3 or GL3 to promote proan-
thocyanidin (the multimer of catechin or epicatechin) accumulation [40]. Furthermore,
mulberry genome sequencing has been completed [33,41], and our previous study also
verified that nine mulberry SPL genes are directly regulated by miR156 [42]. However, to
date, systematic research on mulberry SPL genes is still lacking; consequently, the specific
molecular biological functions of SBP-box transcription factor genes in development and
stress responses remain unclear.

In this work, we identified 15 SPL genes in the mulberry genome and named these
genes according to their evolutionary relationship with AtSPL genes. The MnSPL gene
family was characterized through comprehensive analyses of gene structures, phyloge-
netic relationships, chromosomal locations, conserved motifs, and expression patterns. A
dual-luciferase assay was carried out to verify the interaction between the MnSPL7 gene
and catechin synthesis-regulated genes (TT2L2) under silkworm herbivory in mulberry.
In summary, our works have provided basic information for elucidating the molecular
biological functions of SPL genes in mulberry.

2. Results
2.1. Identification and Analysis of the SPL Gene Family in Mulberry

A total of 15 full-length SPL genes were identified in the mulberry genome (MorusDB,
https://morus.swu.edu.cn/, accessed on 3 March 2020) [43] using BLASTAN and HMMER
with SPL genes from A. thaliana as the query sequences (Table 1). Mapping SPLs to the
M. notabilis genome showed that 15 SPLs were unevenly distributed on 4 chromosomes,
with 5 on Chr1 (SPL1, SPL3, SPL4, SPL8, and SPL10) and Chr2 (SPL2, SPL6, SPL7, SPL14,
and SPL16B), 3 on Chr4 (SPL5, SPL15, and SPL16A), and 2 on Chr6 (SPL12 and SPL13)
(Figure 1).

https://morus.swu.edu.cn/,
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Table 1. Gene ID and gene structures of SPLs in mulberry. The gene ID of MnSPLs were obtained from
the Morus Genome Database (MorusDB) (https://morus.swu.edu.cn/, accessed on 3 March 2020).

Gene Name Gene ID mRNA
Length CDS Length Exon Number Strand miR156 Target Site

MnSPL1 Morus013868 5282 3081 10 - /
MnSPL2 Morus015493 2478 1503 4 - GUGCUCUCUCUCUUCUGUCAA
MnSPL3 Morus009607 10,219 480 2 + /
MnSPL4 Morus014488 1855 513 2 - UUGCUCUCUCUCUUCUGUCAA
MnSPL5 Morus010322 1381 630 2 - /
MnSPL6 Morus026457 3240 1491 3 - GUGCUCUCUCUCUUCUGUCAU
MnSPL7 Morus011281 5842 2535 12 + GAUGUCUCUUUCCUCUGUCAG
MnSPL8 Morus021788 2020 1095 3 - /
MnSPL10 Morus021787 2565 1302 3 + /
MnSPL12 Morus025152 6389 3072 10 - /
MnSPL13 Morus010123 2469 1200 3 - GUGCUCUCUAUCUUCUGUCAU
MnSPL14 Morus024784 5168 3129 10 - UUGCUCAC-GUUUUCUGUUGA
MnSPL15 Morus018032 2947 1110 3 + GUGCUCUCUCUCUUCUGUCAA

MnSPL16A Morus010792 1816 1239 3 - GUGCUCUCUAUCUUCUGUCAA
MnSPL16B Morus017456 1515 1041 3 - GUGCUCUCUCUCUUCUGUCAU

Figure 1. Distribution of SPL genes in the mulberry genome. The scale is presented on the left.

To investigate the evolutionary relationships of SPL genes in plants, we collected a
dataset of 104 putative SPL protein sequences, including 18 from rice, 16 from Arabidopsis,
28 from poplar, 27 from apple, and 15 from mulberry, for a phylogenetic analysis with a
neighbor-joining (NJ) phylogenetic tree. The result of phylogenetic analysis showed that
these 104 SPL genes were relatively evenly clustered into 5 groups (G1–G5) and each group
contained at last 1 SPL protein from these 5 species. However, MnSPLs had proximate
relationships to MdSPLs and outermost relationships to SPLs from rice (Figure 2). These
results suggest that plant SPL genes may have originated from common ancestral genes, but
some SPL genes may have been differentiated separately between monocots and eudicots.
Nine MnSPL genes have been verified as the target genes of miR156 in mulberry [42]. Here,

https://morus.swu.edu.cn/
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we found that most of the miR156-target MnSPLs clustered with miR156-target AtSPLs,
except for MnSPL7 and MnSPL14 (Figure 2).

Figure 2. Phylogenetic tree of the SPL family based on the amino acid sequences of SBP domains.
Posterior probability values of nodes are shown near the nodes. Different shapes represent different
plant species (Md: Malus × domestica Borkh; Pt: P. trichocarpa; Mn: M. notabilis; At: A. thaliana;
Os: O. sativa).

Gene structure analysis revealed that all the MnSPL genes contained the SBP domain,
and the number of exons in 15 MnSPL genes varied from 2 to 12. The number of MnSPLs
with 2, 3, 4, 10, and 12 exons were 3 (MnSPL3, MnSPL4, and MnSPL5), 7 (MnSPL6, MnSPL8,
MnSPL10, MnSPL13, MnSPL15, MnSPL16A, and MnSPL16B), 1 (MnSPL2), 3 (MnSPL1,
MnSPL12, and MnSPL14), and 1 (MnSPL7), respectively. There were 9 miR156-target SPL
genes in mulberry, 7 of which had miR156 recognition sites in the exon region in addition to
1 in the intron region and 1 in the 5′-UTR region (Figure 3a and Table 1). The SBP domains
in MnSPLs had 75 amino acid residues. Sequence analysis of the SBP domains in MnSPLs
revealed that the conserved zinc binding sites, the zinc fingers Zn1 and Zn2, also existed
in the SBP domains. In addition to zinc binding sites, the SBP domains also contained
a conserved NLS in the C-terminus of the SBP domains (Figure 3b). Furthermore, other
conserved motifs were searched using the online tool MEME with the default parameters.
The results showed that 20 conserved motifs were identified in 15 MnSPLs, and genes in
the same group had highly similar motif distribution (Figure 4).
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Figure 3. The structures of the full-length SPL genes in mulberry. (a) Gene structure diagram of
MnSPL genes. (b) Sequence logo of the SBP domain of MnSPLs. The height of the letter (amino acid)
at each position represents the degree of conservation.

Figure 4. Distribution of putative conserved motifs in MnSPLs. The legend of the conserved motifs is
shown below the graphic. Numbers 1–20 represent motifs 1–20, respectively. Box size indicates the
length of motifs.

2.2. Temporal-Spatial Expression Profile Analysis of SPL Genes in Mulberry

To uncover the potential biological functions of MnSPL genes, we gathered the read
data of these genes in five different mulberry tissues (roots, branch bark, winter buds,
male flowers, and leaves) from the MorusDB (https://morus.swu.edu.cn/, accessed on

https://morus.swu.edu.cn/
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3 March 2020). Statistical results showed that these 15 MnSPL genes had tissue-preferential
expression in 5 samples. Three SPL genes (MnSPL1, MnSPL13, and MnSPL14) were signifi-
cantly highly expressed in roots. MnSPL12 was expressed mainly in branch bark, MnSPL4,
and MnSPL5 were expressed mainly in leaf tissues, 6 genes (MnSPL3, MnSPL6, MnSPL8,
MnSPL10, MnSPL15, and MnSPL16A) had significantly high expression levels in winter
buds, and 3 genes (MnSPL2, MnSPL7, and MnSPL16B) were prominently highly expressed
in male flowers (Figure 5 and Table S1). Then, we tested the expression profiles of MnSPL
genes in the mulberry root, bark, and leaf tissues at the juvenile and mature phases. We
found that all the MnSPL genes had higher expression levels in mature leaf tissue than
in juvenile leaf tissue, except for MnSPL2. In mulberry roots, five SPL genes (MnSPL1,
MnSPL4, MnSPL7, MnSPL14, and MnSPL16A) showed no difference in expression between
juvenile and mature samples. The expression level of three genes (MnSPL6, MnSPL12, and
MnSPL16B) decreased with age, and two genes (MnSPL13 and MnSPL15) had a higher
expression level in the older root tissue. Most of the MnSPL genes showed no difference
in expression between juvenile and mature mulberry bark, except for two genes (MnSPL4
and MnSPL13) that were more highly expressed in mature bark and two genes (MnSPL16A
and MnSPL16B) that had lower expression in mature bark (Figure 6). The tissue-specificity
expression profile implied that MnSPL genes had functional diversity. The expression
levels of MnSPLs were increased with age, which suggested that the biological functions of
MnSPLs were regulated by age in mulberry leaves.

Figure 5. Tissue-specific expression patterns of MnSPL genes. Transcriptome data were obtained
from the Morus Genome Database (MorusDB) (https://morus.swu.edu.cn/, accessed on 3 March
2020). Blue indicates that the expression levels of SPL genes are low, while red indicates that the
levels are high.

2.3. Silkworm Herbivory Influenced the Expression Profile of MnSPL Genes

Plants balance their energy assignment between development and stress responses to
ensure their survival using the miR156-SPL module [24,44]. The co-evolution between mul-
berry and silkworm was influenced by artificial selection for thousands of years. We were
curious to learn whether mulberry SPLs responded to silkworm herbivory. Transcriptome
data showed that the expression levels of SPL7 and SPL14 significantly increased, and five
SPL genes (SPL2, SPL12, SPL16A, SPL5, and SPL15) prominently decreased under herbivory
in wild mulberry leaves (Chuansang, M. notabilis) (Figure 7c and Table S3). The results
of RT-qPCR showed that except for SPL12 and SPL14, all SPL genes were significantly
less expressed under herbivory treatment in cultivated mulberry leaves (Guisangyou 62,
M. atropurpurea cv. Guisangyou 62) (Figure 7d and Table S3). Further quantitative analysis
showed that the expression levels of miR156 in both cultivated and wild mulberry leaves
significantly increased after herbivory treatment (Figure 7a,b). These results indicated that

https://morus.swu.edu.cn/
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the miR156-SPL module responded to silkworm herbivory in both cultivated and wild
mulberry; however, SPL7 and SPL14 were more highly expressed, independent of the
miR156-SPL module, in the wild mulberry leaves under herbivory.

Figure 6. The expression profiles of MnSPL genes in the juvenile and mature phases of 3 mulberry
tissues. (a) Leaves, J-ML: mature leaves at the juvenile phase of mulberry, M-ML: mature leaves at
the mature phase of mulberry. (b) Roots, J-R: roots at the juvenile phase of mulberry, M-R: roots at
the mature phase of mulberry. (c) Bark. J-B: bark at the juvenile phase of mulberry, M-B: bark at
the mature phase of mulberry. Values represent the mean ± SD of 3 biological replicates and were
statistically analyzed (independent samples t-test): * p < 0.05.
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Figure 7. The expression pattern analysis of SPL genes in mulberry leaves under herbivory treatment.
(a) Mulberry leaves with 1 h of herbivory treatment. CS-CK: the control group of Chuansang. CS-H1h:
Chuansang leaves after herbivory treatment for 1 h. GY62-CK: the control group of Guisangyou 62.
GY62-H1h: Guisangyou 62 leaves after herbivory for 1 h. (b) The expression profiles of mulberry
miR156 after herbivory treatment. Mn: M. notabilis. Ma: M. alba. (c) The expression profiles of SPL
genes in mulberry (M. notabilis) leaves after herbivory treatment. (d) The expression profiles of SPL
genes in mulberry (M. alba) leaves after herbivory treatment. H_L: Leaves under herbivory treatment.
CK_L: Control mulberry leaves with no herbivory treatment.

In identify the molecular mechanism of SPL in mulberry leaves under silkworm her-
bivory treatment, we analyzed the transcriptome data of wild type and herbivory treatment
leaves from Chuansang. The results revealed that genes (TT2L2, bHLH, TTG1, F3′H, DFR,
and LAR) associated with catechin (the monocase of procyanidine) synthesis were signifi-
cantly more highly expressed in leaves under herbivory (Figure 8a,b). However, the results
of RT-qPCR showed that the expression levels of F3′H, DFR, and LAR in Guisangyou 62
leaves decreased under herbivory treatment (Figure 8c). Promoter analysis of genes (TT2L2,
bHLH, TTG1, F3′H, DFR, and LAR) associated with catechin synthesis revealed that there
was a predicted ggaCGTACa cis-acting element on the promoter of the TT2L2 gene in M.
notabilis, which could be recognized by the SBP domain of SPL genes (data not shown).
The dual-luciferase assay verified that SPL7 could combine with the promoter of TT2L2
and promoted its transcription (Figure 9). Taken together, these results suggested that
SPL7 responded to herbivory treatment through promoting the transcription of TT2L2 in
wild mulberry (Chuansang), and this interaction was not detected in cultivated mulberry
(Guisangyou 62).
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Figure 8. The expression profiles of genes involved in the mulberry flavonoid synthesis pathway
after silkworm herbivory treatment. (a) The expression profiles of genes involved in the Chuansang
flavonoid synthesis pathway. (b) The expression trend of TT2L2 and LAR in Chuansang. (c) The
expression pattern of genes involved in the Guisangyou 62 flavonoid synthesis pathway.

Figure 9. Dual-luciferase assays identified the interaction between SPL genes and the promoter
of MnTT2L2. CK: Control group. OE: overexpressed mulberry SPL genes. Values represent the
mean ± SD of 3 biological replicates and were statistically analyzed (independent samples t-test):
* p < 0.05.

3. Discussion
3.1. The Evolutionary Conservation and Functional Diversity of SPL Genes in Mulberry

Based on phylogenetic analysis, 107 SPL proteins from Malus × domestica Borkh,
P. trichocarpa, M. notabilis, A. thaliana, and O. sativa were clustered into 5 groups. Each
group contained at least one sequence from all five species, even though there were visible
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differences in gene number among these five plants, which indicated that the ancestral gene
of SPLs already existed before the speciation between monocot and dicot plants (Figure 2).
Moreover, the NJ phylogenetic tree showed that most mulberry SPLs were classed together
with MdSPLs, and mulberry SPLs had the farthest genetic distance to OsSPLs (Figure 2).
SPL genes encoded SPL proteins with a highly conserved DNA-binding domain named the
SBP domain [1]. Systematic comparative analysis of mulberry SPL genes revealed that the
highly conserved SBP domain had about 75 amino acid residues (Figures 3 and 4), which
indicated the evolutionary conservation of mulberry SPL genes.

In Arabidopsis, SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 exhibit functional redun-
dancy in both the vegetative phase transition and the vegetative-to-reproductive transi-
tion [26]. This study found that mulberry SPL2, SPL10, and SPL15 were clustered into
group 5 with AtSPL2, AtSPL9, AtSPL10, AtSPL11 and AtSPL15 in the phylogenetic tree
(Figure 2) and were significantly expressed in the reproductive organs (winter buds and
male flowers) in mulberry (Figure 5). Based on the above data, we inferred that the SPL2,
SPL10 and SPL15 genes also contributed to reproductive growth in mulberry. The tissue dif-
ferential expression profiles of mulberry SPL genes among winter buds, male flowers, roots,
branch bark, and leaves were also detected in this work, just as PtSPLs [7], AtSPLs [26], and
OsSPLs [45], which implied the functional diversity of SPL genes in mulberry (Figure 5).
The expression levels of AtSPL genes increased with Arabidopsis aging [12,15]. Similarly,
we determined that SPL genes had a higher expression level in the older mulberry leaves
(Figure 6a), which indicated that the function of mulberry SPL genes was also influenced
by age.

3.2. The MnSPL7/MnTT2L2 Module Responds to Silkworm Herbivory through Regulating
Catechin Synthesis Gene Expression in Wild Mulberry (Chuansang)

In Arabidopsis, AtSPL9 took part in responses to drought and salt stress by influencing
anthocyanin metabolism [22]. We also found that the expression levels of mulberry SPL
genes fluctuated after silkworm herbivory treatment. SPL7 and SPL14 were significantly
more highly expressed, while SPL2, SPL5, SPL12, SPL15, and SPL16A were prominently
less expressed in Chuansang leaves, and the expression levels of SPL genes in Guisangyou
62 all decreased to varying degrees (Figure 7c,d and Table S3). We inferred that the long
period of artificial selection caused the different expression patterns of SPL7 and SPL14
genes between Chuansang and Guisangyou 62 under silkworm herbivory treatment. In
addition, it was also found that a series of genes (TT2L2, GL3, bHLH, TTG1, FNS, F3′H,
DFR, and LAR) involved in flavonoid biosynthesis were more highly expressed after
herbivory treatment in Chuansang (Figure 8a,b). In mulberry, the TT2L1/bHLH/TTG1
or TT2L2/bHLH/TTG1 ternary complex regulates the transcription of genes associated
with catechin synthesis [40]. Promoter analysis and dual-luciferase assay verified that
SPL7 could promote the transcription of TT2L2 in Chuansang (Figure 9). However, similar
experimental results were not found in Guisangyou 62 (Figure 8c). Moreover, it was also
observed that miR156 had higher expression after herbivory treatment in Chuansang
(Figure 7b) and had the same expression profile as miR156-targeted SPL genes (SPL7 and
SPL14). In conclusion, this study had found that SPL genes in Chuansang and Guisangyou
62 responded differently to silkworm herbivory, and verified that SPL7, independent of
the miR156/SPL module, promoted the transcription of TT2L2 and further increased the
expression levels of catechin synthesis genes (F3′H, DFR, and LAR) in response to silkworm
herbivory in Chuansang.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Guisangyou 62, Chuansang, and tobacco seeds (Nicotiana tabacum L.) were planted in
sterilized soil and left at 4 ◦C for 2 d before transfer to a climate chamber at 25 ◦C under
long-day conditions (16 h light/8 h dark), as were mulberry seedlings. Mature leaves from
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the juvenile phase of Guisangyou 62 (J-ML) and mature leaves from the mature phase of
Guisangyou 62 (M-ML) were used to investigate the expression levels of SPL genes.

The 3-month-old Guisangyou 62 and Chuansang leaves were treated with second-
stage silkworm herbivory (Bombyx mori cv. Dazao) for 1 h until obvious damage was caused
to mulberry leaves.

4.2. Bioinformatics Analysis of SPL Genes in Mulberry

BLAST and HMMER searches of MnSPLs against the MorusDB (https://morus.swu.
edu.cn/, accessed on 3 March 2020) were conducted using AtSPL as the query sequences.
The SBP domain of SPLs was identified using the CD-search online tool (https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 3 March 2020) (Table S4).

Neighbor-joining phylogenetic trees of SPL proteins were constructed using MEGA5.1
with the best JTT + G model. Branching reliability was assessed by the bootstrap re-
sampling method using 500 bootstrap replicates.

Chromosome locations of SPL genes in mulberry were determined by BLAST analysis
of SPLs against the mulberry genome (https://www.ncbi.nlm.nih.gov/genome/?term=
Morus+alba, accessed on 3 March 2020). The structures of SPL genes were predicted with
the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/chinese.php, accessed on
3 March 2020). Sequence logos of SBP domains were generated by the Weblogo plat-
form (http://weblogo.berkeley.edu/, accessed on 3 March 2020). Potential protein motifs
were predicted using the MEME online tool (http://meme.sdsc.edu/meme/, accessed
on 3 March 2020). Promoter analysis of gene was processed by the PlantPAN software
(http://plantpan.itps.ncku.edu.tw/promoter.php, accessed on 3 March 2020), and the
specific transcription factor binding motifs from P. trichocarpa and A. thaliana were selected
as the query motifs.

4.3. Epression Analysis of miR156 and SPL Genes in Mulberry

The transcriptome data used in SPL gene expression profiling in five mulberry tissues
was obtained from MorusDB (https://morus.swu.edu.cn/, accessed on 3 March 2020).
The transcriptome data of SPL genes in mulberry leaves under silkworm herbivory are
shown in Table S3. The RPKM values of SPL genes were normalized through a min-max
normalization algorithm (x∗ = (x − xmean)/(xmax − xmin)), and analyzed using TBtools
software [46].

Small RNAs (sequence lengths < 200 bp) and the total RNA of mulberry tissues were
both extracted using the miRcute Plant miRNA Isolation Kit purchased from TIANGEN
(DP504, Beijing, China), the OD260/280 values of all RNA samples were detected by
NanoDrop2000 (Thermo Scientific, Waltham, USA), and agarose gel electrophoresis (AGE)
was performed to verify the integrity of RNA samples (data not shown). Small RNA
reverse transcriptions were performed using the miRNA First Strand cDNA Synthesis Kit
(tailing reaction) (B532451, Sangon Biotech, Shanghai, China). The levels of mno-miR156
were quantified by the MicroRNA qPCR Kit (SYBR Green method) (B532461, Sangon
Biotech, Shanghai, China). For reference genes, mno-miR166b and MnU6 were selected to
calibrate data in small RNA RT-qPCR. The relative expression of miR156 was defined using
the 2−[Ct(target gene) − Ct(control gene)] algorithm. The cDNA of total RNA was synthesized
according to the instructions of Primer Script RT reagent kit (RR047A, Takara, Japan). For
the RT-qPCR, a reaction was performed according to the manufacturer’s instructions for the
SYBR Premix Ex Taq II (RR820A, Takara, Japan) and processed using a Step One Plus Real-
Time PCR System (Applied Biosystems, Singapore, Singapore). The mulberry ribosomal
protein L15 (RPL15, Morus024083) gene was used as a control for expression normalization,
and the relative expression of genes was defined using the 2−[Ct(target gene) − Ct(control gene)]

algorithm. Gene-specific primers used for RT-qPCR are listed in Table S2.

https://morus.swu.edu.cn/
https://morus.swu.edu.cn/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/genome/?term=Morus+alba
https://www.ncbi.nlm.nih.gov/genome/?term=Morus+alba
http://gsds.cbi.pku.edu.cn/chinese.php
http://weblogo.berkeley.edu/
http://meme.sdsc.edu/meme/
http://plantpan.itps.ncku.edu.tw/promoter.php
https://morus.swu.edu.cn/
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4.4. Dual-Luciferase Repoter Assay

MnSPL genes were cloned into the GreenII 62-SK vector. A 2000-bp promoter se-
quence of TT2L2 predicted by the Promoter 2.0 Prediction Server (http://www.cbs.dtu.
dk/services/Promoter/, accessed on 31 May 2020) was amplified and cloned into the
pGreenII 0800-LUC vector. Agrobacterium-mediated co-transformation of the pGreenII
0800-LUC and GreenII 62-SK vectors into tobacco leaves was performed as described
previously [40]. After infiltration for 2 days, the ratio of LUC/REN activity was measured
using the Dual-Luciferase Reporter Gene Assay Kit (11402ES80, Yeasen, Shanghai, China)
on a configurable multi-mode microplate reader (Synergy™ H1, BioTek, Beijing, China).
All the primers and probes used in this work are listed in Table S2.

5. Conclusions

In this study, a total of 15 full-length SPLs were identified in the mulberry genome. The
evolutionary conservation and functional diversity of mulberry SPL genes were inferred
through a comprehensive analysis of chromosomal locations, phylogenetic relationships,
gene structures, conserved motifs, and spatial and temporal expression profiles. In addition,
we found that SPL genes in cultivated mulberry (M. atropurpurea cv. Guisangyou 62) and
wild mulberry (M. notabilis) were differentially expressed after silkworm herbivory and
verified that the SPL7/TT2L2 module increased the expression levels of catechin synthesis
genes (F3′H, DFR, and LAR) to response to silkworm herbivory in Chuansang. Our work
provides useful information to elucidate the functions of SPLs in mulberry.
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