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Abstract

Bovine respiratory disease (BRD) is the costliest complex disease affecting the cattle indus-

try worldwide, with significant economic losses. BRD pathogenesis involves several interac-

tions between microorganisms, such as bacteria and viruses, and management factors.

The present study aimed to characterize the nasal virome from 43 pooled nasal swab sam-

ples collected from Egyptian nonvaccinated cow-calf operations with acute BRD from Janu-

ary to February 2020 using metagenomic sequencing. Bovine herpesvirus-1 (BHV-1), first

detection of bovine herpesvirus-5 (BHV-5), and first detection of bovine parvovirus-3 (BPV-

3) were the most commonly identified in Egyptian cattle. Moreover, phylogenetic analysis of

glycoprotein B revealed that the BHV-1 isolate is closely related to the Cooper reference

strain (genotype 1.1), whereas the BHV-5 isolate is closely related to the reference virus

GenBank NP_954920.1. In addition, the whole-genome sequence of BPV-3 showed

93.02% nucleotide identity with the reference virus GenBank AF406967.1. In this study, sev-

eral DNA viruses, such as BHV-1 and first detection BHV-5, and BPV-3, were detected and

may have an association with the BRD in Egyptian cattle. Therefore, further research,

including investigating more samples from different locations to determine the prevalence of

detected viruses and their contributions to BRD in cattle in Egypt, is needed.

Introduction

Bovine respiratory disease (BRD) is one of the most economically important disease affecting

the cattle industry worldwide [1]. The cause of BRD is multifactorial, including infectious

agents and environmental, management, and host factors. The infectious agents include differ-

ent viruses, such as bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), bovine
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coronavirus, bovine respiratory syncytial virus (BRSV), parainfluenza 3 virus, bovine adenovi-

rus, influenza D virus (IDV) and bovine rhinitis virus, and bacteria, such as Mycoplasma bovis,
Pasteurella multocida, and Mannheimia haemolytica [2]. Despite the widespread use of BRD

vaccines and different effective antibiotics, mortalities caused by BRD have steadily increased

since the mid-1990s [3, 4]. This indicates that the etiology and pathogenesis of BRD are not

fully understood.

Recently, viral metagenomics has been used to characterize the virome associated with

complex diseases [5–8]. Viral metagenomics has been used to identify large numbers of

known and novel viruses associated with enteric diseases [9, 10] and respiratory diseases [11,

12]. Previous studies on the bovine respiratory tract using metagenomic sequencing showed a

significant association between bovine adenovirus-3 (BAdV-3), bovine rhinitis A and B virus,

BRSV, BPIV3, BHV-1, BVDV, bovine parvovirus (BPV), IDV, and BRD [7, 11, 13]. BHV-1

and bovine herpesvirus-5 (BHV-5) are DNA viruses that belong to the family Herpesviridae.
Although BHV-1 causes low mortality, it is responsible for severe economic loss to the cattle

industry due to its impact on growth and milk production [14]. BHV-5 causes nonsuppurative

meningoencephalitis in young cattle [15].

There are six bovine parvovirus sub-species, and the most significant three sub-species are

BPV-1 to BPV-3, which cause diarrhea in neonatal calves and respiratory and reproductive

diseases in adult cattle [16]. In addition to these viruses, recent metagenomic studies showed a

significant association between IDV and BRD in dairy calves [11] and beef cattle [13].

Egypt has a big cattle industry, with open markets for live-animal trade with different coun-

tries, mainly from Europe and Africa. Although the control of certain viruses that may contrib-

ute to the complex pathogenesis of BRD, such as BVDV, and infectious bovine rhinotracheitis

has been successfully achieved with strict vaccination programs, particularly in large farms,

mortality due to BRD has increased [17]. To the authors’ knowledge, no data are available on

viruses that contribute to the BRD incidence in cattle in Egypt. Therefore, the purpose of this

study was to characterize the virome of cattle with the BRD to identify possible viruses of inter-

est for future investigation in a case-control design.

Materials and methods

Ethical approval

This study was approved by the Zagazig University’s Animal Care and Use Committee

(Ref. No. ZU-IACUC/2/F/121/2019). The farm owners provided informed verbal/written con-

sent for the use of clinical samples collected from their animals in the present study.

Study population

A total of 43 nasal swabs were collected from eight cow-calf operations in Sharkia (n = 27) and

Cairo (n = 16) Governorates. The average number of cattle per herd was 264. The age of cattle

at the time of sampling ranged from 1 to 18 months, and the weight ranged from 40 to 450 kg.

There were 81.4% (35/43) males and 18.6% (8/43) females. All samples were collected from

nonvaccinated cattle. Nasal swab samples were collected only from diseased animals with

severe clinical respiratory signs, such as cough, difficulty breathing, and rhinorrhea.

Sample collection

Nasal swabs were collected (one per animal) from cattle herds from January to February 2020.

All samples were collected from nonvaccinated cattle of various ages, raised in either large

intensive and/or small backyard farms. All swabs were collected from naturally infected
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animals exhibiting severe clinical signs of acute respiratory disease (i.e., cough, difficulty

breathing, rhinorrhea, and ocular discharge). Swabs were collected by certified veterinarians

using sterile cotton swabs followed by insertion into Falcon tube containing 1 ml viral trans-

port medium composed of sterile phosphate-buffered saline, supplemented with 1% penicil-

lin/streptomycin (10,000 U/ml; Gibco, USA). The collected swabs were labelled with herd and

animal ID and the collection date and then shipped on ice to the virology laboratory for pro-

cessing and testing.

Sample preparation and DNA extraction

Nasal swabs were vortexed separately and then centrifuged at 2000 rpm for 10 min at 4˚C for

clarification. The clear supernatant was collected from each processed sample and stored at

−20˚C until used. Viral nucleic acid was extracted from each clear supernatant using the Gene-

JET Viral DNA extraction/purification kit (Thermo Fisher, MA, USA) according to the manu-

facturer’s instructions. The extracted viral DNA was eluted in water-nuclease free. The

extracted viral DNAs from all samples (n = 43) were pooled and loaded to the FTA card and

sent to the Admera’s Health LLC (South Plainfield, NJ, USA) for library preparation and next-

generation sequencing.

Library preparation and sequencing

Isolated nucleic acid was quantified with Qubit 2.0 DNA HS Assay (Thermo Fisher) and the

quality was assessed by Tapestation Genomic DNA Assay (Agilent Technologies, CA, USA).

Library preparation was performed using the NexteraXT library kit (Illumina, CA, USA)

according to the manufacturer’s recommendations. The final library quantity was measured

by KAPA SYBR1 FAST qPCR with QuantStudio1 5 System (Applied Biosystems, CA, USA),

and library quality was evaluated by TapeStation HSD1000 ScreenTape (Agilent Technolo-

gies). Illumina1 8-nt dual indices were used. Equimolar pooling of libraries in the same run

was performed based on QC values and sequenced on an Illumina1NovaSeq with a read

length configuration of 150 paired-end.

Bioinformatic analysis

Data were analyzed according to a customized pipeline. In brief, raw FASTQ files were initially

checked for quality control using FastQC software version 0.11.8 (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc). In brief, quality of reads were assessed for; per base sequence

quality, per tile sequence quality, per base sequence content, per base N content, per sequence

quality scores, per sequence GC content, levels of sequence duplications, overrepresented

sequences, sequence length distribution and adapter content. High-quality files were imported

into Geneious Prime 2020 (Biomatters Ltd., New Zealand), and all reads were first trimmed

using default settings. In brief, BBDuk was used with the options checked to “Trim Adapters”

(all Trueseq, Nextera, and PhiX adapters), trim low quality (minimum quality of 25), discard

short reads (minimum length of 40 bp), and keep original order. Duplicates were removed

after trimming using sequence -> Remove duplicate reads.

The processed/trimmed reads were then mapped to the host reference genome (Bos taurus,

PRJNA33843) and the unmapped reads were subjected to de novo assembly into contigs using

Velvet with default settings. Consequences sequences (150–200 bp) were extracted from con-

tigs and analyzed against the nucleotide database of NCBI using BLASTN tool. Viral genomes

with very low expectation value (E-value ~ 10−4) were used as reference viruses for reads map-

ping using Geneious Prime mapper default settings with the options Medium Sensitivity/Fast

Sensitivity setting that were modified by selecting the Custom Sensitivity, and Fine Tuning
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was set to iterate up to five times. A consensus sequence was constructed based on the highest

quality threshold and extracted using “Tools” -> “Generate consensus sequence,” calling “?”

(base or gap) in the absence of coverage. BLAST tool was used to confirm the specificity of the

reads aligned to each reference virus using the Megablast algorithm against the nonredundant

nucleotide database of GenBank, EMBL, DDBJ, PDB, and RefSeq. The matching region of the

best hit per read was retrieved. All original fastaQC files were submitted to the Sequence Read

Archive (SRA) database of the National Center for Biotechnology Information (NCBI). Open

Reading Frame (ORF) finder algorithm embedded in Geneious Prime was used to detect

ORFs from the identified viruses.

Phylogenetic analysis

Nucleotide sequences from genetically related viruses for BHV-1, BHV-5 and BPV-3 were

downloaded from the NCBI database and aligned separately using MUSCLE [18] embedded

in MEGA X with the default settings [19]. The best-fitted model of evolution was identified for

each alignment using the Bayesian Information Criterion in MEGA X, and neighbor-joining

trees with model/method “Maximum Composite Likelihood” were reconstructed using 1000

bootstrap replicates to evaluate the strength of branching [19].

Results

Samples collection and processing

Samples were collected from different cattle herds located at Cairo and Sharkia Governorates.

Details of the locations of the herds where samples were collected are shown in Fig 1. Addi-

tionally, details about diseased animals, such as age, breed, type of the ration provided, the

antimicrobials used, type of the farm rearing system are presented in (S1 Table). All samples

were processed and the viral DNA was extracted (30 μl/sample), pooled (10 μl/sample). A vol-

ume of 100 μl from the final pooled viral DNAs was uploaded to one FTA card that was

shipped for library preparation and next-generation sequencing.

Virome of bovine nasal swabs

A total of 56 million raw reads generated by the sequencing machine were submitted to the

SRA under the Bioproject number PRJNA702539. Following de novo assembly, six DNA

viruses were identified (Table 1). For the best blast hits, reference genomes of the identified

viruses were downloaded from GenBank database and the final processed/trimmed reads

(n = 8 millions) were mapped against them. All alignments were inspected manually with a

threshold of minimum 20 processed/trimmed reads mapped to different regions of the refer-

ence viral genome was the virus considered detected.

Additionally, other viruses such as bovine adeno-associated virus, bovine torovirus, bovine

nidovirus, and bovine hokovirus 2 were identified. However, due to the small number of reads

(<20) mapped against these viruses and short length of contigs, they were considered as false-

positive and so, they were excluded from further analysis.

Bovine herpesviruses

A total of 5958 and 4523 processed/trimmed reads were mapped to the reference viruses;

BHV-1 (GenBank AJ004801.1) and BHV-5 (GenBank KY559403.1), respectively. For BHV-1,

analysis of the viral glycoproteins, such as glycoprotein B (gB), showed 99.57% nucleotide

identity with other BHV-1 viruses, such as the Cooper reference strain, which was isolated

from USA. In addition, the study isolate (called BHV-1/Cattle/Egypt/2020) was clustered with
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other BHV-1 viruses, such as the Cooper reference strain, BHV-1 isolate C18, C26, C29, C33

and C36 that have been collected from the USA (Fig 2). Moreover, 20 different genes from

BHV-1/Cattle/Egypt/2020isolate showed high coverage (98–99%) when mapped to the refer-

ence BHV-1 viruses. The 20 characterized genes from BHV-1/Cattle/Egypt/2020 isolate were

deposited to the NCBI database (GenBank MW805254-MW805273). On the other hand,

Fig 1. A map of herd locations in Egypt from which animal’s samples were collected.

https://doi.org/10.1371/journal.pone.0267036.g001

Table 1. Summary of the identified DNA viruses.

Reference virus 1 Family GenBank accession number 2 Genome size (bp) No. positive reads Largest contig size (bp) Further analysis 3

BHV-1 Herpesviridae AJ004801.1 135,301 5958 2523 Yes

BHV-5 Herpesviridae KY559403.1 137,740 4523 2661 Yes

MdSGHV Hytrosaviridae EU522111.1 124,279 1686 71 No

BPV-3 Parvoviridae AF406967.1 5276 593 1283 Yes

BAdV-3 Adenoviridae AF030154.1 34,446 26 46 No

1 BHV-1: Bovine herpesvirus 1; BHV-5: Bovine herpesvirus 5; MdSGHV: Musca domestica salivary gland hypertrophy virus; BPV-3: Bovine parvovirus 3; BAdV-3:

Bovine adenovirus
2 GenBank numbers are for reference virus genomes used for processed/trimmed reads mapping.
3 Samples with high coverage (~98%) and long contigs against the reference virus genomes were further investigated for annotation and phylogenetic analysis.

https://doi.org/10.1371/journal.pone.0267036.t001
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analysis of gB from the BHV-5 isolate (called BHV-5/Cattle/Egypt/2020; GenBank

MW805274) showed 98.28% nucleotide identity with reference BHV-5 viruses (GenBank KU

KY559403.1 and NC_005261.3) and was clustered with the BHV-5 isolate 166–84 and BHV-5

isolate A663 that have been isolated from Argentina (Fig 3).

BPV-3

A total of 593 processed/trimmed reads were mapped against the reference BPV-3 virus (Gen-

Bank AF406967.1). The alignment of the whole-genome sequence of the study isolate (called

BPV-3/Cattle/Egypt/2020) showed 93.02% nucleotide identity with the BPV-3 reference strain

(GenBank AF406967.1), which was isolated from the USA and 91.75% nucleotide identity

with the Ronda Alta isolate (GenBank MG745680.1), which was isolated from Brazil. Addi-

tionally, two main open reading frames (ORFs) were detected: (1) ORF1 is the (NS) protein

starting from the nucleotide position 264 to 2222 with 97.24% amino acid identity with the ref-

erence BPV-3 virus (GenBank AAL09673.1) and (2) ORF2 is the capsid protein starting from

the nucleotide position 2171 to 5068 with 97.89% amino acid identity with the reference BPV-

Fig 2. Phylogenetic analysis of BHV-1 gB. The evolutionary history was inferred using the neighbor-joining method [20]. The percentages of the

replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [21]. The

evolutionary distances were computed using the maximum composite likelihood method [22] and are shown as the number of base substitutions per

site. The codon positions included were 1st + 2nd + 3rd + Noncoding. Evolutionary analyses were conducted in MEGA X [19]. Different identical

sequences were included to increase the robustness of the constructed tree.

https://doi.org/10.1371/journal.pone.0267036.g002

PLOS ONE Virome from nonvaccinated Egyptian cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0267036 May 5, 2022 6 / 12

https://doi.org/10.1371/journal.pone.0267036.g002
https://doi.org/10.1371/journal.pone.0267036


3 virus (GenBank AAL09674.1). Moreover, phylogenetic analysis of the partial non-structural

(NS) protein gene showed that BPV-3/Cattle/Egypt/2020 clustered with BPV-3 viruses (Gen-

Bank MG745680.1, isolated from Brazil), MG026727, and MG026728 (both have been isolated

from China); (Fig 4). The whole-genome sequence of the study isolate (called BPV-3/Cattle/

Egypt/2020) was deposited to the NCBI database (GenBank MW805276).

Discussion

BRD is one of the most economically important complex disease affecting the cattle industry

worldwide. Despite the use of several vaccines, BRD still has a worldwide distribution, with

severe economic losses every year. Egypt has a big cattle industry and live-animal trade with

different countries in Europe and Africa, which may facilitate the incidental introduction of

new agents. The cattle industry in Egypt is based on two systems: (1) large farms where the

average number of animals/herd is 100 to 1000 and (2) small farms where the average number

of animals/herd is 5 to 20. Unfortunately, a high percentage of small farms do not apply annual

BRD vaccination programs. Moreover, large farms are also not vaccinating young calves (aver-

age age of 6–12 months) against BRD.

In the present study, we investigated the nasal virome from naturally infected nonvacci-

nated cattle using metagenomic sequencing. We aimed to investigate contribution of viruses,

particularly DNA viruses to the BRD in Egyptian cattle. Interestingly, several DNA viruses

were identified in this study. Deep analysis of the BHV-1/Cattle/Egypt/2020 isolate revealed it

belongs to genotype BHV-1.1, which is in agreement with previous studies [23, 24] that

reported BHV-1.1 is the major circulating genotype in Egypt. Additionally, analysis of other

Fig 3. Phylogenetic analysis of BHV-5 gB. The evolutionary history was inferred using the neighbor-joining method [20]. The

percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the

branches [21]. The evolutionary distances were computed using the maximum composite likelihood method [22] and are shown as the

number of base substitutions per site. The codon positions included were 1st + 2nd + 3rd + Noncoding. Evolutionary analyses were

conducted in MEGA X [19]. Different identical sequences were included to increase the robustness of the constructed tree.

https://doi.org/10.1371/journal.pone.0267036.g003
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genes from BHV-1/Cattle/Egypt/2020, such as glycoproteins C and L and the major capsid

protein, did not show a significant number of mutations when aligned with reference viruses

(data not shown).

Alignment of the processed reads also showed high coverage against BHV-5 reference

virus. BHV-5 is a viral cattle disease responsible for causing sporadic epizootics of fatal menin-

goencephalitis [25, 26]. BHV-5 is similar to BHV-1 in virion morphology, induced cytopathic

effect on infected cell cultures, and antigenic properties [25, 27]. BHV-5 is formerly considered

a neuropathogenic variant of BHV-1. However, many subsequent studies indicated that both

viruses have different antigenic and genomic characters. BHV-1 and BHV-5 have neurotropic

forms, but only BHV-5 can replicate well in the central nervous system causing neurological

diseases [28, 29]. Meningoencephalitis outbreaks caused by BHV-5 have been reported in

many countries, such as Australia [25], North and South America [30–32], and Europe [33,

34]. In addition, the natural transmission of BHV-5 via contaminated semen has been reported

in Australia [35]. The virus has also been isolated from cryopreserved semen collected from a

healthy bull [36]. Moreover, another study reported that using two species-specific nested PCR

that differentiated BHV-1 and BHV-5, BHV-5 DNA was detected in all semen samples ana-

lyzed [37], while BHV-1 was detected only in 44.7% of tested samples. Surprisingly, BHV-5

DNA has been identified before in the central nervous system of the aborted fetus that gave an

indication of the association of BHV-5 with bovine abortion [38]. It was surprising to detect

BHV-5 sequence from nasal swab sample as this virus has high tropism for nervous and genital

systems. However, BHV-5 is usually establish latent infection in nervous ganglion, and it has

been shown that under stress conditions and/or excessive glucocorticoids treatments, the virus

Fig 4. Phylogenetic analysis of the partial NS protein gene of BPV-3. The evolutionary history was inferred using the

neighbor-joining method [20]. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap

test (1000 replicates) are shown next to the branches [21]. The evolutionary distances were computed using the maximum

composite likelihood method [22] and are shown as the number of base substitutions per site. The codon positions included

were 1st + 2nd + 3rd + Noncoding. Evolutionary analyses were conducted in MEGA X [19].

https://doi.org/10.1371/journal.pone.0267036.g004
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reactivates. During this reactivation stage, BHV-5 can be excreted in nasal, ocular and genital

discharges [39].

To our knowledge, this is the first detection of BHV-5 in Egypt. In the present study, it is

unclear the source of BHV-5 introduction to Egypt; however, it is critical to carefully examine

the imported frozen semen batches at artificial insemination centers using molecular biology

techniques to avoid widespread of BHV-5 and to minimize its drawbacks on the cattle industry

in Egypt.

The third virus detected was BPV-3/Cattle/Egypt/2020 with a whole-genome sequence of

~5286 nt long. Bovine parvovirus (BPV) belongs to genus Bocaparvovirus genus in the family

Parvoviridae and was first discovered in 1961 from the gastrointestinal tract of diarrheal calves

[40]. BPV has also been associated with reproductive disorders, such as spontaneous abortions

and stillbirths [41]. To our knowledge, this is also the first detection of BPV type 3 in Egyptian

cattle herds.

This work demonstrates the utility of metagenomic sequencing for the effective detection of

viruses in cattle. There are some limitations in the present study, particularly samples pooling

and the use of FTA cards. It has been reported that pooling of DNA generated challenges for

accurate variant call and allele frequency. For example, sequencing errors confound with the

alleles present at low frequency in the pools probably give rise to false-positive variants [42]. In

addition, it has been reported that next-generation sequencing of nucleic acid samples derived

from FTA cards exhibited lower proportions of poliovirus specific reads with a lower percent-

age of genome mapped than those obtained directly from viral isolates [43].

Conclusions

The current study shows the detection of BHV-1.1 genotype and the first detection of BHV-5

and BPV-3 from the investigated cattle herds. The detected viruses may have an association

with the BRD; however, further research, including collecting and investigating more animal

samples from different locations, is needed to determine the prevalence of the detected viruses

and their contributions to BRD in cattle in Egypt.
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