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Abstract: (1) Background: Machine learning algorithms are finding fruitful applications in predicting
the ADME profile of new molecules, with a particular focus on metabolism predictions. However,
the development of comprehensive metabolism predictors is hampered by the lack of highly ac-
curate metabolic resources. Hence, we recently proposed a manually curated metabolic database
(MetaQSAR), the level of accuracy of which is well suited to the development of predictive models.
(2) Methods: MetaQSAR was used to extract datasets to predict the metabolic reactions subdivided
into major classes, classes and subclasses. The collected datasets comprised a total of 3788 first-
generation metabolic reactions. Predictive models were developed by using standard random forest
algorithms and sets of physicochemical, stereo-electronic and constitutional descriptors. (3) Results:
The developed models showed satisfactory performance, especially for hydrolyses and conjugations,
while redox reactions were predicted with greater difficulty, which was reasonable as they depend on
many complex features that are not properly encoded by the included descriptors. (4) Conclusions:
The generated models allowed a precise comparison of the propensity of each metabolic reaction to
be predicted and the factors affecting their predictability were discussed in detail. Overall, the study
led to the development of a freely downloadable global predictor, MetaClass, which correctly predicts
80% of the reported reactions, as assessed by an explorative validation analysis on an external dataset,
with an overall MCC = 0.44.

Keywords: drug metabolism; MetaQSAR; metabolic reactions; metabolism prediction; classification
algorithms; random forest

1. Introduction

From their advent in pharmaceutical research, machine learning (ML) algorithms
have found many successful applications, ranging from hit identification to drug delivery
optimization [1-3]. This success can be explained by considering their capacity to unveil
patterns and relationships even when analyzing huge amounts of complex data [4]. Among
the fields where these approaches can find relevant applications, the in silico prediction
of drug metabolism is attracting great interest [5,6]. Its relevance is easily understandable
by considering the ever-increasing role played by the capacity to predict the ADME/Tox
profile of a given molecule starting from the early phases of drug discovery [7,8].

In general, artificial intelligence (AI) methods can find at least three major applications
focused on drug metabolism [9] since they can predict: (1) the potential sites of metabolism
(regardless of the involved reactions) [10], (2) the metabolic reaction(s) that a given sub-
strate undergoes [11] and (3) the formed metabolites [12]. These three applications can be
also seen as the progressive steps of an ideal workflow that allows the comprehensive pre-
diction of the entire metabolic fate of a given compound [13]. Furthermore, Al approaches
can be used to predict the toxicity profile of the parent compound and of the predicted
metabolites [14].
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Notwithstanding the above, most of the reported predictive studies are still focused
on redox metabolism, with particular attention paid to CYP-450 catalyzed reactions [15].
In contrast, very few studies describe predictive models for the conjugation reactions and
even fewer studies try to offer comprehensive predictions of the metabolic profile of a
given compound [16,17]. The available global approaches are mostly knowledge-based
methods, which predict the possible metabolic profile based on the occurrence of specific
reactive sites or structural alerts [18].

The discrepancy between the studies focused on redox metabolic reactions and those
dealing with the other metabolic reactions might be justified by considering the marked
relevance of the former, which represent by far the most common biotransformations [19].
Nevertheless, this explanation is questionable and the lack of predictive models for the
conjugations cannot be easily justified since they are very frequent reactions that represent
crucial mechanisms of detoxification [20].

A more pertinent cause that might explain the scarcity of comprehensive predictors is
the lack of extended and truly accurate metabolic databases. Most available datasets are
focused on the metabolic reactions catalyzed by CYP-450 isozymes [21] and often combine
xenobiotic and endogenous reactions with a metabolomics perspective [22-24]. Thus, they
are not properly tailored to the development of general predictive systems. In addition,
they are almost always collected by the automatic querying of other available resources and
thus their level of accuracy is not very high [25]. This problem can have detrimental effects
when performing predictive analyses since even a few inaccurate data can undermine the
performance of the resulting models.

On these grounds, we recently reported a novel metabolic database (MetaQSAR),
which was generated by manual and critical meta-analyses of the specialized literature
published during the 2005-2015 period [26]. The collected data proved successful in
developing satisfactory models for predicting the occurrence of conjugation reactions with
glucuronic acid [11] and glutathione [27], which represent frequent metabolic reactions
and important detoxification processes.

Based on these encouraging results, the MetaQSAR database is here exploited to
perform an exhaustive predictive analysis of all the sets of metabolic reactions for which
the database includes sufficient instances (i.e., >50). In these predictive studies, we follow
the same classification system adopted by MetaQSAR, which subdivides the metabolic reac-
tions into three main classes (i.e., redox reactions, hydrolyses and conjugations), 21 classes
and 101 subclasses. In detail, the reported analyses involve the 3 main classes, 18 classes
and 23 populated subclasses. Details concerning the subdivision into main classes, classes
and subclasses can be found elsewhere [26]. The models were developed using the random
forest classification algorithm and using sets of physicochemical, stereo-electronic and
constitutional descriptors.

Besides developing comprehensive models able to predict the occurrence of the major
metabolic reactions, the study aims to offer a comparative analysis of the propensity of
each metabolic reaction to be predicted. Such a propensity might depend on the chemical
space covered by the extracted datasets and on the informative richness of the computed
descriptors, but also on the intrinsic features that govern the predicted reactions. These
comparisons should reveal which reactions are unpredictable (at least by using the available
data), which can be predicted even by applying standard methods, as reported here, and
which reactions require targeted approaches to enhance the resulting performance. The
predictive models generated for the classes of reactions are also utilized to develop a
global tool, called MetaClass, and implemented within the VEGA environment [28], which
predicts the occurrence of each class of metabolic reactions for a given input molecule.
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2. Results
2.1. MetaQSAR-Based Datasets

The reported comparative analysis is based on the metabolic reactions collected
within the MetaQSAR database and focuses on the first-generation reactions. Overall,
the study involved 3788 metabolic reactions, which could be subdivided into 3 major
classes, 21 classes and 101 subclasses. Predictive models were generated for the three
major classes (Tables 1 and 2) and for all the classes and the subclasses with at least
50 instances, as compiled in Tables 3 and 4, which also include a brief description of the
metabolic reactions belonging to the considered classes or subclasses. In all performed
studies, the datasets were generated by considering as substrates (class S) all the molecules
for which the corresponding metabolic reaction is reported and as non-substrates (class
NS) all the remaining molecules without exceptions. This kind of classification poses
the problem of false negatives since the lack of experimental evidence about a given
metabolic reaction does not necessarily imply that that the resulting metabolite cannot
occur. Indeed, the metabolic reaction might be unreported because the corresponding
metabolites were undetectable with the adopted analytical methods or simply because they
were not searched as the analyzed paper was designed with different objectives. In a recent
study, we proposed to focus the analysis on the papers reporting exhaustive metabolic trees
in order to reduce the number of false positives [27]. Nevertheless, this study considered
all the metabolic reactions included in the MetaQSAR database in order to maximize the
number of metabolic classes and subclasses with sufficient instances to develop reliable
predictive models.

As described in the Methods, the initial predictive analyses of the three major classes
were utilized in the validation phase to tune the developed models by selecting the best-
performing algorithm and by optimizing the corresponding hyperparameters. Moreover,
they also had a calibrating role for the following class- and subclass-specific studies since
these initial analyses were carried out for evaluating (1) the performance achieved by
various sets of descriptors, (2) the relevance of using balanced datasets and (3) the role of
the substrate’s ionization state. The following predictive studies were then carried out by
applying the derived best-performing conditions.

2.2. Predictive Models for the Three Main Classes

Table 1 compiles the performances of the predictive models for the three major classes
of metabolic reactions, as parameterized by some well-known metrics, including both
overall and class-specific parameters. In detail, these predictive studies involved both
the unbalanced datasets as directly extracted from MetaQSAR and the balanced datasets
as generated by random undersampling (US) of the majority class. The majority class
corresponds here to the class of substrates for the redox reactions and to that of non-
substrates for hydrolyses and conjugations. The performed analyses involved three sets
of descriptors (as described in the Methods), which were calculated by considering the
molecules in their neutral state.

The comparison of the results reached by the three major classes reveals that hydrol-
yses afford, on average, the best performance regardless of the utilized descriptors and
datasets, while conjugations yield the worst results. These findings can be explained by
considering that the hydrolytic reactions, while involving different enzymes, comprise
a rather homogeneous set of metabolic reactions. Hence, a single predictive model can
account for all the collected reactions. In contrast, the redox reactions and especially the
conjugations comprise a wide variety of metabolic reactions, which involve different en-
zymes, different catalytic mechanisms and different substrate preferences. Thus, their
occurrence cannot be properly predicted by unique models.



Molecules 2021, 26, 5857

40f17

Table 1. Performance of the predictive models for the three major classes of metabolic reactions by
considering both the unbalanced and the randomly undersampled (US) balanced datasets. Three
sets of descriptors were used for each analysis (S and NS stand for substrates and non-substrates,
respectively; PC + Elec indicates the set of physicochemical plus stereo-electronic descriptors).

Unbalanced Datasets US Balanced Datasets
Redox Metabolic Reactions (Classes 01-08)
BlueDesc  PC + Elec  Kier-Hall BlueDesc  PC + Elec  Kier-Hall
NS S NS S NS S NS S NS S NS S
Precision 062 073 063 072 066 074 073 072 072 071 073 0.71

Metrics

Recall 056 078 055 079 057 081 071 074 069 074 069 074
MCC 0.35 0.35 0.39 0.44 0.43 0.44
AUC 0.73 0.72 0.76 0.78 0.77 0.80

Hydrolysis Metabolic Reactions (Classes 11-14)
BlueDesc  PC + Elec  Kier-Hall BlueDesc  PC + Elec  Kier-Hall
NS S NS S NS S NS S NS S NS S
Precision 091 069 09 067 091 074 074 075 074 074 075 0.78

Recall 097 042 097 034 098 044 076 074 074 074 079 074
MCC 0.48 0.42 0.52 0.49 0.48 0.53
AUC 0.81 0.79 0.84 0.81 0.79 0.83

Conjugation Metabolic Reactions (Classes 21-28)
BlueDesc PC + Elec  Kier-Hall BlueDesc PC +Elec  Kier-Hall
NS S NS S NS S NS S NS S NS S
Precision 081 053 081 055 082 058 069 069 067 067 069 0.69

Recall 088 041 089 040 089 045 069 069 067 067 068 0.70
MCC 0.31 0.32 0.37 0.37 0.34 0.38
AUC 0.72 0.73 0.77 0.73 0.71 0.75

Concerning the set of descriptors, Table 1 shows that the models based on the BlueDesc
set, while involving a very high number of variables, afford, on average, performance
comparable to that reached when considering the set of physicochemical and stereo-
electronic descriptors. This finding is in line with previous studies that emphasized the
key role of stereo-electronic descriptors in predicting conjugation with glutathione [27]. In
all the analyses, the Kier-Hall indices provide the best predictive models. These results
underline the beneficial role played by descriptors encoding for the occurrence of specific
moieties (or atom types), presumably as they account for the presence of the functional
groups that undergo the predicted metabolic reaction.

While the overall metrics show limited differences, the comparison of the class-specific
performance reached by balanced and unbalanced datasets emphasizes the beneficial effects
exerted by balancing the datasets. The beneficial effect of the balanced datasets can be
appreciated by considering that the capacity to recognize the instances of the minority
classes (i.e., the non-substrates for redox and the substrates for the other groups) is around
0.5 in all the analyses involving the unbalanced datasets. This means that the thus obtained
predictions are comparable to the random results. In contrast, the performance of the
minority class increases by using the balanced datasets, reaching rather satisfactory values
at least for redox reactions and hydrolyses.

With regard to the role of the ionization state, Table 2 reports the performance as
obtained by considering the molecules in their most probable ionization forms at phys-
iological pH. Based on the above-described results, the analysis involves the balanced
datasets and is focused on physicochemical and stereo-electronic descriptors as well as on
the Kier-Hall topological indices. Table 2 reveals that ionization alters the performance
trends compared to those obtained by using the neutral forms. In detail, the comparison
of the performance reached by neutral and ionized substrates reveals that the ionization
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has a negative effect on the performance of the redox reactions, a negligible role for the
hydrolyses, while showing a beneficial impact on conjugations.

Table 2. Performance of the developed predictive models for the three major classes of metabolic
reactions when considering ionized substrates. Based on the previous results, the predictive analyses
focused on the balanced datasets and two sets of descriptors were considered (physicochemical plus
stereo-electronic descriptors and Kier-Hall topological indices). In parentheses, the differences with
the metrics reported in Table 1.

US Balanced Datasets/Ionized Substrates

Redox Metabolic Reactions Hydrolysis Metabolic Conjugation Metabolic
Metrics (Classes 01-08) Reactions (Classes 11-14) Reactions (Classes 21-28)
Kier-Hall PC + Elec Kier-Hall PC + Elec PC + Elec Kier-Hall

NS S NS S NS S NS S NS S NS S

Precision 0.67 067 069 068 075 078 074 077 068 069 070 071
Recall 067 068 067 070 080 073 078 073 068 070 071 068
MCC 035(—0.07)  0.37(=0.07)  052(—0.01)  047(—0.02)  0.36(+0.02)  0.41 (+0.03)
AUC 072(—0.05)  0.75(—0.05)  0.81(—0.02)  0.78(—0.01)  0.72(+0.01)  0.77 (+0.02)

The Kier-Hall indices afford also here the best models, and the performance of both
sets of descriptors is similarly affected by the ionization. The effect on Kier-Hall topological
indices suggests that they properly capture the structural differences between neutral
and ionized molecules. The effects on stereo-electronic parameters are expected and
predictable, while the impact on physicochemical descriptors can be mostly ascribed to
lipophilicity-related features. Since the ionization plays a negative (albeit limited) role
in most comparisons (4 out of 6) and considering the possible inaccuracies introduced
by automatic generation of the most plausible ionized forms, the following class-specific
models were developed by considering the substrates in their neutral form.

2.3. Predictive Models for the Metabolic Classes

Table 3 reports the performance of the predictive models generated for the metabolic
classes with at least 50 instances (18 classes out of 21). The models were generated by
utilizing only the balanced datasets and the two sets of descriptors that afforded the
best performance in the previous analyses, namely physicochemical plus stereo-electronic
descriptors and the Kier-Hall topological indices. For the sake of simplicity, Table 3
includes only overall metrics, namely MCC and AUC values. For each major class, Table 3
also reports the average performance.

Table 3. Performance of the predictive models for the 21 classes of metabolic reactions based on US balanced datasets and

exploiting two sets of descriptors (physicochemical plus stereo-electronic descriptors and Kier—Hall topological indices).
Classes 09, 13 and 28 do not include enough instances (<50) to develop predictive models. Only overall performance metrics

are compiled.

L. No. of PC + Elec Kier-Hall
Class ID Description

Instances MCC AUC MCC AUC
01 Oxidation of Csp3 1006 0.24 0.64 0.31 0.70
02 Oxidation of Csp? and Csp 589 0.24 0.65 0.28 0.70
03 CHOH <« C=0 — COOH 143 0.36 0.74 0.40 0.80
04 Various redox reactions of carbon atoms 43 - - - -
05 Redox reactions of R3N 117 0.30 0.69 0.44 0.77
06 Redox reactions of >NH, >NOH, and -N=0O 159 0.47 0.80 0.59 0.86
07 Redox of quinones or analogues 112 0.44 0.77 0.48 0.78
08 Redox of S atoms 126 0.68 0.90 0.76 0.93
09 Redox of other atoms 6 - - -— -—-
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Table 3. Cont.

L. No. of PC + Elec Kier-Hall
Class ID Description .
Instances MCC AUC MCC AUC
Main class 1 Average 0.39 0.74 0.46 0.79
1 Hydrolysfls of esters, lactones and 314 0.58 0.86 077 0.94
inorganic esters

12 Hydrolysis of amides, lactams and peptides 122 0.42 0.80 0.52 0.83

13 Epoxide hydration 7 - - - -
14 Other hydrolyses 90 0.26 0.69 0.29 0.77
Main class 2 Average 0.42 0.78 0.53 0.85
21 O-glucuronidations and glycosylations 343 0.42 0.76 0.55 0.84
2 N-and S-glucuror.11da.1tlons /all other 131 0.27 071 042 0.77

glycosilations
23 Sulfonations 114 0.35 0.75 0.52 0.83
24 GSH and RSH conjugations 171 0.54 0.85 0.68 0.89
25 Acetylations and acylations 74 0.60 0.85 0.60 0.87
2% CoASH-ligation fpllowed by amino acid 50 0.80 0.95 0.81 0.95
conjugations

27 Methylations 50 0.60 0.84 0.58 0.80

28 Other conjugations 37 — -— — -
Main class 3 Average 0.51 0.82 0.59 0.85

Overall, Table 3 reveals that there is no relation between performance and the number
of instances in each class. This result can be justified when considering that the models were
developed by using balanced datasets and suggests that the differences in the observed
performance mostly depend on the intrinsic features of the predicted metabolic reactions
rather than on the extent of the chemical space covered by the substrates. At most, Table 3
suggests that very populated classes (such as 01 and 02) show poor performance, which is
reasonable as they include heterogeneous metabolic reactions (and substrates) that involve
different reactive centers.

The analysis of the reported average performance reveals a trend in substantial dis-
agreement with that evidenced by Table 1. Indeed, the conjugations provide the best
predictive models, followed by hydrolyses, while redox reactions yield the worst average
performance. These findings emphasize that the seven analyzed classes of conjugations
comprise rather homogeneous metabolic reactions, thus allowing the development of reli-
able predictive models. In contrast, the eight monitored classes of redox reactions include
more heterogeneous metabolic reactions and this negatively impacts the performance of
the resulting predictive models.

The analysis of the performance reached by each specific class allows for some con-
siderations. Concerning the redox reactions, Table 3 suggests that the reactions involving
carbon atoms (MCC average = 0.37 and AUC average = 0.74, using the Kier—Hall indices)
are more challenging than those affecting heteroatoms (MCC average = 0.60 and AUC
average = 0.85). This difference may be explained by considering that the redox reactions
on carbon atoms are more heterogeneous than those on heteroatoms, which involve a
limited number of reactive groups, which can be conveniently recognized by topological
descriptors. The best-performing class of redox reactions on carbon atoms is that involving
quinones and analogues, which indeed comprises homogeneous (and easily detectable) re-
active centers. Among the classes involving heteroatoms, the redox reactions on the sulfur
atoms yield the best results, probably as they affect a well-defined set of reactive moieties.

Concerning the hydrolyses, Table 3 suggests that the average values are worsened by
class 14, which includes a limited but very heterogeneous group of hydrolytic reactions.
In contrast, the two most populated classes (11 and 12) show, on average, satisfactory
performance, in line with that yielded by conjugations. This finding can be explained
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by considering that these reactions involve a limited set of labile groups. Notably, the
hydrolysis of esters can be more easily predicted than that of amides.

When focusing on conjugations, Table 3 shows that the worst performance is obtained
for class 22, which includes all glucuronidations not involving oxygen atoms and thus com-
prises various metabolic reactions. In contrast, the other classes involve well-characterized
sets of reactive centers and can be conveniently predicted (MCC > 0.5, using the Kier-Hall
indices). Finally, the unsatisfactory performance yielded by sulfonations (class 23) can be
justified by considering the high polarity of the resulting metabolites. These polar metabo-
lites are not easily detectable by applying standard analytical techniques and thus the
mentioned problem of false negatives might markedly affect the predictive performance
for this class of metabolic reactions.

With regard to the sets of descriptors, Table 3 shows that Kier—Hall indices perform
better than physicochemical and stereo-electronic descriptors for 15 out of 18 classes. Only
for methylations (class 27) do physicochemical and stereo-electronic descriptors perform
better, and in two classes (25 and 26), the two sets show comparable performance. On aver-
age, MCC values show larger differences than AUC parameters and the MCC values reveal
differences >0.1 in 8 out of 15 classes. Taken together, the better performance afforded by
Kier-Hall indices emphasizes the relevance of properly recognizing the involved reactive
groups to predict the occurrence of a given metabolic reaction.

Along with the discussed heterogeneity of the involved metabolic reactions, a factor
that can explain the differences in performance reached by the analyzed classes is the
efficiency of the considered metabolic reaction. Stated differently, a metabolic class can
be conveniently predicted if almost all the substrates that contain a given reactive group
undergo the corresponding metabolic reaction. By contrast, when the presence of a given
reactive moiety is a necessary but not sufficient condition and many substrates that include
such a reactive center do not undergo the metabolic reaction, its occurrence can be predicted
with greater difficulty. Regardless of the heterogeneity of the involved reactive moieties,
Table 3 indicates that, on average, conjugations are more easily predictable than redox
reactions. This suggests that the enzymes involved in the redox reactions are less efficient,
which is reasonable as their catalytic activity depends on various stereo-electronic features
that go beyond the mere presence of a detectable reactive center.

2.4. Predictive Analyses for the Metabolic Subclasses

Table 4 compiles the predictive performance values for the subclasses of metabolic
reactions with at least 50 substrates (23 out of 101) plus the corresponding average metrics.
An overall analysis of the reported MCC and AUC values reveals performance that is
in line with that discussed for the classes of reactions. The comparison of the average
metrics between classes and subclasses reveals that a more detailed classification (as seen
in subclasses) has a limited role for redox reactions, a beneficial impact on hydrolyses and a
moderate effect on conjugations. These findings suggest that the difficulty in predicting re-
dox reactions is not only ascribable to the heterogeneity of the involved biotransformations
(although some subclasses are still highly populated) but rather to the complexity of the
factors governing them. Indeed, the classes of conjugations already include homogeneous
metabolic reactions and substrates and thus their further subdivision has a limited effect,
while the hydrolyses benefit from the more precise classification of the reactions involving
the ester groups.
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Table 4. Performance of the predictive models for the subclasses of metabolic reactions with at least
50 substrates based on US balanced datasets and exploiting two sets of descriptors (physicochemical
plus stereo-electronic descriptors and Kier-Hall topological indices). Only overall performance
metrics are compiled.

. No. of PC + Elec Kier-Hall
Subclass ID Description
Instances MCC AUC MCC AUC
01.01 Oxidations of isolated Csp3 193 0.32 0.72 0.43 0.83
01.02 Oxidations of C in a to an 233 020 064 029 068
unsaturated system
. . 3 .
01.03 Oxidations of Csp” carrying 492 016 056 027 066
an heteroatom
01.04 Dehydrogenations 81 0.26 0.67 0.32 0.70
02.01 Oxidations of aryl 440 022 062 023 066
compounds
02.02 Oxidations of azarenes 94 0.39 0.72 0.38 0.78
02.03 Oxidations of >C=C< 55 0.31 0.77 0.74 0.94
03.02 Hydrogenations of carbonyls 71 0.41 0.79 0.70 091
05.01 Oxidations of tertiary 65 019 067 060 081
alkylamines
06.01 Hydroxylations of amines 62 0.55 0.84 0.68 091
07.04 Oxidations of phenols 51 0.51 0.79 0.43 0.78
08.03 Oxygenations of sulfides 83 0.58 0.85 0.72 0.93
Main class 1 Average 0.34 0.72 0.48 0.80
11.01 Hydrolysis of alkyl esters 103 0.58 0.88 0.81 0.96
11.03 Hydrolysis of anionic and 100 078 095 085 097
cationic esters
11.08 Hydrolysis of esters of 51 065 090 092 099
inorganic acids
12.02 Hydrolysis of anilides and 55 058 085 062  0.88
hydrazides
Main class 2 Average 0.65 0.90 0.80 0.95
21.01 O-glucuronidation of 85 059 084 070 091
alcohols
21.02 O-glucuronidation of phenols 152 0.55 0.86 0.75 0.94
21.03 O-glucuronidation of 99 053 081 072 091
carboxylic acids
22.01 N-glucuronidation of linear 97 045 077 051 083
and cyclic amines
23.01 O-sulfonation of phenols 70 0.53 0.85 0.64 0.91
24.01 Nucleophilic additions of 89 059 085 069 092
glutathione
24.02 Reactions of glutathione 68 050 081 063 088
addition—elimination
Main class 3 Average 0.53 0.83 0.66 0.90

In detail, the achieved performance for redox reactions confirms the difficulty in
predicting the biotransformations on the carbon atoms. This is partly ascribable to the
richness of substrates within these subclasses, but is especially due to the variety of factors
that govern these redox reactions, which cannot be described by the simple occurrence of
reactive fragments. Only the subclasses of reactions involving double bonds and carbonyls
can be conveniently predicted (MCC > 0.6). In addition, Table 4 confirms that redox
reactions involving heteroatoms are more easily predicted.

The subclasses for the hydrolyses reach remarkable performance, especially for esters,
the subdivision of which into neutral and ionizable substrates enhances the resulting
performance. Table 4 confirms the greater difficulty in predicting the hydrolysis of amides
and derivatives compared to that of esters. Concerning the conjugations, Table 4 evidences
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the beneficial role of a more precise clustering of the O-glucoronidations on the resulting
performance, while the further classification of the reactions with GSH has a negligible role
on the developed predictive models.

The overall effect of the clustering into subclasses can be appreciated by analyzing
the charts reported in Figure 1, which highlight the increase in the number of models with
AUC > 0.90. In detail, there is one satisfactory model per major class when analyzing the
metabolic classes, while the number of highly performing models increases to four, three
and five when focusing on the subclasses of redox reactions, hydrolyses and conjugations,
respectively. By considering the relative abundances of the predicted classes and subclasses,
Figure 1 reveals that the vast majority of redox reactions are unsatisfactorily predicted by
analyzing both classes and subclasses. In contrast, the majority of hydrolyses are conve-
niently predicted by considering both classes and subclasses. Finally, Figure 1 evidences
the beneficial effect exerted by clustering the conjugation reactions into subclasses, with
enhancements particularly noticeable for glucuronidations.

acetylations and acylations CoASH-ligation

methylations

2% 1% 1%
GSH and RSH conjugations
5%
sulfonations
3%
N- and $-glucuronidations/all other] oxldation of Csp3
glycosilations 27%
4%
0O-glucuronidations and glycosylations
9%
\
Other hydrolyses
2%
hydrolysis of amides, lactams and
peptides
3%
hydrolysis of esters, lactones, and oxidation of Csp2 and Csp
inorganic esters 16%
8%
redox of S atoms
3%
Redox of quinanes or analogues CHOH to C=0 to COOH
39, redox reactions of >NH, >NOH, and || .o40x reactions of R3N 4%
N=0 3%
%
Redox Hydrolyses Conjugations
[ ] Auc<os [ ] Auc<os [ ] Auc<os
[] o08<AuCc<09 [] o8<auc<o9 [] o0s8<Auc<09
B aucso09 B Aucso09 B Aucso09
Figure 1. Cont.
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Figure 1. Pie charts representing the predictive performance and relative abundance of the classes (top) and subclasses

(bottom) as subdivided into the three major classes by color coding, detailed in the legend in the middle.

With regard to the utilized sets of descriptors, Table 4 reveals results in agreement with
Table 2 since the Kier-Hall indices perform better in 22 cases out of 23, and physicochemical
and stereo-electronic descriptors provide better performance only in predicting the oxida-
tion of phenols (subclass 07.04). On average, the differences in the performance yielded
by the two sets of descriptors are even greater when considering the subclasses, since the
MCC differences are greater than 0.1 in 13 cases out of 23. The enhanced performance
provided by the Kier-Hall indices can be explained by considering that their capacity to
conveniently describe the involved reactive groups increases with the specificity of the
predicted reactions and the subclasses comprise more homogeneous reactions compared to
the classes.

As discussed above, the performance of the Kier-Hall indices depends on the efficacy
of the considered reactions. The performance achieved by the analyzed subclasses confirms
the greater efficacy of hydrolyses and conjugations compared to redox reactions. Stated
differently, the performance values compiled in Table 4 suggest that almost all inorganic
esters undergo hydrolysis, while only a fraction of aromatic rings are oxidized, and thus
the capacity to detect the presence of aromatic systems within the input substrate is not
sufficient to successfully predict the occurrence of the corresponding oxidations.

2.5. Relevance of the Utilized Descriptors

To explore the relevance of each descriptor included in the utilized sets, the analysis
of the feature relevance was performed by Weka. Attention was here focused on the
predictive analyses involving the 18 analyzed classes since they represent a comprehensive
analysis of all metabolic reactions. The feature relevance was analyzed by considering
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together all the utilized descriptors. The results were assessed by cross-validation repeated
10 times. Only the descriptors included by at least five validation runs were considered as
relevant features.

Table S1 (Supplementary Materials) and Figure 2 report the obtained results and
evidence that a significant number of descriptors are never relevant in the developed
predictive models (31 out of 81). The obtained relevance for the three sets of included
descriptors highlights that the physicochemical descriptors show the highest fraction of
never-utilized parameters (11 out of 25) followed by the Kier-Hall indices (17 out of 44),
while only three stereo-electronic descriptors are never included. The modest role of the
physicochemical descriptors can be explained by considering that several features are
variously related to molecular size and shape, which conceivably play a limited role in
determining the metabolic reactivity. The never-included Kier-Hall indices emphasize
that not all the encoded chemical fragments are susceptible to metabolic reactions, while
the relevance of the stereo-electronic descriptors confirm the reliability of such features to
encode for the chemical reactivity of a given molecule.
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Figure 2. Occurrence of the most frequently relevant descriptors (i.e., those which are relevant for at
least 3 classes).

Figure 2 reports the occurrence of the frequently relevant descriptors (namely those
which are evaluated as relevant in at least 3 predicted classes out of 18). They include
4 physicochemical descriptors, 5 stereo-electronic parameters and 11 Kier-Hall indices. As
expected, the relevant physicochemical descriptors include lipophilicity, which is the key
factor governing the propensity of a given molecule to be metabolized. The number of
H-bond donor groups and the PSA value can encode for both polarity and the presence
of chemical groups susceptible to metabolism. Of the five frequently involved stereo-
electronic features, three are related to the overall stability /reactivity of a given molecule
(dipole, heat of formation and absolute hardness) and two account for its nucleophilic-
ity /electrophilicity profile (E_HOMO and electronegativity). The 11 relevant Kier-Hall
indices correspond to the atom types characterizing the reactive groups involved in several
metabolic reactions. The most frequently included descriptors comprise the hydroxyl
function (sOH), which is engaged by almost all conjugations, and the primary amino group
(sNH2), which is involved in both conjugations and redox reactions, while the methyl
group (sCH3) and the aromatic carbon atoms (aaCH) are mostly affected by redox reactions.
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The number of relevant descriptors varies among the predicted classes, ranging from 2
for O-glucuronidations to 15 for redox reactions of >NH, >NOH, and -N=0. Although
there is no correlation between the number of relevant descriptors and the performance
of each class, one may observe that the average number of descriptors for the three main
classes is in line with the average performance (redox = 10 descriptors, hydrolyses = 6.3
and conjugations = 7.1; overall average = 8.2), thus confirming that the best-performing
models are, on average, characterized by a limited number of variables.

2.6. The MetaClass Predictor: An Explorative Study

As detailed in the Methods, the predictive models generated for the classes were
deployed by a tool that was developed to predict the occurrence of the corresponding
biotransformations for a given input molecule. The tool, called MetaClass, was generated
by the Tree2C approach [29] and implemented as an optimized library within the VEGA
environment. In this way, this general predictor could directly exploit the VEGA features to
calculate the descriptors required by the predictive models. In detail, MetaClass analyzes
the input molecule loaded in the workspace of the VEGA program and returns the predicted
occurrence for each class.

To provide a preliminary validation of its predictive performance, the MetaClass
predictor was tested to predict the metabolic reactions for a set of 10 molecules not included
in the database used to develop the models since their metabolic studies were published
after 2015. Table 5 summarizes the obtained predictions and reveals encouraging results,
especially when considering that most predicted reactions (17 out of 23) belong to redox
classes, which provided not so satisfactory models (see Table 3). In detail, Table 5 reveals
that the vast majority of reported metabolic reactions (18 out of 23) are conveniently
predicted and only three molecules evidence two unrecognized reactions. In addition, all
molecules show false positive reactions: this is a rather common issue, which is partly
related to the uncertain definition of substrates and non-substrates, as discussed above.
In fact, and although the selected papers report rather exhaustive metabolic studies, one
cannot exclude a priori the possibility that the false positives might correspond to reactions
that can occur but are not reported in the study for various reasons. Hence, we believe that
the most significant result of this preliminary validation is the capacity of the MetaClass
predictor to conveniently identify most of the reported reactions with a reduced number
of unpredicted cases, as assessed by a sensitivity = 0.78. Overall, the confusion matrix
compiled in Table 5 leads to an MCC value equal to 0.44 and accuracy equal to 0.80. Not
surprisingly, the MCC value is superimposable to the MCC average for the redox classes in
Table 3, thus emphasizing the limiting role that the prediction of redox reactions also has
for the MetaClass predictor.

Table 5. Results of the predictive analysis as obtained by applying the MetaClass predictor to an
external set of 10 molecules.

Drug Reported Classes TP TN FP FN Ref.
Atomoxetine 01, 02 2 14 2 0 [30]
Axitinib 01, 02, 05, 08, 22 5 11 2 0 [31]
Benzbromarone 02 1 13 4 0 [32]
Bosentan 01 1 15 2 0 [33]
Brivaracetam 01,12 2 12 6 0 [34]
Cobimetinib 01,02, 12 1 13 2 2 [35]
Dasabuvir 01 1 13 4 0 [36]
Efavirenz 01,02, 22 1 11 4 2 [37]
KAF156 01, 02,25 2 12 4 1 [38]
Midazolam 01,22 2 13 3 0 [39]
Total 23 18 127 31 5 -
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3. Methods
3.1. Preparation of the Collected Substrates

The study involved 2787 substrates that undergo 3788 first-generation metabolic
reactions, as classified into 3 main classes, 21 classes and 101 subclasses. The MetaQSAR
database contains the 3D structure of the collected substrates in their neutral state [26].
For the reported predictive analyses, the stored 3D structures were optimized by PM7-
based semi-empirical calculations, which also allowed the calculation of an extended set of
stereo-electronic parameters [40]. The corresponding ionized forms were generated by an
already described script of VEGA [41], which ionizes the molecules by selecting the most
probable form at a user-defined pH value (here pH = 7.4). The thus obtained ionized forms
underwent the PM7-based optimization procedure as above described. In this study, the
tautomeric forms were not considered.

3.2. Calculation of Molecular Descriptors

The study involved the calculation of three sets of descriptors. The first set com-
prised 168 various variables, including constitutional, topological and physicochemical
descriptors as computed by BlueDesc. These descriptors were computed by using the Java
code available at http:/ /www.ra.cs.uni-tuebingen.de/software/bluedesc/ (accessed on
23 September 2021). In detail, the code was encapsulated into a front-end VEGA script
that supports the analysis of molecular databases as well as the generation of the CSV
output files.

The second set comprised 25 constitutional, geometrical and physicochemical descrip-
tors as computed by VEGA plus 12 stereo-electronic parameters as calculated by PM7
semi-empirical calculations (see above). The last set comprised 44 Kier—Hall topological
indices, which are categorical values that encode for the occurrence of specific functional
groups [42]. They were calculated by a specific script, which is included in the standard
VEGA release and which detects the occurrence of defined functional groups according to
a set of criteria or fingerprints. Specifically, the script analyzes all supported databases and
generates a CSV output file.

The complete list of the Kier—Hall topological indices with the corresponding SMARTS
strings can be found at https://cdk.github.io/cdk/1.5/docs/api/org/openscience/cdk/
gsar/descriptors/molecular/KierHallSmartsDescriptor.html (accessed on 23 September
2021). A description of the included constitutional, geometrical, physicochemical and
stereo-electronic descriptors is provided in Table S2 (Supplementary Materials).

3.3. Model Building

As mentioned above, the presented predictive studies involved the three major classes
and the classes and subclasses including at least 50 metabolic reactions. The initial predic-
tive studies on the three major classes were exploited to select the optimal classification
algorithm and to optimize the corresponding parameters. Table S3 (Supplementary Mate-
rials) lists the MCC values reached for the three major classes by a variety of predictive
algorithms implemented in Weka [43]. Although the employment of Tree2C for the de-
velopment of the MetaClass predictor limited us to the use of tree-based approaches, this
analysis also comprised other different methods for the sake of completeness. Table S3
shows that the tree-based algorithms afford, on average, the best performance; in particular,
the random forest (RF) classification method [44] provides the highest MCC average value.
In detail, RF yields the best MCC value for redox and hydrolytic reactions, while three
tree-based algorithms (forestPA, LMT and SysFor) produce slightly better MCC values
for conjugations. On these bases, RF was used for all classification analyses reported in
this study.

The tuning of the RF hyperparameters was performed by means of the “Experimenter”
module in Weka. In detail, the following parameters were considered: (1) the batch size; (2)
the number of threads; (3) the number of iterations; (4) the attribute importance. Overall,


http://www.ra.cs.uni-tuebingen.de/software/bluedesc/
https://cdk.github.io/cdk/1.5/docs/api/org/openscience/cdk/qsar/descriptors/molecular/KierHallSmartsDescriptor.html
https://cdk.github.io/cdk/1.5/docs/api/org/openscience/cdk/qsar/descriptors/molecular/KierHallSmartsDescriptor.html

Molecules 2021, 26, 5857

14 of 17

14 runs were carried out based on 10-fold cross validation, by which each test was repeated
on the dataset 10 times with different random number seeds.

Based on these tests, all the reported classification models were developed by the
random forest machine learning algorithm as implemented in the Weka program with the
following parameters: (1) the batch size = 100; (2) the number of threads = 1; (3) number of
iterations = 100; (4) the attribute importance was not evaluated.

The most significant features were selected by using the Weka program according to
both the BestFirst search algorithm (direction = Forward; lookupCacheSize = 1; searchTer-
mination = 5) and the WrapperSubsetEval attribute evaluator (classifier = RandomForest
with default settings; doNotCheckCapabilities = False; evaluationMeasure = accuracy,
RMSE; folds = 5; seed = 1; threshold = 0.01). As described in the Results, the predictive
models were developed by considering the substrates in their neutral form for the three
main classes of metabolic reactions and for all the classes and the subclasses with at least
50 occurrences. All the reported predictive models were developed by using balanced
datasets as obtained by random undersampling using an ad hoc script implemented in the
VEGA program. In contrast, the protonated forms of the substrates and the unbalanced
datasets were utilized only to predict the occurrence of the three main classes.

3.4. MetaClass Predictor

The models generated for the classes of metabolic reactions (see Table 2) were utilized
to develop a predictive system called MetaClass, based on the Tree2C approach [29]. Briefly,
Tree2C deploys a tree-based model as generated by the Weka program by converting its
output file into a source code by implementing a user-defined programming language. The
generated source code also comprises the code required to calculate the included descrip-
tors by exploiting the features already implemented by the VEGA suite of programs. In this
way, Tree2C can be utilized to develop scripts, which run within the VEGA environment
and which calculate on-the-fly the descriptors required to apply the predictive model to
the molecules loaded in the VEGA workspace.

To develop the MetaClass predictor, the Tree2C approach was applied to the predictive
models for the metabolic classes by generating the corresponding C code for each model.
The generated codes were then merged into a unique script that predicts the occurrence of
all the classes for the molecule loaded in the VEGA workspace. To speed up the MetaClass
predictor and to support its release, the resulting codes were assembled into a precompiled
binary library, which was optimized for use within the VEGA environment.

To simplify the generation of the MetaClass predictor and to support its constant up-
dating, a script to automatize the model generation (MetaClass builder) was also developed.
Based on a database of metabolic reactions structured as implemented by MetaQSAR, the
script performs the following tasks: (1) extracting the datasets for the classes of metabolic
reactions; (2) balancing them by random undersampling of the majority class; (3) calculat-
ing the selected descriptors for the collected substrates, which can be calculated directly by
the VEGA program or can be provided externally; (4) generating the predictive models
by interfacing the script with the Weka program; (5) transforming the models into the
corresponding C codes by using Tree2C and (6) assembling the final precompiled library.

MetaClass builder can have two major applications. First, we use this to automatically
generate updated releases of the MetaClass predictor, which parallels our continuous
efforts to update the MetaQSAR database. Second, any research group can use this tool to
develop its own predictor system by exploiting their internal metabolic data, which should
be structured as requested by the MetaQSAR database features.

4. Conclusions

The study describes a set of tree-based models to predict the occurrence of specific
metabolic reactions. They were developed by using a standard random forest procedure
and exploiting rather limited sets of representative descriptors. It should be noted that
better models might be generated by using extended sets of descriptors through an opti-
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mization procedure specifically tailored to each analyzed dataset of metabolic reactions.
Nevertheless, the primary objective of the study was focused on an extensive comparison
of the achieved performance when predicting the occurrence of the various metabolic
reactions as classified by the MetaQSAR database. Thus, the applied procedures were
similarly performed for all datasets, and the possible resulting loss of performance similarly
affected all the developed models, thus enabling a reasonably unbiased comparison of all
the achieved performance results.

When considering the performance achieved by each predicted class, the obtained
results can be summarized as follows:

1.  Even when considering the corresponding subclasses, the redox reactions revealed
the poorest performance. These negative results underline the complexity of the
factors governing these metabolic reactions and suggest that predicting these reactions
requires tailored approaches involving optimized algorithms and/or specifically
designed descriptors.

2. The hydrolyses provided almost always the best models and benefited from a detailed
clustering of their reactions.

3. When subdivided into classes and subclasses, the conjugations yielded, on average,
satisfactory predictive models; this suggests that these reactions can be conveniently
predicted by recognizing the involved reactive groups.

While considering the comparative aim of the study, the developed models for the
considered metabolic classes provided satisfactory performance (i.e., MCC > 0.5 and
AUC > 0.8) in 10 out of 18 classes. Therefore, a global classification system, called Meta-
Class, was developed within the VEGA environment to predict the occurrence of the
various metabolic reactions. Clearly, these predictions should be cautiously taken by con-
sidering the here described performance. Nevertheless, they can provide a reasonable
picture of the overall stability of the tested molecules as well as of the most probable
reactions that they can undergo. Finally, a script (MetaClass builder) was developed to
automatize the development of the predictive models and of the resulting classification
system. Besides allowing the constant updating of the MetaClass predictor, this can be used
by any researcher to develop similar predictive tools by exploiting its own metabolic data.

Supplementary Materials: The following are available online, Table S1: Results from feature selec-
tion; Table S2: Full lists of the involved descriptors; Table S3: Performance (MCC values) of the tested
algorithms; Table S4: Used dataset for O-glucuronidations (class 21) as an example of the input data
analyzed in the study.
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