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Abstract: High temperature severely affects the nature of the ingredients used to produce concrete,
which in turn reduces the strength properties of the concrete. It is a difficult and time-consuming
task to achieve the desired compressive strength of concrete. However, the application of supervised
machine learning (ML) approaches makes it possible to initially predict the targeted result with
high accuracy. This study presents the use of a decision tree (DT), an artificial neural network
(ANN), bagging, and gradient boosting (GB) to forecast the compressive strength of concrete at high
temperatures on the basis of 207 data points. Python coding in Anaconda navigator software was
used to run the selected models. The software requires information regarding both the input variables
and the output parameter. A total of nine input parameters (water, cement, coarse aggregate, fine
aggregate, fly ash, superplasticizers, silica fume, nano silica, and temperature) were incorporated as
the input, while one variable (compressive strength) was selected as the output. The performance
of the employed ML algorithms was evaluated with regards to statistical indicators, including
the coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE). Individual models using DT and ANN gave R2 equal to 0.83 and 0.82,
respectively, while the use of the ensemble algorithm and gradient boosting gave R2 of 0.90 and 0.88,
respectively. This indicates a strong correlation between the actual and predicted outcomes. The
k-fold cross-validation, coefficient correlation (R2), and lesser errors (MAE, MSE, and RMSE) showed
better performance than the ensemble algorithms. Sensitivity analyses were also conducted in order
to check the contribution of each input variable. It has been shown that the use of the ensemble
machine learning algorithm would enhance the performance level of the model.

Keywords: concrete; compressive strength; high temperature; prediction; decision tree; bagging;
gradient boosting

1. Introduction

Due to the fact that concrete has a relatively low cost when compared to other materi-
als, as well as the fact that it is commonly used in engineering structures all over the world,
its technology is subjected to constant innovations and improvements [1]. The fast and
advanced development of urbanization requires a high demand for concrete [2], which
possesses many desired properties including compressive strength, the ability to adopt any
shape, and the capacity to resist environmental conditions [3]. In addition, porosity, impact
resistance, fire resistance, durability, and acoustic insulation are also cited as being the
advantages of concrete [4]. These various aspects enable it to be applied in the construction
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of infrastructures, dams, tunnels, bridges, and reservoirs [5]. The local availability of ingre-
dients, such as coarse aggregate, fine aggregate, water, and binding material, significantly
influences the economical factor [6]. In comparison, other building materials such as steel
also possess many properties but cannot be cheaper than concrete. However, in order to
make concrete a more advantageous material with improved properties, the techniques of
adding other materials such as fly ash, silica fume, other cementitious material, and various
fibers are widely adopted [7–9]. The use of waste materials in concrete plays a vital role in
minimizing environmental risks, as well as in reducing the cost of the material [10]. High
temperature and fire severely affect the properties of concrete in both its fresh and hardened
states [11]. Some structures or structural elements are exposed to high temperatures, i.e.,
chimneys, factories with chemicals, and structures used in atomic industries. Moreover, the
casting and curing of concrete in hot areas are considered a challenging task to perform, and
what is more, concrete loses its mechanical properties (compressive and flexural strength)
at high temperature, which ultimately results in the loss of its durability [12].

The development of new materials and methods for protecting against high tempera-
tures has gained more importance in the field of research due to the increased number of
incidents caused by fire [13,14]. The effect of fire is considered as a high frequency disaster,
which not only causes the deterioration of cement composites, but also plays a role in the
spalling of such material [15,16]. The paper [17] indicated that the resistance of a structure
against the impact of high temperature caused by fire is one of the critical factors that
influence the safety of using structures. This issue requires further research. Concrete
is a commonly applied material and is also considered to be one of the best materials
for protecting against high temperatures and the effect of fire [18,19]. The components
of concrete (at the stage of the hydration of C–S–H and Ca(OH)2, and at the stage of the
formation of calcium aluminate gels), due to an extended exposure to heat, can disintegrate.
This can result in the deterioration of the physicochemical properties of concrete. Therefore,
scientists concentrate on analyzing the influence of raised temperature on the mechanical
properties of hardened concrete. The differences in the flexural and compressive strength
of both ordinary and high-performance concrete have also been investigated when cooled
in various conditions (air and water) [20]. In cement composite material (concrete), the
decomposition reaction occurs due to the high porosity of the cement matrix and a de-
crease in strength parameters. The residues of calcium hydro silicate can be recognized
in the cement matrix when the material is exposed to high temperatures of about 600 to
700 ◦C [21]. The performance of other types of concrete, i.e., lightweight concrete, have
also been investigated with regards to the impact of high temperature [22]. Extensive
research work has been carried out by researchers in order to investigate the mechanical
properties of concrete heated to temperatures of up to 800 ◦C [23–25] or higher [26–28]. It
was proven that the rise in the natural temperature (which depends on the climate zone)
also has a significant effect on the properties of concrete, which also involves several energy
projects [29,30].

Although concrete is generally a non-combustible material, its chemical, physical,
and mechanical properties are directly affected by excessive temperature [31]. Thermal
stresses, decomposition, and dehydration cause the spillage, perforation, and cracking
of concrete [32]. Moreover, the strength properties of the ingredients of concrete at high
temperatures are reduced. Cement paste requires a standard temperature range in order to
work effectively inside the concrete matrix. High temperature does not allow cement paste
to contribute positively towards the strength of concrete. This is especially the case for high-
strength concrete, as it requires a normal temperature to achieve its desired strength [33].
The failure of concrete due to fire is caused by many factors, such as the heating rate and
temperature, or structural element conditions, i.e., the application of loads [34]. Therefore,
it is usually difficult to analyze the direct effect of high temperature on concrete, especially
with regards to the microstructural changes of the aggregate, hydrated cement paste, and
interfacial transition zone [35].
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Sammy et al. [36] studied the compressive strength and properties of high-performance
concrete at high temperatures of about 800 and 1100 ◦C, as well as during cooling. They
investigated that the strength properties decreased sharply after a gradual (26–34%) and
rapid cooling process (22–28%). Haruin at al. [37] investigated the effect of high temper-
ature on the compressive strength and splitting tensile strength of light weight concrete
with fly ash. The experimental investigation was conducted at 200, 400, and 800 ◦C. In
the case of 800 ◦C, a decrease by 63.8% and 76.45% in the compressive strength and the
splitting tensile strength of concrete, respectively, was noted. Sammy et al. [38] com-
pared normal-strength concrete and high-strength concrete subjected to high temperatures.
The 28-day compressive strength of concrete was tested after different exposure times
of various temperatures (400, 600, 800, 1000, and 1200 ◦C). The compressive strength of
concrete containing rubber-modified recycled aggregate was also investigated at elevated
temperatures [39].

It is clear from past studies that input parameters directly correlate with output
results [40,41]. Supervised machine learning approaches also have the capability of in-
corporating the effect of temperature change, which indicates the positive aspect of these
techniques. ML algorithms show a better performance, with a smaller variance, when
considering the parameter of temperature change [42]. The performance of ML approaches
is associated with several parameters, including the number of parameters and the data
that are used to create the model. The novelty of the authors’ research approach also
includes the addition of another parameter (temperature effect) for predicting the strength
of concrete. The ML approaches, and their comparison in terms of their performance, were
investigated in this study. This study included the temperature effect, which was used
as an input parameter for investigating the performance of the selected ML approaches
during the prediction of the compressive strength of concrete.

2. Research Significance

This study aimed to forecast the compressive strength of concrete exposed to high
temperatures by employing individual and ensemble machine learning algorithms. The
decision tree (DT) and artificial neural network (ANN) (as a system), as well as the bagging
regressor and gradient boosting regressor (as ensemble machine learning approaches)
were used. The novelty of this research involves the investigation of the accuracy level of
individual and ensemble ML algorithms, as well as the evaluation of the accuracy level
of each approach for predicting the compressive strength of concrete at high tempera-
tures. This study also compares statistical indicators that are used to evaluate the model’s
accuracy. This study shows that the ensemble algorithms yielded a strong relationship
when compared to individual machine learning techniques. Furthermore, the validity
and accuracy of all the employed models were evaluated by using the method of k-fold
cross-validation and by applying statistical checks. However, sensitivity analysis pro-
vides information regarding the contribution of the temperature parameter for predicting
compressive strength. The purpose of this research also includes the comparison of the
employed machine learning approaches with the techniques adopted in the literature.

3. Methodology
3.1. Supervised Machine Learning (ML) Techniques

Machine learning algorithms are more commonly applied in civil engineering for
predicting the mechanical properties of concrete. Examples of their application are listed
in the Table 1. The compressive or flexural strength of concrete can be determined by
using the hit and trial method for various ages of concrete samples. To overcome some
limitation in this method, we used machine learning algorithms to forecast outcomes
for input data. Hao et al. [43] used the support vector machine (SVM) and k-fold cross-
validation to predict the compressive strength of concrete in a marine environment, stating
that the SVM performs better when compared to the artificial neural network (ANN) and
decision tree (DT). Chengyeo et al. [44] predicted the compressive strength of concrete in a
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wet–dry environment using the backpropagation artificial neural network (BP-ANN). It
was shown that the BP-ANN provides better accuracy regarding the actual and predicted
results. Hocine et al. [45] applied the ANN model for predicting the compressive strength
of limestone filler concrete. The training, testing, and validation of their data provides a
strong correlation (exceeding 97%) with the real data. Behfernia et al. [46] used the ANN
and adaptive neuro-based fuzzy inference (ANFIS) to predict the compressive strength of
concrete. It was evaluated that the ANN model is a well-organized model for predicting
the compressive strength of concrete. Hoang et al. [47] employed efficient machine learning
models for predicting the strength of concrete. They proposed that the performance of the
trained models of the gradient boosting regressor (GBR) and extreme gradient boosting
(XGBoost) were better when compared to the support vector regressor and multilayer
perceptron (MLR).

Table 1. Prediction properties using different approaches.

No. Algorithm Used Notation Data Points Prediction Properties Year Material
Used References

1. Support vector machine SVM 144 Compressive strength 2021 FA [48]

2. Gene expression programming GEP 303
Bearing capacity of

concrete-filled steel tube
column

2019 _ [49]

3. Data envelopment
analysis DEA 114

Compressive strength Slump
test

L-box test
V-funnel test

2021 FA [50]

4.
Gene expression programming,

artificial neural network,
decision tree

GEP, ANN,
DT 642 Surface chloride concentration 2021 FA [51]

5. Support vector machine SVM - Compressive strength 2020 FA [52]

6. Support vector machine SVM 115

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [53]

7. Gene expression programming GEP 351 Compressive strength 2020 GGBS [54]

8. Gene expression programming GEP 54 Compressive strength 2019 NZ (natural
zeolite) [54]

9. Gene expression programming GEP 357 Compressive strength 2020 - [55]

10. Random forest and gene
expression programming RF and GEP 357 Compressive strength 2020 - [56]

11. Artificial neuron network ANN 205 Compressive strength 2019

FA
GGBFS

SF
RHA

[57]

12.
Intelligent rule-based

enhanced multiclass support
vector machine and fuzzy rules

IREMSVM-
FR with

RSM
114 Compressive strength 2019 FA [58]

13. Random forest RF 131 Compressive strength 2019
FA

GGBFS
FA

[59]

14. Multivariate adaptive
regression spline

M5
MARS 114

Compressive strength
Slump test
L-box test

V-funnel test

2018 FA [60]

15. Random kitchen sink
algorithm RKSA 40

V-funnel test
J-ring test
Slump test

Compressive strength

2018 FA [61]

16. Adaptive neuro fuzzy
inference system ANFIS 55 Compressive strength 2018 - [62]

17. Artificial neuron network ANN 114 Compressive strength 2017 FA [63]
18. Artificial neuron network ANN 69 Compressive strength 2017 FA [64]

19. Individual and ensemble
algorithm

GEP, DT,
and bagging 270 Compressive Strength 2021 FA [42]

20. Individual with ensemble
modeling

ANN,
bagging and

boosting
1030 Compressive strength 2021 FA [65]

21. Multivariate MV 21 Compressive strength 2020
Crumb

rubber with
SF

[66]

22. Gene expression programming GEP 277 Axial capacity 2020 - [67]

23. Adaptive neuro fuzzy
inference system

ANFIS with
ANN 7 Compressive strength 2020 POFA [68]

24. Response surface method,
gene expression programming RSM, GEP 108 Compressive strength 2020 Steel Fibers [69]
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3.2. Description of the Obtained Data

The data points used to run the models via machine learning algorithms were obtained
from the literature [20,70–77], and can be seen in Appendix A. The data taken from the
published article explains the behavior of concrete in a hot environment. Nine parameters
were taken as the input parameters, namely, cement, water, fine aggregate, coarse aggregate,
fly ash, superplasticizer, nano silica, silica fume, and temperature, while compressive
strength was taken as the output parameter. These parameters were employed in Jupiter
python software in order to indicate the graphical representation in the form of their
relative frequency distributions, which can be seen in Figure 1. It is clear that the model’s
performance was significantly affected by the input variables. The descriptive analysis,
as well as the mathematical indication of the variables used to run the models (with their
ranges), are listed in Table 2.

Figure 1. Contour plots showing the relative distribution of the parameters.
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Table 2. Descriptive analysis of the parameters.

Parameters
Description Cement Water Fine

Aggregate
Coarse

Aggregate Fly Ash Super
Plasticizer Silica Fume Nano Silica Temperature

Mean 437.69 182.92 610.13 1052.13 12.65 8.58 29.32 1.74 354.52
Standard

error 6.64 4.16 22.06 21.51 2.30 0.53 2.58 0.36 19.99

Median 442.00 154.00 689.00 1110.00 0.00 6.00 7.50 0.00 300.00
Mode 500.00 150.00 0.00 1110.00 0.00 0.00 0.00 0.00 400.00

Standard
deviation 95.49 59.90 317.39 309.41 33.07 7.60 37.09 5.25 287.65

Sample
variance 9118.52 3588.58 100,736.87 95,735.94 1093.76 57.71 1375.35 27.54 82,743.10

Kurtosis 3.39 2.06 0.71 5.69 7.01 −0.62 1.02 8.45 −1.04
Skewness 0.98 1.67 −0.40 −1.97 2.74 0.74 1.26 3.08 0.47

Range 536.00 262.00 1345.00 1681.00 150.00 25.90 150.00 22.50 980.00
Minimum 250.00 123.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00
Maximum 786.00 385.00 1345.00 1681.00 150.00 25.90 150.00 22.50 1000.00

Sum 90,601.00 37,864.80 126,297.00 217,790.00 2619.00 1776.20 6068.60 360.00 73,386.00
Count 207.00 207.00 207.00 207.00 207.00 207.00 207.00 207.00 207.00

3.3. Machine Learning Approaches

This section explains the types of algorithms used for predicting the compressive
strength of concrete at high temperatures. The strength property (compressive strength) of
concrete was forecasted using both ensemble and individual algorithms. The decision tree,
bagging, and gradient boosting techniques were used to run the models. Python coding
was used in Anaconda software for all three employed machine learning approaches. The
applied algorithms are illustrated in Figure 2.

Figure 2. Machine learning techniques used in the research.

A decision tree is a supervised machine learning technique used for the distribution
of regression problems, as well as for the classification of problems. The structure of the
decision tree is like a flowchart with nodes, branches, and roots. The internal node exhibits
a test on an attribute; every branch shows the outcome of the test, while each leaf node
provides the indication of the class tag. The classification rule is represented by the path
followed from the root to the leaf. Three different types of nodes of decision tree, with
three geometric shapes (square, circle, and triangle), are available. It can generally be seen
as a simple technique that can be used for understanding and interpreting.

Bagging is also known as bootstrap aggregating, the arrangement of bagging in such
a way that can improve the firmness and accuracy of the machine learning algorithms
used in the regression and classification. It is normally used to reduce the variances among
the actual and predicted results. Bagging can be applied to any type of method but has
commonly been applied with decision tree methods. It is also considered to be one of the
special cases of the model averaging technique. Bagging is a parallel ensemble machine



Materials 2021, 14, 4222 7 of 19

learning approach that gives an explanation about the variance of predicted models by
providing supplementary data in the training stage. There are equal chances for each
element to appear in the new dataset. Predictive power cannot be improved while altering
the training set. The decision tree with bagging is modulated with 20 sub-models to have
an optimized value, and as a result a strong adamant output result can be obtained.

Gradient boosting is generally considered and accepted as one of the powerful ap-
proaches for creating predictive models. It is an ensemble machine learning algorithm that
is normally employed for regression and classification problems. It develops a forecasted
model in the form of an ensemble of frail predicted models—normally the decision tree.
When the decision tree provides the result as a weak learner, the resulting algorithm will
then be considered as a gradient boosting tree. Gradient boosting can also be employed in
the field of learning to rank. It is also used for high energy physics in data analysis.

The artificial neural network (ANN) algorithm has a brain-like structure with con-
nected neurons. The ANN is essentially the collection of connected units or nodes (known
as artificial neurons), which act as the model of the human brain. These neural networks
learn by example of processing. They contain a known “input” and “result”, which creating
probability-weighted associations among the input and result and are stored within the
data structure of the net itself. The application of the ANN in the field of civil engineering is
of great interest nowadays, especially for predicting the mechanical properties of concrete.
This is due to its high accuracy level of predicting results for the actual strength properties
of concrete.

4. Result and Analysis
4.1. Statistical Analysis

The statistical results for the actual and predicted (using supervised machine learning
algorithms) compressive strength of concrete obtained at high temperature, as well as their
error distribution, are shown in Figure 3. The accuracy level of the performance of the
model was compared with the value of the correlation coefficient (R2). The DT (individual
algorithm) model appeared to be better, with the value of R2 equal to 0.83, as depicted
in Figure 3a. The model’s error distribution can be seen in Figure 3b. The minimum
and maximum error values of the DT model were determined at a level of 14.5 MPa and
101.4 MPa, respectively. The average value of the errors was 51.2 MPa. However, 50% data
of the errors data lay between 30 and 70 MPa, and only 7.1% data showed as error above
100 MPa, as illustrated in Figure 3b.

The predictive performance of the bagging (ensemble algorithm) model indicates
a strong relation with the actual outcomes. The highest value of R2 (0.90) was obtained
in the case of the bagging regressor. In turn, the values of R2 for the ANN, DT, and GB
were equal to 0.82, 0.83, and 0.88, respectively. These results indicate a high accuracy level
of the prediction. The graphical representation of the predicted and actual results of the
compressive strength of concrete at high temperatures can be seen in Figure 3c, with its
error distribution in Figure 3d. The maximum and minimum error values for the bagging
regressor when predicting the strength property of concrete at increased temperatures were
equal to 94.1 and 12.95 MPa, respectively. However, 59.92% of the errors data lay between
30 and 70 MPa, as shown in Figure 3d.

The gradient boosting (ensemble ML approach) model also indicates a better accuracy
in the case of the predictive and actual outcomes for the compressive strength of concrete
at high temperatures. In comparison, the performance of gradient boosting was almost
similar to the bagging regressor (with less margin for the bagging regressor due to the
R2 value being equal to 0.88), as shown in Figure 3e. The error distribution is shown in
Figure 3f. The average value of the gradient boosting regressor was equal to 50.76 MPa,
whereas the maximum and minimum error values were 114.5 and 6 MPa, respectively. In
addition, only 4.76% of the error data were above 100 MPa for the regressor.
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Figure 3. Numerical analysis results showing the relationship between the actual and predicted results, including the error
distribution of models: DT (a,b); bagging (c,d); GB (e,f), ANN (g,h).

The same statistical result for the ANN model also indicates the better performance
of this model when compared to the DT algorithm. The ANN model indicated a strong
relation, with a smaller variance between the actual and predicted outcome, and provided
the R2 value equal to 0.82, as shown in Figure 3g. The distribution of the errors for the ANN
model can be seen in Figure 3h. The distribution indicates the maximum and minimum
values of the error, which were equal to 24.58 and 0.29 MPa, respectively. However, the
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average value was equal to 9.158 MPa. It was also noted that 57.14% of the error data lay
between 0 to 10 MPa, and 19.04% of the data lay between 10 to 15 MPa, with only 2.38% of
the data being above 20 MPa.

4.2. k-Fold Cross Validation and Statistical Checks

To evaluate the model’s authentic execution, we adopted the k-fold cross validation
approach. This method is normally employed to analyze the actual performance of models.
In this test, the data were arranged randomly and divided into 10 groups. Nine groups
were allocated for training purposes, and the remaining one was assigned for validation
of the model. The average value was obtained by repeating the same process 10 times.
The application of the 10-fold cross validation test was used to obtain the most accurate
performance of the models. It was also important to apply the statistical checks in order
to obtain the performance level of the model. This research also includes the application
of the statistical check of the performance of the models with regards to the prediction
according to Equations (1)–(5)

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(1)

MAE =
∑n

i=1|exi −moi|
n

(2)

RSE =
∑n

i=1(moi−exi)
2

∑n
i=1(ex− exi)

2 (3)

RRMSE =
1
e

√
∑n

i=1(exi −moi)
2

n
(4)

R =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(5)

where

exi = the experimental value;
moi = the predicted value;
exi = the mean experimental value;
moi = the mean predicted value obtained by the model;
n = the number of samples.

The correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE),
and root mean square error (RMSE) were introduced for evaluating the k-fold cross valida-
tion, as depicted in Figure 4. The validation process was performed for all the employed
(DT, ANN, bagging, and gradient boosting) ML algorithms. The small values of the errors
of the bagging model, and at the same time the increased value of the correlation coefficient
(R2), indicated a better accuracy level when compared to the ANN, DT, and GB. The details
of the analysis used for the k-fold cross validation process are included in Table 3.

In addition, the statistical checks, including mean absolute error (MAE), mean square
error (MSE), and root mean square error (RMSE), were evaluated for all the machine
learning approaches (Table 4). A smaller value of the error increased the value of the
correlation coefficient (R2). The bagging regressor provided the value of MAE equal to
5.65 MPa, which was less than the MAE value of the DT (7.54 MPa), ANN (9.15 MPa), and
GB (6.93 MPa). Similarly, the MSE and RMSE of the ANN was higher than the DT, bagging,
and GB, while the R2 value of the ANN was lower than that of the other regressors.
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Figure 4. Statistical indication of the k-fold cross validation. DT (a); bagging (b); GB (c); ANN (d).

Table 3. Analysis of the k-fold cross-validation.

Decision Tree Bagging GB ANN

k-Fold MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE R2

1. 8.65 96.27 9.81 0.76 12.26 178.85 13.37 0.48 8.94 113.11 10.64 0.75 9.75 90.48 12.48 0.83
2. 12.89 143.44 11.98 0.80 18.53 384.74 19.61 0.54 9.77 247.83 15.74 0.82 13.86 183.85 9.39 0.84
3. 8.28 153.70 12.40 0.70 8.17 97.45 9.87 0.77 8.47 153.30 12.38 0.57 7.50 128.58 15.39 0.62
4. 13.30 45.73 6.76 0.50 11.94 178.89 13.37 0.58 12.83 38.32 6.19 0.87 16.49 60.28 9.48 0.49
5. 15.80 250.80 15.84 0.82 18.60 806.46 28.40 0.38 14.22 265.39 16.29 0.79 13.59 199.39 17.49 0.76
6. 12.27 358.78 18.94 0.19 10.57 141.22 11.88 0.76 18.86 501.43 22.39 0.42 17.39 300.49 17.39 0.17
7. 7.04 75.20 8.67 0.12 3.66 23.85 4.88 0.47 7.01 76.66 8.76 0.11 10.49 72.48 11.94 0.15
8. 21.35 682.29 26.12 0.03 23.16 785.78 28.03 0.07 21.36 620.66 24.91 0.12 16.49 612.49 14.49 0.04
9. 15.15 378.37 19.45 0.29 14.23 339.29 18.42 0.03 18.24 318.46 17.85 0.31 12.49 409.38 24.49 0.27

10. 14.88 513.31 22.66 0.03 15.27 231.50 15.22 0.33 18.20 485.66 22.04 0.63 16.39 532.48 20.38 0.05

Moreover, the statistical representation of the k-fold cross validation, including the
correlation coefficient and errors, is presented in Figure 4. The average value of R2 for
the DT was 0.42, with its minimum and maximum R2 values being equal to 0.03 and
0.82, respectively (Figure 4a). The average R2 value of the bagging regressor was equal to
0.44, with its minimum and maximum R2 values being equal to 0.03 and 0.77 (Figure 4b).
Similarly, the average R2 value of the gradient boosting was equal to 0.54, with its minimum
and maximum values being 0.11 and 0.87, respectively (Figure 4c). The maximum and
minimum values of R2 for the ANN were 0.84 and 0.037, respectively, while the average
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value was 0.42 (Figure 4d). The average values of each error (MAE, MSE, RMSE) for the
DT were equal to 12.96, 269.79, and 15.26 MPa, respectively (Figure 4a); these average error
values for the bagging were 13.64, 316.80, and 16.31 MPa, respectively (Figure 4b). The same
trend was also observed for the GB regressor, which had an average value of MAE equal to
13.79 MPa, with the values of MSE and RMSE being 282.08 and 15.72 MPa, respectively (as
shown in Figure 4c). In addition, the average values of the errors (MAE, MSE, RMSE) for
the ANN model were 13.44, 258.98, and 15.28 MPa, respectively (as presented in Figure 4d).

Table 4. Statistical checks.

Machine Learning Algorithms MAE (MPa) MSE (MPa) RMSE (MPa)

Decision tree (DT) 7.54 112.23 10.79
Bagging 5.65 61.08 7.81

Gradient boosting (GB) 6.93 85.47 9.24
Artificial neural network (ANN) 9.15 121.66 11.03

4.3. Sensitivity Analysis of the Compressive Strength of Concrete at High Temperatures

Sensitivity analysis was conducted in order to check the parameters that have a signif-
icant effect on the prediction of the compressive strength of concrete at high temperatures,
as shown in Figure 5. Every variable used to run the model plays its role in predicting
the strength of concrete. However, cement was the decisive factor that influenced the
prediction of the strength of concrete. Its influence on the obtained results was estimated at
32%. In turn, the influence of fly ash, superplasticizers, silica fume, water, temperature,
nano silica, fine aggregate, and coarse aggregate was estimated at the levels of 16%, 15%,
14%, 2%, 6%, 3%, 10%, and 2%, respectively. The result of the sensitivity analyses depends
on the number of input parameters and the number of data points used to run the model.
However, the contribution of each parameter is identified by the employed ML algorithm.
The results of these analyses vary due to the different proportions of the concrete mix and
the addition of new input parameters.

Figure 5. Bar chart indicating the performance of input parameters with regards to predicting of the
compressive strength of concrete.

4.4. Discussion

This research shows a comparison of the performance of the various models with the
experimental results of the compressive strength of concrete exposed to high temperatures.
Ensemble (bagging, gradient boosting) and individual (ANN, DT) supervised machine
learning algorithms were used for prediction purposes. The bagging regressor had a
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better prediction performance when compared to the ANN, DT, and GB. However, it is
difficult to analyze and recommend the best machine learning regressor for predicting
results for various topics because the performance of the models is directly affected by
the input parameters and the data points used to run the model. However, ensemble
machine learning techniques normally uses the weak learner by making the sub-models,
which can be trained on data and uses the optimization to obtain a maximum value of
R2. The performance of the 20 sub-models of the bagging and GB regressor, with their
correlation coefficient (R2) values, can be seen in Figure 5. Thus, according to the literature,
the performance of ensemble models shows more accurate results when compared to
individual machine learning approaches. Previous studies also proven that the ensemble
ML approaches such as bagging, boosting, and AdaBoost have better response towards the
prediction of outcomes.

Moreover, it is also important to know about the performance of each parameter with
regards to predicting outcomes. The sensitivity analysis provides information of how
an individual parameter contributes towards the predicting of outcomes. The result of
sensitivity analysis for this study can be seen in Figure 6. This study was also based on
statistical checks, the validation process, and sensitivity analysis in order to verify the
execution level of the evaluated ML techniques. This research could be beneficial with
regards to reducing costs and minimizing the time consumed during the hit and trial
method for achieving the desired strength of concrete. In addition, the research results
can also be used in other fields of engineering for predicting required outcomes. It was
shown that the ensemble modeling provides a better performance when compared to the
other methods. Therefore, this technique is preferred for forecasting results in the case of
related issues.

Figure 6. Sub-models representing the correlation coefficient (R2) values. Bagging (a); GB (b).

5. Conclusions and Future Recommendations

This research provides information about the predictive determination of the compres-
sive strength of concrete at high temperatures using individual and ensemble supervised
machine learning approaches. The application of the ML techniques for predicting the
performance of concrete is quite an effective approach as it shows a high-level accuracy
when compared to the actual result. It usually takes a large amount of time (28 days)
to determine the strength of concrete. In turn, ML algorithms play an important role in
reducing this time, and also save a large amount of the costs and efforts associated with
the conducting of experimental works. In this research, the decision tree (DT) and ANN
algorithms were selected from the individual techniques, while the bagging and gradient
boosting (GB) regressors were used as ensemble algorithms for forecasting the strength
of concrete at high temperatures. The bagging technique was most effective and had the
highest correlation coefficient value. The lesser values of the errors (MAE of 5.65 MPa,
MSE of 61.08 MPa, RMSE of 7.81) from the statistical checks for the bagging were also
the indication of its better performance as opposed to ANN, DT, and GB. Practically, it is
impossible to evaluate the effect of temperature on the mechanical properties of concrete
prepared with various type of mixes. However, the temperature and other related effects
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such as humidity can also be added as input parameters for running the models to obtain
the required output. The following conclusions form this study can be drawn: the ensemble
algorithms (bagging and GB) performed well when predicting the compressive strength of
concrete—not only at normal temperature, but also at high temperatures.

(a) The performance of the models can be affected by input parameters. Taking into
account the thermal aspect (being the main consideration of the paper), we found that
the ensemble models showed less discrepancy between actual and predicted results.

(b) The accuracy level of the bagging and GB regressors was also confirmed using the
k-fold cross validation process.

(c) The contribution of each parameter with regards to predicting the outcome was
evaluated by means of sensitivity analysis.

(d) This study describes the positive role of the supervised ML approaches in the field of
civil engineering. The application of these techniques can be successfully adopted
to predict the mechanical properties of concrete without spending time on the ex-
perimental work in the laboratory. It was also observed that the ensemble machine
learning algorithms indicate a strong relation between actual and forecasted results
when compared to individual algorithms.

(e) The high accuracy of the models can also be achieved by increasing the data points,
as number of data points have high influence on the model’s outcome.

(f) The performance of the models can also be evaluated on the basis of practical work
performed in a laboratory in order to understand the difference level between the
actual and predicted result.

(g) The variance can be reduced by splitting more than 20 sub-models (in the ensemble
techniques) for training on data and optimization would give the maximum R2 value.

It should be underlined that it is difficult to recommend or say about any approach
directly on few trails that will provide the most accurate result, while the other tech-
niques (such as AdaBoost Regressor) can be used for the prediction of outcomes for
making comparisons.
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Appendix A

Table A1. Data points used in modeling.

Cement
(kg/m3)

Water
(kg/m3)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Fly Ash
(kg/m3)

Super
Plasticizer

(kg/m3)

Silica Fume
(kg/m3)

Nano Silica
(kg/m3) Temperature ◦C

Compressive
Strength

(MPa)

250 123 417 1681 0 0 0 0 20 28.16
250 123 417 1681 0 0 0 0 200 23.4
250 123 417 1681 0 0 0 0 400 18.57
250 123 417 1681 0 0 0 0 600 15.26
250 123 417 1681 0 0 0 0 800 8.01
350 172 373 1507 0 0 0 0 20 48.99
350 172 373 1507 0 0 0 0 100 44.58
350 172 373 1507 0 0 0 0 400 34.12
350 172 373 1507 0 0 0 0 600 24.41
350 172 373 1507 0 0 0 0 800 15.24
500 385 0 820 0 6 0 0 20 38
500 385 0 820 0 6 0 0 200 36
500 385 0 820 0 6 0 0 800 12
450 346.5 0 805 0 6 50 0 20 46
450 346.5 0 805 0 6 50 0 200 41.5
450 346.5 0 805 0 6 50 0 400 36.2
400 308 0 790 0 6 100 0 20 50
400 308 0 790 0 6 100 0 400 42
400 308 0 790 0 6 100 0 800 21
350 269.5 0 775 0 6 150 0 20 33
350 269.5 0 775 0 6 150 0 200 29
350 269.5 0 775 0 6 150 0 800 12.5
400 308 0 1038 0 4.8 0 0 20 32
400 308 0 1038 0 4.8 0 0 200 29.5
400 308 0 1038 0 4.8 0 0 400 28.5
360 277.2 0 1028 0 4.8 40 0 20 35
360 277.2 0 1028 0 4.8 40 0 400 29
360 277.2 0 1028 0 4.8 40 0 800 11
320 246.4 0 1015 0 4.8 80 0 20 38
320 246.4 0 1015 0 4.8 80 0 200 35
320 246.4 0 1015 0 4.8 80 0 800 12
280 215.6 0 1005 0 4.8 120 0 20 28
280 215.6 0 1005 0 4.8 120 0 200 27
280 215.6 0 1005 0 4.8 120 0 400 21
500 135 700 1110 0 14 30 0 20 82.47
500 135 700 1110 0 14 30 0 600 42.58
500 135 700 1110 0 14 30 0 800 22.03
500 135 700 1110 0 15 22.5 7.5 20 84.14
500 135 700 1110 0 15 22.5 7.5 400 68.99
500 135 700 1110 0 15 22.5 7.5 800 23.39
500 135 700 1110 0 16 15 15 20 85.84
500 135 700 1110 0 16 15 15 400 76.62
500 135 700 1110 0 16 15 15 800 25.28
500 135 700 1110 0 18 7.5 22.5 20 85.21
500 135 700 1110 0 18 7.5 22.5 400 79.12
500 135 700 1110 0 18 7.5 22.5 600 51.11
470 135 700 1110 0 16 60 0 20 87.38
470 135 700 1110 0 16 60 0 600 47.39
470 135 700 1110 0 16 60 0 800 18.82
470 135 700 1110 0 18 52.5 7.5 20 87.61
470 135 700 1110 0 18 52.5 7.5 400 68.94
470 135 700 1110 0 18 52.5 7.5 800 20.06
470 135 700 1110 0 20 45 15 20 90.6
470 135 700 1110 0 20 45 15 400 75.71
470 135 700 1110 0 20 45 15 600 51.12
470 135 700 1110 0 22 37.5 22.5 400 78.22
470 135 700 1110 0 22 37.5 22.5 600 52.49
470 135 700 1110 0 22 37.5 22.5 800 25.72
326 184 659 1124 58 3 0 0 20 95.8
326 184 659 1124 58 3 0 0 650 57.9
326 184 659 1124 58 3 0 0 800 40
326 184 659 1124 58 3 0 0 950 21.3
391 179 689 1172 69 3.5 0 0 20 114.4
391 179 689 1172 69 3.5 0 0 400 84.8
391 179 689 1172 69 3.5 0 0 800 36.8
391 179 689 1172 69 3.5 0 0 950 25.4
442 166 689 1125 78 5.3 0 0 20 115.1
442 166 689 1125 78 5.3 0 0 400 85.2
442 166 689 1125 78 5.3 0 0 650 73.5
442 166 689 1125 78 5.3 0 0 950 25.5
440 149 702 1099 110 6.6 0 0 20 133.6
440 149 702 1099 110 6.6 0 0 400 98.1
440 149 702 1099 110 6.6 0 0 650 84.9
440 149 702 1099 110 6.6 0 0 800 43.1
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Table A1. Cont.

Cement
(kg/m3)

Water
(kg/m3)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Fly Ash
(kg/m3)

Super
Plasticizer

(kg/m3)

Silica Fume
(kg/m3)

Nano Silica
(kg/m3) Temperature ◦C

Compressive
Strength

(MPa)

437 170 783 1016 49 1.9 0 0 300 57.2
437 170 783 1016 49 1.9 0 0 400 58
437 170 783 1016 49 1.9 0 0 500 47.2
437 170 783 1016 49 1.9 0 0 600 36.5
437 170 783 1016 49 1.9 0 0 700 28.3
500 150 630 1260 0 10 0 0 22 49
500 150 630 1260 0 10 0 0 300 41
500 150 630 1260 0 10 0 0 400 23
500 150 630 1260 0 10 0 0 600 8
500 150 630 1260 0 10 0 0 800 3
450 150 630 1260 0 10 50 0 22 52
450 150 630 1260 0 10 50 0 105 53
450 150 630 1260 0 10 50 0 400 27
450 150 630 1260 0 10 50 0 600 11
450 150 630 1260 0 10 50 0 800 6
425 150 630 1260 0 12.5 75 0 22 57
425 150 630 1260 0 12.5 75 0 105 66
425 150 630 1260 0 12.5 75 0 300 61
425 150 630 1260 0 12.5 75 0 600 21
425 150 630 1260 0 12.5 75 0 800 12
400 150 630 1260 0 15 100 0 22 64
400 150 630 1260 0 15 100 0 105 78
400 150 630 1260 0 15 100 0 300 65
400 150 630 1260 0 15 100 0 400 37
400 150 630 1260 0 15 100 0 800 21
308 185 933 968 0 6 0 0 20 37.5
308 185 933 968 0 6 0 0 100 31.5
308 185 933 968 0 6 0 0 150 29.4
308 185 933 968 0 6 0 0 200 29.2
308 185 933 968 0 6 0 0 250 34.7
310 186 940 976 0 7.7 31 0 20 44.5
310 186 940 976 0 7.7 31 0 50 44.3
310 186 940 976 0 7.7 31 0 150 46.5
310 186 940 976 0 7.7 31 0 200 48.9
310 186 940 976 0 7.7 31 0 250 47.1
512 154 711 1106 0 18 0 0 20 80.6
512 154 711 1106 0 18 0 0 50 80.5
512 154 711 1106 0 18 0 0 100 67.8
512 154 711 1106 0 18 0 0 200 78.9
512 154 711 1106 0 18 0 0 250 83.7
511 153 709 1122 0 20.4 51 0 20 85.1
511 153 709 1122 0 20.4 51 0 50 85.2
511 153 709 1122 0 20.4 51 0 100 89.6
511 153 709 1122 0 20.4 51 0 150 94.6
511 153 709 1122 0 20.4 51 0 250 101.3
500 150 750 1068 0 0 0 0 100 75.3
500 150 750 1068 0 0 0 0 200 68.9
500 150 750 1068 0 0 0 0 400 66
500 150 750 1068 0 0 0 0 600 35.4
350 150 750 1023 150 0 0 0 23 75.2
350 150 750 1023 150 0 0 0 200 73.3
350 150 750 1023 150 0 0 0 400 60.4
350 150 750 1023 150 0 0 0 600 39.2
475 150 750 1065 0 25 0 0 23 75.7
475 150 750 1065 0 25 0 0 100 75.4
475 150 750 1065 0 25 0 0 400 68.5
475 150 750 1065 0 25 0 0 600 34.2
390 195 585 1209 0 0 0 0 23 34.1
390 195 585 1209 0 0 0 0 100 35.6
390 195 585 1209 0 0 0 0 200 31.6
390 195 585 1209 0 0 0 0 600 16.8
390 195 585 1209 0 0 0 0 400 26.6
572 286 1345 0 0 0 0 0 600 43.4
786 236 1286 0 0 25.9 78.6 0 800 41.3
572 286 1345 0 0 0 0 0 23 58.3
572 286 1345 0 0 0 0 0 200 55
572 286 1345 0 0 0 0 0 400 52.2
572 286 1345 0 0 0 0 0 800 31.5
572 286 1345 0 0 0 0 0 1000 6.5
786 236 1286 0 0 25.9 78.6 0 23 71
786 236 1286 0 0 25.9 78.6 0 200 58
786 236 1286 0 0 25.9 78.6 0 400 65.4
786 236 1286 0 0 25.9 78.6 0 600 62.9
786 236 1286 0 0 25.9 78.6 0 1000 21
430 172 687 1030 0 1.6 0 0 20 61.8
430 172 687 1030 0 1.6 0 0 100 53.3
430 172 687 1030 0 1.6 0 0 200 55.5
430 172 687 1030 0 1.6 0 0 300 46.5
430 172 687 1030 0 1.6 0 0 600 20.6
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Table A1. Cont.

Cement
(kg/m3)

Water
(kg/m3)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Fly Ash
(kg/m3)

Super
Plasticizer

(kg/m3)

Silica Fume
(kg/m3)

Nano Silica
(kg/m3) Temperature ◦C

Compressive
Strength

(MPa)

441 164 653 1115 0 2.9 28 0 100 62.8
441 164 653 1115 0 2.9 28 0 200 64.7
441 164 653 1115 0 2.9 28 0 300 56.5
441 164 653 1115 0 2.9 28 0 600 21.8
495 149 615 1168 0 1.9 0 0 20 67.4
495 149 615 1168 0 1.9 0 0 200 59.7
495 149 615 1168 0 1.9 0 0 300 49
495 149 615 1168 0 1.9 0 0 600 21
465 149 615 1168 0 3.1 30 0 20 80.3
465 149 615 1168 0 3.1 30 0 100 68
465 149 615 1168 0 3.1 30 0 300 56.5
465 149 615 1168 0 3.1 30 0 600 23.4
450 149 615 1168 0 3.7 45 0 20 84.2
450 149 615 1168 0 3.7 45 0 100 70.8
450 149 615 1168 0 3.7 45 0 200 71.7
250 123 417 1681 0 0 0 0 100 25.74
350 172 373 1507 0 0 0 0 200 40.35
500 385 0 820 0 6 0 0 400 34.5
450 346.5 0 805 0 6 50 0 800 21
400 308 0 790 0 6 100 0 200 44
350 269.5 0 775 0 6 150 0 400 27
400 308 0 1038 0 4.8 0 0 800 7.5
360 277.2 0 1028 0 4.8 40 0 200 32
320 246.4 0 1015 0 4.8 80 0 400 30
280 215.6 0 1005 0 4.8 120 0 800 8.5
500 135 700 1110 0 14 30 0 400 69.87
500 135 700 1110 0 15 22.5 7.5 600 45.23
500 135 700 1110 0 16 15 15 600 48.79
500 135 700 1110 0 18 7.5 22.5 800 27.38
470 135 700 1110 0 16 60 0 400 69.86
470 135 700 1110 0 18 52.5 7.5 600 47.07
470 135 700 1110 0 20 45 15 800 22.32
470 135 700 1110 0 22 37.5 22.5 20 91.24
326 184 659 1124 58 3 0 0 400 69.2
391 179 689 1172 69 3.5 0 0 650 66.9
442 166 689 1125 78 5.3 0 0 800 37.9
440 149 702 1099 110 6.6 0 0 950 29.4
437 170 783 1016 49 1.9 0 0 20 71.2
500 150 630 1260 0 10 0 0 105 51
450 150 630 1260 0 10 50 0 300 49
425 150 630 1260 0 12.5 75 0 400 32
400 150 630 1260 0 15 100 0 600 28
308 185 933 968 0 6 0 0 50 37.2
310 186 940 976 0 7.7 31 0 100 44.1
512 154 711 1106 0 18 0 0 150 72.8
511 153 709 1122 0 20.4 51 0 200 95.3
500 150 750 1068 0 0 0 0 23 75.5
350 150 750 1023 150 0 0 0 100 73.7
475 150 750 1065 0 25 0 0 200 73.4
441 164 653 1115 0 2.9 28 0 20 73.9
495 149 615 1168 0 1.9 0 0 100 57.6
465 149 615 1168 0 3.1 30 0 200 69
450 149 615 1168 0 3.7 45 0 300 57.9
450 149 615 1168 0 3.7 45 0 600 22.6
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