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Abstract: Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene sheets (GSs), have
been adopted as resonators in vibration-based nanomechanical sensors because of their extremely
high stiffness and small size. Diamond nanothreads (DNTs) are a new class of one-dimensional
carbon nanomaterials with extraordinary physical and chemical properties. Their structures are
similar to that of diamond in that they possess sp3-bonds formed by a covalent interaction between
multiple benzene molecules. In this study, we focus on investigating the mechanical properties and
vibration behaviors of DNTs with and without lattice defects and examine the influence of density
and configuration of lattice defects on the two them in detail, using the molecular dynamics method
and a continuum mechanics approach. We find that Young’s modulus and the natural frequency can
be controlled by alternating the density of the lattice defects. Furthermore, we investigate and explore
the use of DNTs as resonators in nanosensors. It is shown that applying an additional extremely small
mass or strain to all types of DNTs significantly changes their resonance frequencies. The results
show that, similar to CNTs and GSs, DNTs have potential application as resonators in nano-mass and
nano-strain sensors. In particular, the vibration behaviors of DNT resonators can be controlled by
alternating the density of the lattice defects to achieve the best sensitivities.

Keywords: diamond nanothreads; lattice defects; molecular dynamics; continuum mechanics

1. Introduction

Following the rapid development of nanotechnology over the past several decades,
carbon nanomaterials, e.g., one-dimensional carbon nanotubes (CNTs), two-dimensional
graphene sheets (GSs), and one-dimensional carbyne, have been applied or proposed
as resonators in nanomechanical sensors because of their excellent mechanical, optical,
and electrical properties [1–4]. Poncharal et al. [1] developed a nano-mass sensor, using
a CNT resonator, which can measure extremely small masses in the picogram to fem-
togram range. Deflections of a cantilevered CNT resonator were electrically induced by
transmission electron microscopy, and the resonated frequency was determined, using
the deflected contours. Bunch et al. [2] fabricated nanoelectromechanical systems using
GSs as resonators, whose fundamental resonant frequency vibrations were electrically or
optically actuated and optically detected by interferometry. The fabricated GS resonators
were considered to be ideally suited for application in nano-mass, nano-force, and charge
sensors. A nano-mass sensor using carbyne as the resonator was proposed by Shi et al. [3]
for measuring tiny weights by theoretically determining the resonant frequency shifts.
More details and discussions of carbon nanomaterials–based nanomechanical sensors, par-
ticularly nano-mass and nano-force sensors, can be found in a recent review [4]. Based on
this review, reducing the dimensions and increasing the stiffness of carbon nanomaterials–
based resonators enhances the sensitivities of the corresponding nanomechanical sensors.
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The present study aims to investigate new frequency-based nano-mass and nano-strain
sensors, using diamond nanothreads (DNTs) as resonators.

DNTs, also named carbon nanothreads, are a new class of carbon nanomaterials with a
one-dimensional sp3-bonded structure, which were first synthesized by Fitzgibbons et al. [5]
from benzene under solid-state high-pressure action. Recent studies have shown that
DNTs possess excellent mechanical properties on similar levels to those of CNTs. Moreover,
they have ultrathin CNT analogues [6–14], which make them suitable as resonators in
nanomechanical sensors [15]. Roman et al. [6] determined the stiffness, strength, extension,
and bending rigidity of DNTs as 850 GPa, 26.4 nN, 14.9%, and 5.35 × 10−28 Nm2, respec-
tively, based on molecular dynamics (MD) simulations. Feng et al. [9] studied tensile and
bending behaviors of lowest-energy DNTs by full atomistic first principles–based MD sim-
ulations. Based on the results, they concluded that the tensile stress–strain responses and
bending stiffness of all DNTs are distinct because of their different morphologies; therefore,
the mechanical properties of DNTs can be controlled by specifying their morphologies.
Silveira and Muniz [10] investigated the mechanical properties of DNTs by performing
first-principles calculation and determined that DNTs present strength and stiffness of
15.7 nN and 168 nN, respectively, which are similar to those of CNTs. They also conducted
MD simulations for comparison and demonstrated that adopting the adaptive intermolec-
ular reactive empirical bond-order (AIREBO) potential in MD simulations could predict
accurately predict the mechanical properties of DNTs. Considering their ultrahigh mechan-
ical properties, Duan et al. [15] proposed DNTs as resonators in nanomechanical sensors.
They performed MD simulations to investigate their dynamic characteristics, and the
results showed that DNT-based nano-mass sensors have an excellent mass resolution of
0.58 × 10−24 g, which is higher than those of CNTs- or GSs-based nano-mass sensors. Re-
cently, there were some nanothreads that were produced by different methods, such as one-
dimensional carbon nanothreads through modest-pressure polymerization of Furan [16],
orientational order in nanothreads derived from thiophene [17], one-dimensional dia-
mondoid polyaniline-like nanothreads from compressed crystal aniline [18], double core
chromophore-functionalized nanothreads by compressing azobenzene [19], and carbon
nitride nanothreads [20,21].

Nanomechanical sensors play an important role in the development of nanotech-
nology [22–25]. Particularly, frequency-based nano-mechanical sensors (e.g., nano-mass
and nano-force/strain sensors) using CNTs or GSs as resonators have been investigated
in numerous studies [26–31]. The mechanism of frequency-based nano-mass and nano-
force/strain sensors is the determination of the resonant frequency shift of the nanores-
onators under the action of unknown masses and forces. Hence, the mechanical properties
of nanoresonators (such as stiffness and densities) are important to the sensitivities of
the sensors. It was concluded that CNT-based nano-mass and nano-force sensors achieve
a mass resolution of 10−21 g and a force detection of 2.5 nN, and GSs-based nano-mass
sensors present a mass resolution of 10−24–10−22 g, at least [4]. As mentioned above, be-
cause of the differences in the mechanical properties and dimensions of resonators, sensors
present varied performance. Hence, successfully controlling the mechanical properties of
resonators can lead to the realization of target sensitivities in nanomechanical sensors. It is
well known that introducing lattice defects in carbon nanomaterials (e.g., CNTs [32–34],
GSs [35–38], and DNTs [8–10,15,39]) can change or control their mechanical or electrical
behaviors. Zhang et al. [32] simulated the fracture of CNTs containing one- and two-
atom vacancies, using molecular mechanics calculations, which showed that the fracture
strength of the defected CNTs was reduced by 20–30%. Shi et al. [38] performed the optimal
shape design of GSs by introducing lattice defects to enhance their vibration behaviors.
Wu et al. [40] reported that the electronic properties of DNTs can be adjusted by varying the
density of lattice defects. Introducing lattice defects in carbon nanomaterials can control
their mechanical behavior well. Consequently, DNTs exhibit outstanding properties as do
other carbon nanomaterials, such as CNTs and GSs. For example, DNTs show a brittle to
ductile transition characteristic by controlling the Stone-Wales (SW) defects [8]; for special
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structure of DNTs, the uniaxial stress can form single-crystalline packings of polymers,
threads, and higher dimensional carbon networks [39].

Carbon nanomaterials with perfect lattice structures typically undergo local recombi-
nation to form lattice defects under high temperature. SW defects are frequently observed
in low-dimensional carbon nanomaterials. In CNTs and GSs, under certain conditions,
the single carbon–carbon bonds in their six-membered rings rotate 90◦, transforming four
six-membered rings into two five- and seven-membered rings each, which is called the
SW defect. In DNTs, this occurs differently from CNTs and GSs. In a perfect DNT, two
carbon–carbon bonds parallel to each other, shown in red in Figure 1a, rotate about the
right carbon atom by 90◦ in a clockwise direction. A SW defect is formed as two pairs of
five-membered rings, shown in green in Figure 1b, are bonded with the rotated carbon–
carbon bonds in a parallel relationship, shown in red in Figure 1b. The other carbon atoms
are represented in gray, and the hydrogen atoms are shown in blue. The above structures
of the perfect DNT and the DNT with a SW defect have the same number of carbon and
hydrogen atoms. Owing to the SW defect, the straight DNT structure changes to an eccen-
tric structure with periodicity. Because the perfect DNT structure is almost nonexistent in
reality, the SW defect, as one of the most common lattice defects, can influence the physical
and chemical characteristics of DNTs. In this study, we investigate the effects of the number
and arrangement of SW defects on the mechanical properties of DNTs.

(a) (b)

Figure 1. Analysis models of (a) perfect DNT and (b) DNTs with SW defects.

The nonlocal Timoshenko beam model has been used in many studies since
Peddieson [41] applied Eringenś theory of nonlocal elasticity [42] in nanotechnology [43–45],
bending [46,47], buckling [48], and vibrations of elastic nano-beams [49–51]. Moreover,
nonlocal elasticity theory has been also adopted in the bending of beam elements in mi-
croelectromechanical and nanoelectromechanical system devices [52–55], such as carbon
nanomaterials as mass sensors [53–55].

In this study, we aim to develop nanomechanical (mainly nano-mass and nano-strain
type) sensors using DNTs as resonators and control their vibration behaviors by introducing
lattice defects to realize the best sensitivities. We investigate the mechanical and vibration
properties of perfect DNTs and DNTs with SW defects by MD simulation and the nonlocal
Timoshenko beam theory to develop new nanomechanical sensors. In the remainder of this
paper, subsequently, in Section 2, we introduce the adopted analytical methods, i.e., MD
simulations and the nonlocal Timoshenko beam theory, for vibration analysis of DNT
resonators. The tensile tests for determining the material properties of the DNTs as well
as the vibration analysis of the DNT-based resonators for application in nano-mass and
nano-strain sensors are discussed in Section 3. Moreover, the results of present work
are confronted and compared with previous results. Finally, in Section 4, remarkable
conclusions are drawn.
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2. Methods
2.1. Molecular Dynamics Simulation

Figure 2 shows the MD simulation models of a perfect DNT and DNTs with three
types of SW defects. The existence of SW defects induces a local eccentric structure in the
DNTs and varies the projection length along the x-axis direction. To maintain complete
lattices in both ends of the DNTs, the length of each simulation model in the x-axis direction
is approximately 110.0 Å. The DNTs with n-isolated, n-double, and n-triple SW defects are
represented as DNT-n, DNT-nd, and DNT-nt, respectively. We also analyze Polymer I [56],
which has a structure in which only the SW defect part is expanded one-dimensionally.
Enlarged views of the local structures are shown in the right box in Figure 2, and the color
scheme is the same as in Figure 1.

(a)

(b)

(c)

(d)

(e)

Figure 2. Analysis models of DNTs. (a) DNT: perfect DNT. (b) DNT-n: DNT with isolated SW defects. (c) DNT-nd: DNT
with double SW defects. (d) DNT-nt: DNT with three SW defects. (e) Polymer I.

In this study, we employ the classical MD method using LAMMPS [57] to analyze the
mechanical and vibrational characteristics of a DNT with SW defects, whose interatomic
interaction is expressed by the AIREBO potential [58]. The timestep is 1 fs. The cut-off
distance is 1.95 Å [8]. To investigate only the mechanical effect in detail, the temperature
condition is set as T = 5 K. Figure 3 shows the boundary conditions of the tensile and
vibration analyses. The following are the analysis conditions: distance between two adja-
cent carbon atoms 1.52 Å and distance between carbon and hydrogen atoms 1.10 Å [5,6].
The differences in the analysis conditions of the tensile and vibration analyses are dis-
cussed below.
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(a)

(b)

Figure 3. Boundary conditions in (a) tensile and (b) vibration simulation.

• In the tensile analysis, the tensile speed is 0.01 Å/ps. The system temperature 5 K is
stabilized considering an NPT ensemble with 100,000 steps.

• In the vibration analysis, an initial displacement is applied along the z-axis to the six-
membered ring at the center in the x-axis direction, and subsequently the constraint is
released to achieve free vibration.

In each analysis model, the central carbon atom in the x-axis direction is used as a
reference, and a fast Fourier transform is applied on the displacement change with time
in the z-axis coordinates to evaluate the primary mode. The procedure of the vibration
analysis common for strain and mass application is presented below.

• The relaxed structure of the analytical model is obtained, using the conjugate gradient
method with accuracy 10−17 eV.

• The system temperature 5 K is stabilized, considering an NVT ensemble with
100,000 steps.

• The constraint is released after an initial displacement is applied to the six-membered
ring centered in the x-axis direction, considering an NVT ensemble with 3,000,000 steps.

• Free vibration is performed in an NVE ensemble with 3,000,000 steps.

The following are differences in the procedure for the vibration analysis of the DNTs
under an applied strain or mass.

• In the vibration analysis of a DNT under an applied strain, the strain is applied imme-
diately after the structure of the system stabilizes, after which an initial displacement
is applied.

• In the vibration analysis of a DNT with an additional mass, the atoms at the center in
the x-axis direction being set with additional mass are regarded as the equivalent mass
atoms. The analysis is performed according to analysis steps with different equivalent
mass atoms.

2.2. Nonlocal Timoshenko Beam Theory

Equations (1) and (2) show the governing equations of the continuum mechanics
theory, using the nonlocal Timoshenko beam model.

EA I
∂2 ϕ

∂x2 + kGA
(

∂w
∂x

− ϕ

)
=

[
1 − (e0a)2 ∂2

∂x2

]
ρI

∂2 ϕ

∂t2 (1)

kGA
(

∂2w
∂x2 − ∂ϕ

∂x

)
=

[
1 − (e0a)2 ∂2

∂x2

]
ρA

∂2w
∂t2 (2)

where EA and G are Young’s modulus and the shear elastic modulus, I is the moment of
inertia, k is the shear coefficient, A is the area of cross-section, e0a is the nonlocal coefficient,
ρ denotes the density, and x and t indicate the longitudinal coordinate and the time,
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respectively. Moreover, the displacement w(x, t) and the angle of rotation ϕ(x, t) are given
as follows.

w(x, t) = sin
mπx

L
sinωt (3)

ϕ(x, t) = cos
mπx

L
sinωt (4)

The following equations express the bridged (fixed-fixed) boundary conditions:

w(0, t) = w(L, t) = 0 (5)

∂ϕ(0, t)
∂x

=
∂ϕ(L, t)

∂x
= 0 (6)

For simplification of the calculation, the above can be expressed in matrix form
as follows: [

L11 L12
L21 L22

]{
ϕ
w

}
= 0 (7)

Here, L11–L22 are as follows:

L11 = EA I
∂2

∂x2 − kGA − ρI
∂2

∂t2 + ρI(e0a)2 ∂4

∂x2∂t2 (8)

L12 = kGA
∂

∂x
(9)

L21 = −kGA
∂

∂x
(10)

L22 = kGA
∂2

∂x2 − ρA
∂2

∂t2 + ρA(e0a)2 ∂4

∂x2∂t2 (11)

Further calculation can also be expressed in matrix form as the following:[
L11 L12
L21 L22

]
= 0 (12)

Here, L11–L22 are given as follows:

L11 = −EA I
(mπ

L

)2
− kGA + ρIω2 + ρI(e0a)2

(mπ

L

)2
ω2 (13)

L12 = kGA
mπ

L
(14)

L21 = kGA
mπ

L
(15)

L22 = −kGA
(mπ

L

)2
+ ρAω2 + ρA(e0a)2

(mπ

L

)2
ω2 (16)

Here, EA is Young’s modulus of a DNT obtained from the tensile analysis results,
shear elastic modulus G is 267.2 GPa, shear coefficient k is 0.8, and nonlocal coefficient
e0a is 4.65 × 10−7 Åfor matching the MD results. To calculate the first vibration mode of
the DNTs, the half-wave frequency, m, is taken as 1. Because the DNTs are compressed by
benzene rings containing six carbon atoms and six hydrogen atoms, the radius is 2.47 Å,
cross-sectional area A is 19.15 Å2, volume is 38.81 Å3, density ρ is 0.0334 yg/Å3, moment
of inertia I is 29.19 Å4, and length L in the x-axis direction of the analytical model is
approximately 110.0 Å.
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3. Results and Discussion
3.1. Determination of Material Properties

To obtain Young’s modulus of the DNTs with and without SW defects, we perform
tensile tests based on MD simulation, and the stress–strain diagrams obtained from the
analysis are shown in Figures 4 and 5. From Figure 4, we can see that for the same strain,
the stress of the DNT without SW defects is the highest, whereas that of Polymer I is
the lowest with the largest fracture strain. The stress–strain curves of DNT-n lie almost
between those of the DNT without SW defects and Polymer I, and DNT-n and DNT-nd
(n = 2, 3, 4, 6, 9) are considered to have characteristics of both the perfect DNT and Polymer
I. For both the DNT with isolated SW defects (see Figure 4) and DNT with double SW
defects (see Figure 5), the breaking stress and breaking strain are significantly smaller
than those of the perfect DNT and Polymer I. The results of DNT with SW defects are in
agreement with the previous results in Ref. [8]. In the structures of the DNTs with SW
defects, fracture occurs in the SW defect part, which suggests that stress concentration
occurs in the SW defect local part in the DNTs with SW defects. We also consider the effect
of the SW defect density on the mechanical behavior of DNTs. In the DNT with SW defects,
there is a plastic region between the yield and breaking point, which enhances the breaking
stress and breaking strain. In addition, we can find that as the SW defect density increases,
the plastic region expands. The fracture strain increases monotonically with the increasing
SW defect density, which has the same range and trend of Young’s modulus reported in
Ref. [6]. The characteristics of Polymer I, which only consists of SW defects with relatively
lower rigidity and higher ductility [11], are significantly different from those of the perfect
DNT, owing to the differences in the configuration of the carbon atoms.

The relationship between Young’s modulus and the number of SW defects is shown in
Figure 6; Young’s modulus decreases monotonically with the increasing SW defect density.
The theoretical analysis by continuum mechanics in Figure 6 is derived in Equation (17e).

We consider the CNT as a continuum beam and we use continuum mechanics to
calculate Young’s modulus by Equation (17e). The elongation of the whole structure λ in
Equation (17a) is expressed in Equation (17b); the elongation of the DNT and the SW defects
λDNT and λSW are given in Equations (17c) and (17d), respectively. Young’s modulus of
Polymer I ESW is 581.6 GPa, and Young’s modulus of the perfect DNT, EDNT, is 961.2 GPa.
The length of DNT in the x-axis direction L is 110.0 Å, and the length of one of the SW
defects in the x-axis direction LSW is 6.3 Å. The correction value δ is −66.5 GPa, and p is
the number of SW defects. From Figure 6, the largest difference between the analytical and
the theoretical values is approximately 3.00% for DNT-4. Therefore, the stiffness can be
estimated using the theoretical formula, and it is considered possible to control the stiffness
and ductility of DNTs by tuning the SW defect density.

E =
PL
λA

(17a)

λ = λDNT + λSW (17b)

λDNT =
P(L − pLSW)

EDNT A
(17c)

λSW =
P(pLSW)

ESW A
(17d)

E(p) =
ESWEDNTL

(EDNTLSW − ESWLSW)p + ESWL
+ δ (17e)
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Figure 4. Stress–strain curves of DNTs.
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Figure 5. Stress–strain curves of DNTs.

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10

Y
o
u
n
g
’s

 m
o
d
u
lu

s 
E

A
 [

G
P

a]

Number of SW defects p [-]

Eq. (17)
DNT-2
DNT-3
DNT-4
DNT-6
DNT-9

Figure 6. Relationship between Young’s modulus of DNTs and number of SW defects.

3.2. Vibration Analysis

Figure 7 shows the natural frequencies obtained from the MD simulation and the
nonlocal Timoshenko beam theory; clearly, the analytical and theoretical values present
good agreement. The largest difference between the two values is found for DNT-3, and the
relative error is approximately 3.91%. The results suggest that the natural frequencies
of DNTs can be estimated using the simplified theoretical formula. In detail, the natural
frequencies of all types of DNTs are within a high frequency range of 80–100 GPa, and they
decrease monotonically as the SW defect density increases. Because in Figure 6, Young’s
modulus also decreases monotonically with increasing the SW defect density, it is consid-
ered that the natural frequency of a DNT increases as its rigidity increases. Therefore, it is
concluded that the frequencies of DNTs can be controlled by tuning the rigidity base on
the SW defect density.
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The relationships between the natural frequencies and strains applied on the DNTs
with different types of SW defects are shown in Figures 8–10. The structures of these
DNTs with ε = 0.00 are not straight, and the eccentricity is significantly affected by the
SW defects, which can be intuitively seen in Figure 2. In addition, stress concentration
occurs in the local parts of the SW defects, even in the relaxed structures. In all analytical
models, the natural frequencies of the DNTs increase with increasing the applied strain.
Moreover, when the DNTs are applied by the same strain (except ε = 0.00), the frequencies
of the DNTs with SW defects decrease monotonically with increasing the SW defect density.
Figure 10 shows a comparison of the natural frequencies of the DNTs with an isolated
SW defect and three continuous SW defects. DNT-6 and DNT-2t as well as DNT-9 and
DNT-3t have the same numbers of SW defects, respectively, and their natural frequencies
are almost similar. The results show that the influence of the number of SW defects is
much greater than that of their configuration. Therefore, it is considered that the natural
frequencies of DNTs with isolated SW defects and continuous SW defects can be controlled
by the SW defect density because the SW defect density significantly affects the rigidity of
DNTs. In addition, the frequency of a DNT can be adjusted by applying strain, and it is
considered that it can be applied as a nanoscale strain sensor.

Figure 7. Relationship between natural frequencies of DNTs and number of SW defects.
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 40

 60

 80

 100

 120

 140

 160

 180

 200

0.00 0.01 0.02 0.03 0.04 0.05

N
at

u
ra

l 
fr

eq
u
en

cy
 f

 [
G

H
z]

Strain ε [-]

DNT-6
DNT-2t
DNT-9

DNT-3t

Figure 10. Relationship between resonant frequency and attached mass of DNT with the same
number of SW defects.

Figures 11 and 12 show the relationship between the resonance frequencies and
the added masses of the DNTs with an isolated SW defect and continuous SW defects.
The approximate curve equation for the figures can be expressed as Equation (18) [59,60],
which is applied for the first time in the DNT vibration analysis in this study.

m = α

[(
f0

fm

)2
− 1

]
(18)

where m denotes the attached mass, f0 is the natural frequency, fm is the resonant frequency
with the attached mass, and α is the constant obtained by fitting the analysis results.
For all analysis models, when the additional mass exceeds 102 yg, the resonance frequency
remarkably decreases as the additional mass increases. The resonant frequencies of all
types of DNT-n present similar change trends; however, the amount of change in the
resonance frequency for the same amount of mass change increases as the SW defect
density decreases. Therefore, it can be inferred that a DNT with a low SW defect density
can detect mass with high sensitivity. In addition, the analysis and approximate curved are
in good agreement, and it is considered that the additional mass can be predicted using the
simplified resonance frequency equation. Based on these results, we consider that DNTs
have potential applications not only as nanoscale strain sensors, but also as nanoscale
mass sensors.
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Figure 11. Relationship between resonant frequency and attached mass of DNT with isolated
SW defects.

Figure 12. Relationship between resonant frequency and attached mass of DNT with double SW defects.

4. Conclusions

In the present work, the mechanical properties and vibration behaviors of perfect
DNTs and DNTs with isolated or continuous lattice defects were investigated, using the
MD method and a continuum mechanics approach. We found that the results obtained
by the two methods agreed with each other very well, suggesting that the simplified
continuum mechanics equations could be used to estimate the behaviors of nanoscale
material DNTs. In particular, the continuum mechanics could predict the mechanical
properties of DNT simply. Moreover, the SW defect density had a major influence on
the mechanical properties, and it is also suggested that the rigidity and ductility of DNTs
could be controlled by the SW defect density. Furthermore, it was shown that the DNT
frequencies also depend on the SW defect density and present one-to-one relationships with
additional mass and applied strain. We consider that by controlling the SW defects in DNTs,
practical applications of nano-mass and nano-strain sensors are possible by measuring the
DNT frequencies. DNTs can develop wider application in carbon nanomaterials.
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