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Meta-analysis is a statistical method used in evidence synthesis for combining,
analyzing and summarizing studies that have the same target endpoint and aims
to derive a pooled quantitative estimate using fixed and random effects models
or network models. Differences among included studies depend on variations
in target populations (ie, heterogeneity) and variations in study quality due to
study design and execution (ie, bias). The risk of bias is usually assessed qual-
itatively using critical appraisal, and quantitative bias analysis can be used to
evaluate the influence of bias on the quantity of interest. We propose a way to
consider ignorance or ambiguity in how to quantify bias terms in a bias analy-
sis by characterizing bias with imprecision (as bounds on probability) and use
robust Bayesian analysis to estimate the overall effect. Robust Bayesian analysis
is here seen as Bayesian updating performed over a set of coherent probability
distributions, where the set emerges from a set of bias terms. We show how the
set of bias terms can be specified based on judgments on the relative magnitude
of biases (ie, low, unclear, and high risk of bias) in one or several domains of
the Cochrane’s risk of bias table. For illustration, we apply a robust Bayesian
bias-adjusted random effects model to an already published meta-analysis on
the effect of Rituximab for rheumatoid arthritis from the Cochrane Database of
Systematic Reviews.
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1 INTRODUCTION

Meta-analysis is a statistical method to combine, analyze and summarize the results of studies that have the same tar-
get endpoint and calculate a quantitative estimate of the overall effect (pooled treatment/intervention effect) using fixed
and random effects models1,2 or network models.3,4 There are several factors to consider in meta-analysis such as het-
erogeneity and bias. Heterogeneity, arising from between study variations in populations, interventions, exposures and
outcome measures, can be considered when specifying the meta-analysis model. The potential of errors and biases (a.k.a.
the risk of bias) due to differences in the design and conduct of the studies1,5 is usually assessed qualitatively using crit-
ical appraisal.2,6 The validity of the estimate of the overall effect in a meta-analysis is affected by the quality of data, and
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uncertainty associated with the model (and parameters within the model). van der Bles et al6 conclude that these
two levels of uncertainty, which they refer to as indirect uncertainty (ie, quality of the underlying knowledge eg,
expressed by a reflexive summary of our confidence in the models or the experts) and direct uncertainty (ie, quantita-
tive terms/expressions of uncertainty such as, a probability distribution or confidence interval) respectively, are usually
communicated side by side. These two levels of uncertainty are both relevant, but can be both confusing and diffi-
cult to combine when making decisions. Therefore approaches to turn indirect uncertainty into direct uncertainty are
useful.6

In practice, an analyst has the following alternatives to consider indirect uncertainty when characterizing direct
uncertainty: (1) to remove studies with a high risk of bias and conduct the analysis with the best available evidence (ie,
high quality studies), (2) to evaluate using sensitivity analysis the influence of including studies of lower quality in the
meta-analysis, or (3) to include all (or a selection of) studies, but adjust for bias.7 The last option can be carried out using
quantitative bias analysis (or bias adjustment).8-10 Quantitative bias analysis is a method that requires the meta-analysis
model to be extended with bias adjustments (eg, additive or proportional adjustments of study specific errors in the
model),5,11,12 and additional expert judgment5,6,13 on bias terms.

Bias terms in quantitative bias analysis are different from parameters. Parameters in statistical models are fixed quan-
tities that we are uncertain about, but want to estimate using statistical inference.6 The bias terms are here treated as
uncertain but fixed quantities that, in contrast to other parameters, we are not trying to learn. These bias terms are
informed by expert judgment of detailed qualitative information on the design and execution of the studies. In practice,
experts may be ignorant about bias terms or struggle to specify them by single values. Spiegelhalter and Best11 explored dif-
ferent choices of bias terms using sensitivity analysis. Turner et al5 elicited quantitative distributions for bias terms based
on expert’s judgments. Verde12 considered bias terms as scale random variables, modeled by a probability distribution.
An alternative approach which avoids mixing uncertainties in bias terms and parameters, is to characterize ignorance or
ambiguity about bias terms by a set of bias terms, and thus, it is not necessary to specify a unique value.

The aim of this article is to propose a way to consider uncertainty, arising from ambiguity or ignorance about bias
terms, by modeling bias in a bias-adjusted random effects model with imprecision, and use robust Bayesian analysis to
estimate the overall effect. Robust Bayesian analysis is here seen as Bayesian updating performed over a set of coherent
probability distributions, resulting in a set of posterior distributions for the quantity of interest. In this case, the set of pos-
teriors are the result of the set of bias terms. Hence, the suggested robust Bayesian bias analysis characterizes uncertainty
in the overall effect by bounded probability,14-16 where the differences between bounds (ie, the degree of imprecision) in
the overall effect is a result of ambiguity or ignorance about the bias terms. In this way, it is possible to evaluate the impact
of bias and the impact of uncertainty associated with the bias separately.

We use a bias-adjusted random effects model with an additive bias (the study specific treatment effect is modeled as
the sum of an overall effect, a study specific random effect and a study specific error) associated with each study specific
effect (as was done in Turner et al5 and Spiegelhalter and Best11). We propose a way to specify the set of bias terms for all
studies by considering information from the Cochrane risk of bias table (RoB table). For illustration, we apply a robust
Bayesian bias-adjusted random effects model to a published meta-analysis about the effect of Rituximab for rheumatoid
arthritis from the Cochrane Database of Systematic Reviews.17

In what follows, we first describe the robust Bayesian bias-adjusted random effects model (Section 2). Next, we propose
how to specify a set of coherent bias terms (in the model referred to as study qualities) using qualitative judgments about
study quality from the RoB table (Section 3). We then present an application of robust Bayesian quantitative bias analysis
to a systematic review about the effect of Rituximab (Section 4). We conclude with a discussion (Section 5).

2 MODEL SPECIFICATION

2.1 A random effects model

Consider a meta-analysis for binary outcome of K studies where Nij denotes the total number of patients in group j (j = 1
Control and j = 2 Treatment) in study i (i = 1, … ,K) and rij denotes the number of patients who have had a positive
response respectively.

The number of patients rij can be modeled with a binomial distribution as follows:

rij|pij ∼ Binomial(pij,Nij). (1)
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The probability of success pij can be transformed using a link function (eg, logit) as follows:

logit(pi1) = ln
(

pi1

1 − pi1

)

= 𝛽i, (2)

logit(pi2) = ln
(

pi2

1 − pi2

)

= 𝛽i + 𝛿i, (3)

where 𝛽i is the log-odds ratio (“log-OR”) for the control group and 𝛿i is the specific treatment effect on the “log-OR” scale
in study i. The specific treatment effect being evaluated in the ith study, 𝛿i, can be expressed as the sum of the overall
effect, 𝜇, the study specific random effect, 𝜃i and study specific error, 𝜙i:

𝛿i = 𝜇 + 𝜃i + 𝜙i, (4)

on the “log-OR” scale.
In addition, uncertainty about 𝜃i and 𝜙i can be described by

𝜃i|𝜎
2
𝜃

∼ Normal(0, 𝜎2
𝜃

), (5)

𝜙i ∼ Normal(0, 𝜎2
𝜙i
), (6)

where 𝜎2
𝜃

represents between study variability and 𝜎2
𝜙i

is the variance of the bias (study specific error). Here, Equation (6)
represents uncertainty in a single trial of a study. In repeated trials, which we are not modeling here, there may be correla-
tion between repeated trials of the same study. We assume that the expectation of study specific random effect and study
specific error, 𝜃i and 𝜙i, is 0 because we do not consider that a random effect or bias would favor either the treatment or
the control group. Then, uncertainty about 𝛿i can be represented by

𝛿i|𝜇, 𝜎
2
𝜃

∼ Normal
(

𝜇, 𝜎

2
𝜃

+ 𝜎2
𝜙i

)

. (7)

2.2 Bias adjustment model

To adjust for bias, Equation (7) is expressed as

𝛿i|𝜇, 𝜎
2
𝜃

∼ Normal

(

𝜇,

𝜎

2
𝜃

qi

)

, (8)

where qi =
𝜎

2
𝜃

𝜎

2
𝜃

+𝜎2
𝜙i

is a bias term that can be interpreted as the quality of study i5,11 (therefore, in what follows, bias terms

are referred to as study qualities). Study quality represents how large a proportion of total variance is due to between study
variability compared to bias/design uncertainty. The case qi = 1 represents the situation where there is no bias whereas
qi = 0.5 implies equal between study variability and variance of the bias term for study i. For example, a high quality
study is expected to have a small error in relation to the between study variability and should therefore have a relatively
high study quality, for example, q = 0.95 (or other value close to 1). A low quality study should accordingly have a low
quality, for example, q = 0.1 (or other value close, but strictly larger than zero). The study qualities influence the relative
contribution of each study to the likelihood of the model and hence the estimation of the overall effect.

2.3 Bayesian inference

To implement the model in a Bayesian framework, the following prior distributions are specified for the parameters

𝛽i ∼ Normal(𝜇
𝛽
, 𝜎

2
𝛽

), (9a)
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F I G U R E 1 A probabilistic graphical representation of the Bayesian bias-adjusted random effects model. Unknown quantities
(parameters) are represented by white ellipses, for which priors are specified with fixed hyperparameters (gray circles). Observations (gray
squares) are coming from K studies (the plate). The bias terms are fixed and therefore denoted by a gray circle

𝜇 ∼ Normal(𝜇
𝜇
, 𝜎

2
𝜇
), (9b)

𝜎

2
𝜃

∼ InvGamma(𝛼, 𝜆), (9c)

where 𝜇
𝛽
, 𝜎2

𝛽

, 𝜇
𝜇

, 𝜎2
𝜇

, 𝛼, and 𝜆 are hyperparameters for the normal and inverse gamma prior distributions. The study
qualities qi can be interpreted as hyperparmeters for the bias adjustment part, or as auxiliary parameters as they are
not integrated out in the analysis. The Bayesian bias-adjusted random effects model is a probabilistic graphical model
(Figure 1) that represents probabilistic dependencies among data, parameters and hyperparameters.

2.4 Robust Bayesian inference

The Bayesian bias-adjusted random effects model is extended to a robust Bayesian framework by keeping the previously
specified prior distributions and specifying a set of study qualities resulting in:

𝛿i|𝜇, 𝜎
2
𝜃

∼ Normal

(

𝜇,

𝜎

2
𝜃

qi

)

where qi ∈. (10)

The robust Bayesian bias-adjusted random effects model allows us to evaluate the impact of uncertainty about bias
terms, qi, on uncertainty of the quantity of interest (eg, the overall effect of the intervention, 𝜇). This means that for
different values qi ∈, there are different distributions for 𝛿i and thus, specifying a set of study qualities results in
bounds on the probabilities that characterize uncertainty in the quantity of interest. The difference between lower and
upper bounds for the probabilities expressing uncertainty in the quantity of interest is therefore a result of ambiguity or
ignorance about the bias terms in the quantitative bias analysis.

Uncertainty about the overall effect, 𝜇, is summarized by bounds on the expected overall effect, bounds on the 5th
percentile, and bounds on P(𝜇 > t), the probability of the overall effect, 𝜇, exceeding a decision relevant threshold, t ∈
R. For instance, the posterior expected overall effect Eq(𝜇) is calculated by a multiple integral of 𝜇 times the posterior
distribution over the domains of the parameters 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝜇, 𝜎

2
𝜃

(see Appendix A for details). Then, lower
and upper bounds on the expected overall effect are given by

Eq(𝜇) = inf
q∈

Eq(𝜇), (11)

Eq(𝜇) = sup
q∈

Eq(𝜇). (12)
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Bounds are here estimated using a discretization of the elements of the set of study qualities, in particular, we specify
a finite set of study quality using a grid (details are given in Section 4). Then, for each study quality in this set, we estimate
the expectation, percentile and exceedance probability of the overall effect using Markov chain Monte Carlo (MCMC)
sampling which draws samples from the posterior distribution. Finally, the lower and upper bounds are approximated by
the minimum and the maximum values of each estimated quantity.

3 QUANTIFICATION OF STUDY QUALITY FROM THE COCHRANE’S RISK
OF BIAS TABLE

We describe a way to incorporate qualitative judgments about risk of bias in a bias-adjusted meta-analysis. In particular,
we show how to transform qualitative judgments about risk of bias into quantitative expressions (ie, a coherent set of
study qualities) and thereby characterizing uncertainty in the specification of bias (study quality) by bounded probability.

The Cochrane’s risk of bias table (RoB table) is the recommended tool for assessing the risk of bias in each included
study in Cochrane reviews.18 A RoB table takes into account the following domains: random sequence generation (selec-
tion bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), incomplete
outcome data (attrition bias), selective outcome reporting (reporting bias) and other potential sources of bias.18 Each
domain is assessed individually and classified in three categories: low, unclear and high risk of bias.18 Here, we describe
a way to use this information that only requires a specification of the bounds for the lowest and highest value on the bias
term qi across all studies i.

3.1 Considerations for rating studies

Let us consider a single domain of the RoB table for establishing a rating between the studies. Let q(+), q(?) and q(−)
denote the study quality of studies with low, unclear and high risk of bias, respectively. The approach is explained using
a hypothetical systematic review with 6 studies (S1, … , S6) which are classified as follows: S1 and S2 with a low risk of
bias, S3 and S4 with an unclear risk of bias and S5 and S6 with a high risk of bias. The set of quantitative bias terms are
constructed as follows:

1. Group the studies according to their risk of bias: low (+), unclear (?) and high (−).
2. All studies belonging to a group with a clear risk of bias are assumed to have the same study quality. For example:

q1 = q2 = q(+) and q5 = q6 = q(−).
3. The quality of studies belonging to the group with an unclear risk of bias are not necessarily equal and are somewhere

in between q(−) ≤ q(?) ≤ q(+). For example: q(−) ≤ q3 ≤ q(+) and q(−) ≤ q4 ≤ q(+).
4. Assign a range representing the lower and upper bounds for the bias terms in the low and high risk of bias categories.

In what follows, we let q(+) take values between 0.5 and 0.95, which corresponds to situations where between study
variability contributes more to the total variance compared to the variance of study specific errors. We let q(−) take values
between 0.1 and 0.5, which corresponds to situations where the variance of study specific errors contributes more than
between study variability to the total variance. For the group of studies with unclear risk of bias, we use the most extreme
bounds for the high and low risk of bias group, that is, 0.1 = q(−) ≤ q(?) ≤ q(+) = 0.95.

4 APPLICATION

4.1 Data

Data are taken from a systematic review about Rituximab for rheumatoid arthritis from the Cochrane Database of System-
atic Reviews. For this example, we include four studies investigating the effect of Rituximab plus metrotexato (RT+MTX)
vs placebo plus metrotexato (MTX) in patients with rheumatoid arthritis. The effect is assessed by the number of patients
who have improved by at least 50% on the American College of Rheumatology scale (ACR50) at week 24.17 The outcomes
of the studies and their assessment of risk of bias are shown in Tables 1 and 2, see Reference 17(p. 15), respectively.
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4.2 Prior specification

Noninformative prior distributions are used on the parameters 𝛽i, 𝜇, and 𝜎2
𝜃

which follow normal and inverse gamma
distributions, Equation (9). The following hyperparameter values are assigned: 𝜇

𝛽
= 0, 𝜎

𝛽
= 10, 𝜇

𝜇
= 0, 𝜎

𝜇
= 10, 𝛼 = 0.01,

and 𝜆 = 0.01. Let us note that the estimated overall effect of the Bayesian bias-unadjusted random effects model (Table 3)
using these hyperparameter values gives estimates similar to the one, in the published Cochrane meta-analysis.17

4.3 Bias adjustment based on study quality

Bias was accounted for by rating the studies according to each bias domain in the RoB table of the systematic review
separately. For example, the effect of selection bias due to random sequence generation was evaluated separately from
attrition bias due to incomplete outcome data. We illustrate each possible case according to each different domain listed
in Table 2. Specifically, we consider four cases corresponding to each of the four distinct columns in the table and an
additional case corresponding to multiple domains.

• Bias domains 1 and 2
The impact of selection biases due to random sequence generation and allocation concealment domains is similar

because all the studies are rated with an unclear risk of bias. Following the considerations in Section 3.1:

- Studies with unclear risk of bias can have different study qualities and satisfy

0.1 ≤ qi ≤ 0.95, i = 1, … , 4 (13)

T A B L E 1 Summary of studies17

Control group (MTX) Treatment group (RT +MTX)

Study name Response Total Response Total

REFLEX (Study 1) 10 201 80 298

WA16291 (Study 2) 5 40 17 40

DANCER (Study 3) 16 122 41 122

SERENE (Study 4) 16 172 44 170

Total 47 535 182 630

T A B L E 2 Risk of bias table taken from the systematic review17

Study name 1 2 3 4 5 6

REFLEX (Study 1) ? ? + ? + +

WA16291 (Study 2) ? ? + + + +

DANCER (Study 3) ? ? ? + + +

SERENE (Study 4) ? ? ? + + +

1, Random sequence generation (selection bias).
2, Allocation concealment (selection bias).
3, Blinding of participants and personnel (performance bias).
4, Incomplete outcome data (attrition bias).
5, Selective outcome reporting (reporting bias).
6, Other potential sources of bias.

+ , Low risk of bias.

? , Unclear risk of bias.
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T A B L E 3 Bounds on expected value, exceedance probability and 5% percentile of the overall effect, 𝜇, comparing Rituximab plus
metrotexato (treatment) against placebo plus metrotexato (control) for robust bias adjusted meta-analysis considering different
groups of bias domains

Bias domain
Quantity of
interest Lower bound q∗ Upper bound q∗

1, 2 E(𝜇) 1.328 (0.10, 0.10, 0.76, 0.95) 1.646 (0.95, 0.86, 0.10, 0.10)

P(𝜇 > 1) 0.886 (0.10, 0.10, 0.76, 0.76) 0.983 (0.95, 0.86, 0.10, 0.10)

P5% 0.826 (0.10, 0.10, 0.19, 0.19) 1.169 (0.95, 0.86, 0.10, 0.10)

3 E(𝜇) 1.461 (0.86, 0.86, 0.86, 0.78) 1.634 (0.86, 0.86, 0.10, 0.10)

P(𝜇 > 1) 0.945 (0.50, 0.50, 0.42, 0.50) 0.982 (0.95, 0.95, 0.10, 0.10)

P5% 0.982 (0.59, 0.59, 0.51, 0.59) 1.159 (0.95, 0.95, 0.10, 0.10)

4 E(𝜇) 1.350 (0.10, 0.91, 0.91, 0.91) 1.476 (0.59, 0.59, 0.59, 0.59)

P(𝜇 > 1) 0.902 (0.10, 0.95, 0.95, 0.95) 0.956 (0.86, 0.86, 0.86, 0.86)

P5% 0.881 (0.10, 0.59, 0.59, 0.59) 1.025 (0.82, 0.86, 0.86, 0.86)

5, 6 E(𝜇) 1.462 (0.50, 0.50, 0.50, 0.50) 1.478 (0.90, 0.90, 0.90, 0.90)

P(𝜇 > 1) 0.945 (0.50, 0.50, 0.50, 0.50) 0.955 (0.85, 0.85, 0.85, 0.85)

P5% 0.982 (0.50, 0.50, 0.50, 0.50) 1.020 (0.85, 0.85, 0.85, 0.85)

All 1, 2, 3 , 4, 5, 6 E(𝜇) 1.356 (0.10, 0.95, 0.95, 0.95) 1.638 (0.87, 0.95, 0.10, 0.10)

P(𝜇 > 1) 0.905 (0.10, 0.36, 0.36, 0.36) 0.982 (0.87, 0.87, 0.10, 0.10)

P5% 0.847 (0.10, 0.10, 0.10, 0.10) 1.161 (0.87, 0.87, 0.10, 0.10)

Bias-unadjusted model E(𝜇) 1.471 - 1.471 -

P(𝜇 > 1) 0.998 0.998

P5% 1.029 1.029

Note: q∗ and q∗ are the values for the bias terms where the bounds are obtained. The probability of the overall effect exceeding a threshold t (where t = 1 for
illustrative purposes).
1, Random sequence generation (selection bias).
2, Allocation concealment (selection bias).
3, Blinding of participants and personnel (performance bias).
4, Incomplete outcome data (attrition bias).
5, Selective outcome reporting (reporting bias).
6, Other potential sources of bias.

which yields to the following set

1 = 2 =

{
q ∶= (q1, q2, q3, q4) ∶

0.1 ≤ qi ≤ 0.95, i = 1, … , 4

}

. (14)

A regular grid of 10 × 10 × 10 × 10 of study quality q is used for estimating the bounds, which results in 10 000
study quality values, q. More specifically, we considered qi equally spaced between 0.10 and 0.95.

• Bias domain 3
Based on the impact of performance bias due to blinding of participants and personnel domain, the studies are

grouped as follows: REFLEX (Study 1) and WA16291 (Study 2) in the category of low risk of bias and DANCER
(Study 3) and SERENE (Study 4) in the category of unclear risk of bias. Then, we get:

- Studies with low risk of bias have equal study qualities and studies with unclear risk of bias can have different
study qualities and satisfy

q3 ≤ q1, and q4 ≤ q1, where q1 = q2. (15)
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Here, we make use of the previously established bounds for studies with low risk of bias and in the absence of
studies with high risk of bias, 0.1 is then used as the lower bound for studies with unclear risk of bias. The resulting
set is

3 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

q ∶= (q1, q2, q3, q4) ∶

q2 = q1,

0.1 ≤ q3 ≤ q1,

0.1 ≤ q4 ≤ q1,

0.5 ≤ q1 ≤ 0.95

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

. (16)

For estimating the bounds, we use a discretization of the convex combination of the extreme points of this set
which can be seen as the weighted sum of the extreme points of the set. In details, these are the extreme
points of 3:

v1 = (0.50, 0.50, 0.10, 0.10),
v2 = (0.95, 0.95, 0.10, 0.10),
v3 = (0.50, 0.50, 0.10, 0.50),
v4 = (0.95, 0.95, 0.10, 0.95),
v5 = (0.50, 0.50, 0.50, 0.10),
v6 = (0.95, 0.95, 0.95, 0.10),
v7 = (0.50, 0.50, 0.50, 0.50),
v8 = (0.95, 0.95, 0.95, 0.95),

and study qualities are specified as

q =
8∑

i=1
𝛼i ⋅ vi where

8∑

i=1
𝛼i = 1 and 𝛼i ≥ 0. (17)

In Equation 17, 𝛼i represents the weights. We used a grid spacing of 0.1 for each 𝛼i (i = 1, … , 7) for estimating the
bounds. Specifically, the following values are used:

𝛼1 ∈ {0, 0.1, … , 1},

𝛼k ∈

{

0, … , 1 −
k−1∑

i=1
𝛼i

}

, k = 2, … , 7

𝛼8 = 1 −
7∑

i=1
𝛼i.

Duplicate values of q are removed, which results in 736 study quality values, q.
• Bias domain 4

Based on attrition bias due to incomplete outcome data, the studies are grouped as follows: WA16291 (Study 2),
DANCER (Study 3) and SERENE (Study 4) in the category of low risk of bias and REFLEX (Study 1) in the category of
unclear risk of bias. Then, we get:

- Studies with unclear risk of bias can have different study qualities and satisfy

q1 ≤ q2, where q2 = q3 = q4, (18)
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similarly, we get

4 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

q ∶= (q1, q2, q3, q4) ∶
q2 = q3 = q4,

0.1 ≤ q1 ≤ q2,

0.5 ≤ q2 ≤ 0.95

⎫
⎪
⎪
⎬
⎪
⎪
⎭

. (19)

Following the same procedure as in domain 3, the extreme points of 4 are:

v1 = (0.10, 0.95, 0.95, 0.95),
v2 = (0.10, 0.50, 0.50, 0.50),
v3 = (0.50, 0.50, 0.50, 0.50),
v4 = (0.95, 0.95, 0.95, 0.95).

Using a grid spacing of 0.1 of 𝛼i (weights) we used the following values

𝛼1 ∈ {0, 0.1, … , 1},

𝛼k ∈

{

0, … , 1 −
k−1∑

i=1
𝛼i

}

, k = 2, 3,

𝛼4 = 1 −
3∑

i=1
𝛼i.

The weighted sum of the extreme points of this set yields 286 study quality values, q.
• Bias domains 5 and 6

The impact of bias due to selective outcome reporting and other potential sources of bias domains are similar
because all the studies are rated with a low risk of bias. Thus:

- All the studies in the group of low risk of bias have the same study quality
q1 = q2 = q3 = q4, (20)

and therefore

5 = 6 =
⎧
⎪
⎨
⎪
⎩

q ∶= (q1, q2, q3, q4) ∶
q1 = q2 = q3 = q4,

0.5 ≤ q1 ≤ 0.95

⎫
⎪
⎬
⎪
⎭

. (21)

In this case, 10 equally spaced values between 0.5 and 0.95 of q1 are considered, which results in 10 study quality
values, q.

• Multiple bias domains
So far, we have focused on single domains of the RoB table. However, the proposed methodology could be extended

or adapted, by making use of more than one domain of the risk of bias table. This requires a clear and transparent
guidance on how to rate studies considering quality of data from several domains at once, as well as on how to prioritize
domains.

An example on how multiple bias domains could be combined for rating the studies is presented. The following
considerations are taken into account:

- WA16291 (Study 2) should be better than the rest of the studies, (it has four domains with a low risk of bias and two
with an unclear risk of bias),

- DANCER (Study 3) and SERENE (Study 4) have the same type of biases,
- It is not possible to relate REFLEX (Study 1) to DANCER (Study 3) or SERENE (Study 4) (we do not know if domain

3 and 4 are equally bad or if one is better than the other).
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which results in:

q1 ≤ q2, q3 ≤ q2, where q3 = q4. (22)

In this case, it is not possible to arrive to a final category of risk of bias without introducing a scoring rule (since all
studies have domains with low and unclear risk of bias). Therefore, once again, we specify the most extreme bounds
to account for uncertainty, in the specification of bias (study quality), resulting in:

all =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

q ∶= (q1, q2, q3, q4) ∶

q3 = q4,

0.1 ≤ q1 ≤ q2,

0.1 ≤ q3 ≤ q2,

0.1 ≤ q2 ≤ 0.95

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

. (23)

The same procedure as in domains 3 and 4 is followed. The extreme points of all are:

v1 = (0.10, 0.10, 0.10, 0.10),
v2 = (0.10, 0.95, 0.10, 0.10),
v3 = (0.10, 0.95, 0.95, 0.95),
v4 = (0.95, 0.95, 0.10, 0.10),
v5 = (0.95, 0.95, 0.95, 0.95).

We use a grid spacing of 0.1 of 𝛼i, specifically,

𝛼1 ∈ {0, 0.1, … , 1},

𝛼k ∈

{

0, … , 1 −
k−1∑

i=1
𝛼i

}

, k = 2, … , 4,

𝛼5 = 1 −
4∑

i=1
𝛼i,

which results in 839 study quality values, q.

4.4 Estimation of treatment effect adjusted for bias

Study specific treatment effects and overall effect are estimated using a robust Bayesian bias-adjusted random effects
model. The model is implemented using MCMC sampling in JAGS through the rjags and runjags packages, which are R
interfaces to JAGS (see https://github.com/Iraices/Robust_bias_adjustment for the code). Forestplots (a common graph-
ical representation in meta-analysis) are used to present the estimated overall effect and specific study effect using the
metafor package for R. To express the results from robust Bayesian analysis, the forestplots from metafor were expanded
with bounds on the expected overall effect, E(𝜇), the lower 2.5th percentile and the upper 97.5th percentile (Figure 2).
The results of the random effects model with and without robust Bayesian bias-adjustment are displayed for each risk of
bias domain in Figure B1.

Adjusting for bias associated with bias domains 1 and 2 changed the estimated overall effect from 1.47 to between 1.33
and 1.65; and resulted in a lower bound of the two sided 95% probability interval (ie, lower 2.5th percentile) to change
from 0.89 to 0.63 (Figure 2). The difference between the lower and upper bound (ie, the degree of imprecision) of the
expected overall effect varied when adjusting for different risk of bias domains (Figure 3). As expected, there is more
imprecision in the estimated overall effect, when all studies have an unclear risk of bias (domain 1-2). For bias domains

https://github.com/Iraices/Robust_bias_adjustment
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Domain 1 − 2

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.73−1.79) [1.23, 2.38]

(1.51−1.64) [0.74, 2.39]

(1.29−1.33) [0.74, 1.91]

(1.30−1.33) [0.75, 1.91]

(1.33−1.65) [0.63, 2.36]

F I G U R E 2 Forestplot of a meta-analysis of the effectiveness of Rituximab plus metrotexato modified to show bounds on quantities of
interest. Unadjusted and robust Bayesian bias-adjusted random effects log-odds ratios (with 95% PI) are displayed: (black) unadjusted model;
(blue) robust bias-adjusted random effects model. For the robust bias-adjusted random effects model, bounds on the expected overall effect,
the lower 2.5th percentile and the upper 97.5th percentile are shown

Overall effect

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Bias Domain

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

(1.33−1.65) [0.63, 2.36]1−2

(1.46−1.63) [0.82, 2.33]3

(1.35−1.48) [0.74, 2.11]4

(1.46−1.48) [0.84, 2.10]5−6

(1.36−1.64) [0.63, 2.33]All

None 1.47 [0.89, 2.05]

F I G U R E 3 Uncertainty in the overall effect per bias domain. For the robust bias-adjusted random effects model, lower and upper
bounds on the expected overall effect, a lower bound on the 2.5th percentile and an upper bound on the 97.5th percentile are shown

5 and 6, all studies have a low risk of bias and were, according to the considerations set up for constructing the study
quality sets, given equal bias terms. As a consequence, the between study variability has a very high influence on the
total variance compared to the variance of bias, and therefore the overall effect is very similar to the unadjusted model.
For domains 3 and 4, all studies, except WA16291 (Study 2) swapped their risk of bias category, between low and unclear,
respectively. This explains why the overall effect is adjusted upwards (domain 3) and downwards (domain 4) compared
to the unadjusted case.
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For a given domain, the values where the bounds are obtained, q∗ and q∗, can be different depending on the
quantity of interest (Table 3). For domains 1 and 2, the lower bound for the expected overall effect is obtained at
q∗ = (0.10, 0.10, 0.76, 0.95) whereas the lower bound for the probability of the overall effect exceeding 1 is obtained at
q∗ = (0.10, 0.10, 0.76, 0.76). The values of q∗ and q∗ are not necessarily on the extreme points of the set. Hence, it may be
difficult to know in advance the values of q where the bounds are obtained.

Adjusting for bias may reveal important aspects to consider when framing a conclusion in evidence synthesis. Here,
the evidence in favor of Rituximab plus metrotexato (treatment group) from the published meta-analysis17 remains strong
after adjusting for bias. We can see that the lower 2.5th percentile of the overall effect do not cross the reference value
zero, for all risk of bias domains (Figure 3). Thus, the conclusion is robust to uncertainty (including ambiguity of the
specification of bias terms).

5 DISCUSSION AND CONCLUSION

Quantitative bias analysis8,9 is a statistical approach to combine direct and indirect uncertainty in evidence synthesis.
Indirect uncertainty is often given as qualitative judgments on risk of biases.6 Hence, bias analysis requires qualita-
tive judgments of risk of bias to be transformed into quantitative expressions of uncertainty associated with estimates
from studies (bias terms). In practical applications, it can be challenging to come up with precise bias terms. In this
article, we therefore propose robust Bayesian bias analysis as a way to consider ambiguity or ignorance about how
to quantify bias terms in meta-analysis, that distinguishes the impact of uncertainty about the bias terms from other
uncertainties in the model. The proposed approach is a novel way to, in a structured way, use qualitative information
concerning risk of biases in quantitative bias analysis, and bridge the gap between qualitative and quantitative expres-
sions of uncertainty. This is done by characterizing uncertainty about the bias terms by a set of bias terms, whereas
parameter uncertainty is expressed by subjective probability. These two types of uncertainty are sometimes referred
as second and first order uncertainty respectively.19 First order uncertainty is seen as the “classical” Bayesian idea of
unknown components that we marginalize over to obtain a posterior distribution conditional on only data, while the
second order uncertainty is a set of possible fixed parameters for which we want to find a best or worst case of the
posterior. Characterizing second order uncertainty by a set of bias terms results in bounds on the probability represent-
ing first order uncertainty. Bounded probability is a suitable expression of uncertainty to represent expert’s knowledge
in situations of ignorance or ambiguity.14,15 In the suggested method, second order uncertainty quantified within a
model is seen as a difference between lower and upper bounds in quantities summarizing uncertainty about the overall
effect.

The proposed framework is not limited to the RoB table. It is still valid and useful, if a different risk of bias table is
used. However, modifications may be necessary particularly if there are more than three risk of bias categories. In gen-
eral, we need to (i) decide the different categories of risk, (ii) assign a category of risk to each study, and (iii) specify
the bounds per risk category. All steps are done on a case by case basis. In this paper, we used the RoB table because
it is the recommended and therefore, most used tool to assess risk of bias in randomized clinical trials. The proposed
framework makes use of the risk of bias table, so either the risk of bias table or expert’s bias judgments should be
available.

The suggested approach estimates quantities of interest using robust Bayesian analysis, which gives more conserva-
tive estimates of a quantity of interest compared to standard Bayesian analysis. It is, on the other hand, a more complex
model to set up and usually requires the use of numerical algorithms to approximate the bounds. Bounds over the
set of study qualities are in this paper approximated using a grid search approach through a discretization of the set,
where Bayesian inference is done for each choice of study qualities. Additionally, an increase in the number of stud-
ies may affect the computational burden of the discretization of the elements of the set for estimating the bounds. This
will be particularly so when all studies have an unclear risk of bias, in which case a larger space must be explored. An
alternative approach is to search for bounds and do Bayesian updating in an iterative way using iterative importance
sampling.20,21

The choice of cut-off values of study quality q, is subjective. That is why, our selection, (0.1, 0.5, 0.95), is quite con-
servative and includes most of the cases, as well as avoids possible numerical problems when values of q are too close
to zero. The mid cut-off value (0.5) is chosen because it is the median between 0 and 1 and links both categories of risk:
high and low risk of bias. In this paper, we grouped the studies based on three different categories of risk of bias and then
we specified possible values for each group. In practice, cut-off values of study quality q can be informed from external
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information. For instance, future research, through meta-epidemiological studies (analysis of multiple meta-analysis),
similar case studies in combination with expert knowledge elicitation,5,13,22 may provide empirical results to motivate less
conservative choices of cut-off values of study quality q.

An added value of robust Bayesian bias analysis, compared to a standard Bayesian bias analysis (ie, Bayesian bias
analysis using a single value or a precise probability distribution of study quality) is that it can show that the con-
clusion is not affected by risk of bias as well as by ignorance or ambiguity regarding how to quantify the bias terms.
Robust Bayesian bias analysis can be performed as a first and coarse step motivating a refined bias analysis. When
adjusting for bias does (not) have a high impact on the conclusion of the meta-analysis and therefore, a more detailed
analysis may (not) be needed. A more detailed analysis could for instance gather more information regarding risk of
bias or more carefully elicit bounds on study qualities. It can also be used to assess the influence of risk of bias on
the conclusion of the assessment and then, if necessary, perform a Bayesian bias analysis relying on expert knowledge
elicitation to specify a precise value or distribution of study quality. In the application, the bounds from adjustment
made on risk of biases categorized as unclear for all studies (such as domain 1-2) contain the bounds from any other
judgment of risk of biases (Figure 3). Hence, robust Bayesian bias adjustment with unclear risk of biases is the most
extreme case scenario toward a more refined approach. Robust adjustment with unclear risk of bias can be done with-
out explicit judgments on risk of bias to explore if a quantitative bias adjustment may have a high impact on the result
from the meta-analysis. Consider, as an example, a decision maker that will approve a treatment if certainty that the
overall effect is larger than t (for illustrative purposes the threshold t is set to be 1 in the application) is at least 95%.
The unadjusted estimate in the application is 0.998 (Table 3), and the decision maker wants to know if adjusting for
bias may have an impact on the conclusion. Robust Bayesian bias adjustment with unclear risk of bias for all studies
reveals that this probability can be as low as 0.886. Since this is below 95%, it can be worthwhile to do a refined bias
adjustment.

To summarize, the proposed approach provides a structured framework to consider ambiguity or ignorance in
quantitative bias analysis.
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APPENDIX A

The posterior expected overall effect is evaluated as:

Eq(𝜇) =
∫
⋅ ⋅ ⋅
∫
𝜇 ⋅ fq(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝜇, 𝜎

2
𝜃

|N, r,q) d𝛽1 d𝛽2 d𝛽3 d𝛽4 d𝛿1 d𝛿2 d𝛿3 d𝛿4 d𝜇 d𝜎2
𝜃

, (A1)

where N = (N11,N12,N21,N22,N31,N32,N41,N42) and r = (r11, r12, r21, r22, r31, r32, r41, r42) are the total number of patients
and the number of patients who have had a positive response in control and treatment groups in each study respectively
(ie, data), q = (q1, q2, q3, q4) are study qualities and

fq(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝜇, 𝜎
2
𝜃

|N, r,q) ∝
4∏

i=1

2∏

j=1
g−1(𝜂ij)rij

(
1 − g−1(𝜂ij)

)Nij−rij ⋅ f (𝛽i) ⋅ fqi (𝛿i|𝜇, 𝜎
2
𝜃

) ⋅ f (𝜇) ⋅ f (𝜎2
𝜃

) (A2)

is the posterior distribution for given study quality q, g(x) = logit(x), 𝜂i1 = 𝛽i, 𝜂i2 = 𝛽i + 𝛿i, and f (𝛽i), fqi (𝛿i|𝜇, 𝜎
2
𝜃

), f (𝜇) and
f (𝜎2

𝜃

) are previously specified prior distributions for parameters 𝛽i, 𝛿i, 𝜇 and 𝜎2
𝜃

respectively.
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APPENDIX B

Domain 1 − 2

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.73−1.79) [1.23, 2.38]

(1.51−1.64) [0.74, 2.39]

(1.29−1.33) [0.74, 1.91]

(1.30−1.33) [0.75, 1.91]

(1.33−1.65) [0.63, 2.36]

Domain 3

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.67−1.73) [1.20, 2.36]

(1.51−1.63) [0.84, 2.37]

(1.32−1.35) [0.78, 1.90]

(1.32−1.35) [0.81, 1.88]

(1.46−1.63) [0.82, 2.33]

Domain 4

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.70−1.80) [1.21, 2.33]

(1.41−1.53) [0.78, 2.29]

(1.30−1.34) [0.76, 1.86]

(1.31−1.36) [0.80, 1.85]

(1.35−1.48) [0.74, 2.11]

Domain 5 − 6

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.70−1.71) [1.20, 2.36]

(1.52−1.53) [0.83, 2.31]

(1.34−1.36) [0.78, 1.86]

(1.34−1.36) [0.80, 1.86]

(1.46−1.48) [0.84, 2.10]

All domains

−0.1 0.55 1.2 1.85 2.5

Log−Odds Ratio

SERENE

DANCER

WA16291

REFLEX

1.36 [0.83, 1.84]

1.35 [0.81, 1.86]

1.52 [0.85, 2.27]

1.67 [1.16, 2.29]

Study

Estimate [95% PI]

LB−UB Estimate [L p2.5; U p97.5]

OVERALL EFFECT 1.47 [0.89, 2.05]

(1.73−1.81) [1.23, 2.42]

(1.42−1.64) [0.76, 2.38]

(1.31−1.32) [0.72, 1.90]

(1.31−1.33) [0.75, 1.89]

(1.36−1.64) [0.63, 2.33]

F I G U R E B1 Forestplot of a meta-analysis of the effectiveness of Rituximab plus metrotexato modified to show bounds on quantities of
interest. Unadjusted and robust Bayesian bias-adjusted random effects log-odds ratios (with 95% PI) are displayed: (black) unadjusted model;
(blue) robust bias-adjusted random effects model. For the robust bias-adjusted random effects model, bounds on the expected overall effect,
the lower 2.5th percentile and the upper 97.5th percentile are shown
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