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Objective: To measure the effects of cerebral inter-
mittent theta-burst stimulation with physiotherapy 
on lower extremity motor recovery in patients with 
incomplete spinal cord injury.
Design: Randomized, double-blinded, sham-con-
trolled trial.
Subjects: Adults with incomplete spinal cord injury.
Methods: A total of 38 patients with incomplete 
spinal cord injury were randomized into either 
an intermittent theta-burst stimulation or a sham 
group. Both groups participated in physiotherapy 
5 times per week for 9 weeks, and cerebral inter-
mittent theta-burst stimulation or sham inter-
mittent theta-burst stimulation was performed 
daily, immediately before physiotherapy. The pri-
mary outcomes were lower extremity motor score 
(LEMS), root-mean square (RMS), RMS of the qua-
driceps femoris muscle, walking speed (WS), and 
stride length (SL). Secondary outcomes comprised 
Holden Walking Ability Scale (HWAS) and modified 
Barthel Index (MBI). The outcomes were assessed 
before the intervention and 9 weeks after the start 
of the intervention.
Results: Nine weeks of cerebral intermittent theta-
burst stimulation with physiotherapy intervention 
resulted in improved recovery of lower extremity 
motor recovery in patients with incomplete spinal 
cord injury. Compared with baseline, the changes in 
LEMS, WS, SL, RMS, HWAS, and MBI were significant 
in both groups after intervention. The LEMS, WS, SL, 
RMS, HWAS, and MBI scores were improved more in 
the intermittent theta-burst stimulation group than in 
the sham group. 
Conclusion: Cerebral intermittent theta-burst 
stimulation with physiotherapy promotes lower 
extremity motor recovery in patients with incom-
plete spinal cord injury. However, this study inclu-
ded a small sample size and lacked a comparison 
of the treatment effects of multiple stimulation 
modes, the further research will be required in the 
future.
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A spinal cord injury (SCI) causes temporary or perma-
nent changes in the function of the spinal cord. It is 

among the most common and most serious conditions in 
clinical practice (1), affecting approximately 10.4/1 mil-
lion to 83/1 million people worldwide (2) and resulting 
in a great economic burden to social development and 
the patient’s family. The main pathological sign of SCI is 
neurological deficit (3), which results in motor, sensory 
and autonomic dysfunction below the level of injury, 
thus reducing the quality of life and life satisfaction 

LAY ABSTRACT
Spinal cord injury is a serious condition caused by spi-
nal trauma and tumours. Improving the patient’s limb 
function during recovery poses an important challenge. 
Transcranial magnetic stimulation technology is a new 
treatment used to improve nervous system function, 
which has shown promising results in treating spinal cord 
injuries in recent years. However, the effect of a specific 
type of magnetic stimulation, cerebral intermittent theta-
burst stimulation, with routine physical therapy on lower 
extremity motor recovery in patients with incomplete spi-
nal cord injury has not yet been explored. The results 
of this study suggest that 9 weeks of brain intermittent 
theta-burst stimulation combined with physical therapy 
has a positive short-term effect on lower extremity mo-
vement and recovery of daily living ability in patients with 
incomplete spinal cord injury, which might provide new 
insight into motor rehabilitation for spinal cord injury.

https://creativecommons.org/licenses/by-nc/4.0/
mailto:fengxiaojun@ahmu.edu.cn
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Cerebral theta-burst stimulation in patients with iSCI p. 2 of 10

of patients (4). Survey studies indicate that within 10 
years after SCI, besides arm/hand function, which has 
been reported to have the highest priority, those with 
SCI prioritize the recovery of lower extremity motor 
function (5). Therefore, the main challenge of rehabilita-
tion medicine is how to promote the recovery of lower 
extremity motor function in patients with SCI and allow 
them to regain the ability to walk (6, 7). 

SCI is a very complex pathological process, during 
which it is impossible to achieve satisfactory therapeutic 
effects with a single treatment pattern (8). Currently, the 
clinical treatment of patients with SCI is mainly based on 
comprehensive treatment. Conventional treatment met-
hods include decompression surgery, anti-inflammatory 
drugs, exercise therapy, breathing training, physical 
factor therapy, and stem cell transplantation (9). With an 
increasing understanding of the pathological mechanism 
of SCI and developments in science and technology 
(10–12), new technologies have also been used for SCI 
rehabilitation. Magnetic stimulation is a new technology 
used for non-invasive biological stimulation (NIBS) 
(13), which is based on a time-varying current flowing 
into a coil, generating a time-varying magnetic field, and 
inducing current in the tissue, thus exciting or inhibiting 
the tissue. The tissue means brain tissue; TMS can sti-
mulate or inhibit local cortical function by varying its 
stimulation frequency, which is based on time-varying. 
As a non-invasive method for diagnosis and treatment, 
repetitive transcranial magnetic stimulation (rTMS) 
is gradually becoming a key factor in the rehabilita-
tion of nervous system diseases (14). Previous studies 
have shown that rTMS may be a valuable therapeutic 
approach for promoting recovery from SCI (15). Inter-
mittent theta-burst stimulation (iTBS) is a specific type 
of stimulation mode in rTMS (16, 17), the mechanism of 
action of which includes changing cortical excitability, 
inducing long-term potentiation (LTP), or long-term 
depression (LTD) (18), promoting neural remodel-
ling, and stimulating the release of neurotransmitters. 
Compared with traditional rTMS (19, 20), iTBS has the 
advantages of higher frequency, lower intensity, shorter 
stimulation time, and longer duration of changing cor-
tical excitability (21–23). We hypothesized that iTBS 
would promote motor-related recovery by enhancing 
the transmission of corticospinal pathways. To test this 
hypothesis, individuals with incomplete spinal cord 
injury (iSCI) were randomly assigned to physiotherapy 
combined with iTBS or sham-iTBS group. The short-
term effect on lower extremity movement and recovery 
of daily living ability were measured before the inter-
vention and 9 weeks after the start of the intervention.

Thus far, there are limited data on the effects of iTBS 
on post-SCI rehabilitation. The current study is the first 
to explore the short-term effects of cerebral iTBS coupled 
with routine physical therapy on lower extremity motor 

recovery in convalescence following SCI. This study not 
only provides an in-depth understanding of the relations-
hip between brain and SCI rehabilitation, but also provi-
des a scientific basis for the clinical application of iTBS.

MATERIAL AND METHODS

Participants

A total of 50 patients with SCI who were hospitalized in 
the department of rehabilitation medicine in the Second 
Affiliated Hospital of Anhui Medical University, Hefei 
City, Anhui, China, between August 2018 and August 
2021 were continuously recruited. Experts checked the 
medical records of participants to determine whether 
they met the following inclusion criteria: (i) age 14–75 
years; (ii) SCI confirmed by magnetic resonance ima-
ging (MRI), in line with the diagnostic criteria updated 
by the American Spinal Cord Injury Association in 2015 
(24); (iii) no other diseases that could affect lower ex-
tremity motor dysfunction and no sequelae symptoms; 
(iv) ASIA Impairment Scale (AlS) C or D (24), or motor 
dysfunction of both lower extremities, accompanied by 
caregivers during hospitalization; (v) stable vital signs, 
good cognitive function, able to cooperate with profes-
sional physicians for evaluation and treatment. 

Exclusion criteria were: (i) intracranial metal 
foreign bodies, pacemakers, and cochlear implants; 
(ii) unstable conditions, cognitive impairment, severe 
complications, and severe heart, brain, and lung 
diseases; (iii) major organ diseases, such as fractures, 
joint contractures, and lower extremity spasms that 
affect the motor function of the lower extremities; (iv) 
use of drugs that could affect cortical excitability; (v) 
pregnancy; and (vi) cardiac pacemaker.

Of a total of 50 patients, 5 did not meet the inclusion 
criteria, 4 declined to participate, and 3 were excluded 
for other reasons. Following the randomization princi-
ple, the remaining 38 patients were divided randomly 
into an iTBS group and a sham group in a ratio of 1:1, 
using the random number table method after obtaining 
informed signed consent from the patients or their 
guardians. The specific methods were as follows: 38 
patients with SCI (numbers 1–38) were divided into 2 
groups by the principal investigator (PI). The subjects 
corresponding to these 19 numbers were assigned to 
1 group, and the remaining subjects were assigned to 
another group. The randomization schedule was con-
cealed in a locked cabinet accessed only by the PI and 
the investigators who administer iTBS. Hence, patients 
were blind regarding the type of transcranial magnetic 
stimulation (TMS) they received (real or sham). Neither 
the participants nor the researchers assessing outcomes 
were aware of the interventions administered. Subjects 
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Cerebral theta-burst stimulation in patients with iSCI p. 3 of 10

were blinded to the experimental assumptions and 
were not allowed to discuss their experience during 
the intervention with the researchers or other subjects 
involved in assessing the results. The study was appro-
ved by the Clinical Research Ethics Committee of the 
Second Affiliated Hospital of Anhui Medical University 
(registration number: SL-LC2019037 (F1). The study 
protocol was registered with the Chinese Clinical Trial 
Registry (http://www.chictr.org.cn, Clinical Registration 
number: ChiCTR2200059431).

Study design

This pilot study was designed as a randomized, double-
blind, sham-controlled clinical trial, in which both the 
participants and assessors were blinded. All patients 
underwent consecutive daily sessions of active or sham 
iTBS combined with physical therapy for 9 weeks. 
Patients and investigators (except the technician who 
applied iTBS) were blinded to the treatment (Fig. 1). 
Immediately after cerebellar or sham iTBS, all parti-
cipants in this trial received standard physical therapy 
that included trunk control training, sit-to-stand train-
ing, balance exercises, and gait training. 

Standard physical therapy programme

All patients received standard SCI rehabilitation tre-
atment and nursing in the Second Affiliated Hospital 
of Anhui Medical University, which included routine 
rehabilitation care, nutritional nerve drugs, motor fun-
ction training for paralysed limbs (once/day, 40 min/
session), electroacupuncture (for paralysed limbs, 2 
sessions/day, 20 min/session), electronic biofeedback 
therapy (for the site of paralysed limbs, 2 sessions/day, 
20 min/session), lower limb robot training (1 session/
day, 30 min/session), etc. Routine rehabilitation care 
included guidance regarding good posture, prevention of 
bedsores, urethral care, and psychological counselling. 
Patients were treated 5 days a week for a total of 9 weeks. 

This programme was administered by 2 specifically 
trained physical therapists, both of whom were blinded.

Intermittent theta-burst stimulation intervention

We used a CCY-1 magnetic stimulator (figure-8-coil, 
diameter 12.5 cm, and maximum stimulation intensity 
3T) (Wuhan City, Hubei Province,China) to stimulate 
cerebral of patients. During the treatment, the patient 
was placed in a supine position. The magnetic stimu-
lation coil was tangent to the surface of the patient’s 
skull, whilst the patient kept their eyes closed. The 
midpoint of the coil was aligned with the motor area 
(cortical M1 region) of the legs of the bilateral brain 
(25). The stimulation selected was iTBS mode. There 
were 600 pulses in total. The treatment period for each 
side was 3 min 20 s; the 2 sides were treated for a 
total of 6 min 40 s. The stimulation intensity selected 
was 100% of the rest motor threshold (RMT) of the 
patient’s cerebral hemisphere, and the treatment was 
performed once a day, 5 times a week for 9 weeks.

Sham-intermittent theta-burst stimulation 
intervention

Patients in the sham-iTBS group were treated 5 con-
secutive times per week for 9 weeks (once a day). 
A dummy coil was used to ensure attenuation of the 
magnetic field, while at the same time appearing to be 
the same shape as the active coil with a good approxi-
mation of the auditory feedback (18). Also, the coil 
was kept in tactile contact with the skull. The sham 
coil did not generate an electric field and could not 
induce any neural activation.

Outcome assessments 

Lower extremity motor score (LEMS). The muscle 
strength of the key muscle of the lower extremities of the 
patients in the control group and the experimental group 

Fig. 1. Study design for short-term effects of 
cerebral intermittent theta-burst stimulation 
(iTBS) with physiotherapy on lower extremity 
motor recovery in patients with spinal cord 
injury. iTBS treatment was performed 5 days a 
week for 9 successive weeks. Lower extremity 
motor score (LEMS), root mean square (RMS), 
walking speed (WS), stride length (SL), Holden 
Walking Ability Scale (HWAS) and modified 
Barthel index (MBI) were assessed before and 
9 weeks after the start of the intervention.
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Cerebral theta-burst stimulation in patients with iSCI p. 4 of 10

was evaluated using the manual muscle strength grading 
standard (26). Each lower extremity was evaluated for 5 
groups of muscles, which were recorded as 0–5 points, 
respectively, with a total score of 50 points. The higher 
the score, the greater the muscle strength and the greater 
the motor function of the lower extremity.

Root-mean square value. TrignoWireless wireless elec-
tromyographic (EMG) signal device of Delsys Company 
(Colorado Springs, CO, USA) in the USA was used to 
collect the surface EMG signal of the quadriceps femoris 
muscle of both lower extremities and select the root-mean 
square (RMS) value of the 1 s peak value. For the con-
venience of recording, the unit was 10-5V·S, the surface 
EMG signals were collected 3 times repeatedly, and the 
mean value was recorded. The increase in amplitude 
indicated the enhancement of muscle strength, i.e. RMS 
was proportional to muscle strength (27). 

Gait function. The walking function of the 2 groups 
of patients was collected before and after treatment, 
and the walking speed (WS) and stride length (SL) of 
the lower extremities were evaluated using the digital 
treadmill Tecno Body Walker-view (Bergamo, Ber-
gamo, Italy) (28). Tecno Body Medical Fitness Soft-
ware (version number: 2.7.8.0) was used to process the 
collected data and obtain WS and SL, taking 3 repeated 
measurements, from which the mean was determined.

Holden Walking Ability Scale. The Holden Walking 
Ability Scale (HWAS) grades are: 0: unable to walk; 
1: needs help with walking; 2: needs substantial 
assistance with walking; 3: needs a little help with 
walking; 4: can walk independently on a flat ground; 
and 5 walking is normal (29).

Modified Barthel Index. The modified Barthel Index 
(MBI) was used for assessment of activities of daily 
living (ADL) from 10 aspects (30): defecation, urina-
tion, grooming, going to the toilet, eating, transferring, 
moving, dressing, going upstairs, and bathing. The 
highest score was 100 points; the higher the score, the 
greater the daily living ability.

Sample size

The sample size was calculated using a G * power of 
3.1.9.3. The effect size (f) was calculated as 0.26 based 
on the lower extremity motor scores (LEMS) from a 
group of individuals, as reported by Benito et al. (31). 
To achieve improvements with α = 0.01 and β at 80%, the 
necessary sample size of n = 19 per group was revealed 
by a power analysis. The final sample size required 25 
participants per group to allow for a 20% dropout rate.

Statistical analysis

The experimental data were analysed using SPSS 22.0 
(IBM Corp., Armonk, NY, USA). All data are presented 

as the mean±standard error of the mean (SEM). Sex, 
injury segment, and AIS grading of patients were enu-
meration data and were measured by the χ2 test. The 
effect of iTBS for all outcome measures was evaluated 
by repeated-measures analysis of variance (ANOVA) 
with groups (iTBS and sham-iTBS) as a between-
subjects factor and time (pre- and post-assessment) 
as a within-subject factor. A separate effect analysis 
was performed when the interaction between time and 
groups was statistically significant. Unpaired t-tests 
were performed to compare groups at each time point 
when the main effect of the group was significant. 
Furthermore, separate 1-way ANOVA followed by post 
hoc Bonferroni tests were used to compare time points 
when needed. p < 0.05 indicated statistical significance.

RESULTS

Participants

Among 50 patients, 12 did not meet the criteria for 
participation, including 5 patients who did not meet 
the criteria for inclusion, 4 who refused to participate 
in the study, and 3 who were excluded from the study 
due to recent mental disorders (n = 1) and complete 
motor injuries (n = 2). Finally, 38 participants were 
randomized to receive transcranial magnetic stimula-
tion with (iTBS, n = 19) or (sham iTBS, n = 19) (see 
flow chart in Fig. 2). In particular, 1 patient with SCI, 
age 14 years, was enrolled in the current trial with the 
consent of the patient and guardian. 

The baseline characteristics of the included study 
population are shown in Table I. There were no signifi-
cant differences between the 2 groups in demographic 
variables, level of neurological injury, severity of injury, 
duration of injury, and classification (all p > 0.05). In 
addition, there were no significant baseline differences 
between groups in any outcome measures (p > 0.05).

Effect of cerebral intermittent theta-burst stimulation 
on key muscle strength of lower extremity after 
incomplete spinal cord injury

To evaluate the effect of cerebral iTBS on lower-
extremity motor function after iSCI, the total key 
muscle strength score of the lower extremity (LEMS) 
was detected pre- and post-iTBS treatment. Repeated 
measures ANOVA applied to the total key muscle 
strength score revealed a significant group–time inte-
raction (F1.36 = 36.37, p < 0.0001), main effects of time 
(F1.36 = 146.5 p < 0.0001), and no significant main effects 
of group (F1.36 = 1.681, p = 0.20). Furthermore, single 
effect analysis indicated significant changes in the 
muscle strength scores of key muscle groups before and 
after treatment in the 2 groups (t = 2.62, p = 0.000). In 
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Cerebral theta-burst stimulation in patients with iSCI p. 5 of 10

addition, the improvement in the key muscle strength 
scores of the lower extremity in the iTBS group was 
greater than in the sham group (Fig. 3A).

Effect of cerebral intermittent theta-burst stimulation 
on the root-mean square of quadriceps femoris after 
incomplete spinal cord injury

The RMS value of the quadriceps femoris muscle 
reflects the surface EMG value of patients’ lower limb 
muscles when they contract or relax (32). Accordingly, 

we detected both sides of RMS of quadriceps femoris 
muscle pre- and post-iTBS treatment, respectively.

Repeated measures Analysis of variance (ANOVA) 
applied to the LRMS revealed a significant group–time 
interaction (F1.36 = 12.59, p < 0.0011), the main effect of 
time (F1.36 = 56.38 p < 0.0001), and no significant main 
effects of group (F1.36 = 0.35, p = 0.56). Single-effect 
analysis indicated significant changes in the RMS of 
the left quadriceps femoris before and after treatment 
in the 2 groups (t = 3.55, p = 0.001). Also, the improve-
ment in RMS of the left quadriceps femoris in the iTBS 

Fig. 2. CONSORT flow diagram of enrollment, randomization, and follow-up. iTBS: intermittent theta-burst stimulation; SCI: spinal cord injury; 
LEMS: left lower extremity motor score; RRMS: right root mean square; WS: walking speed; LSL: left stride length; RSL: right stride length; HWAS: 
Holden Walking Ability Scale; MBI: modified Barthel Index. 
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Cerebral theta-burst stimulation in patients with iSCI p. 6 of 10

group was greater than in the sham group (Fig. 3B). 
Similarly, the right quadriceps femoris RMS presen-
ted a corresponding trend that group–time interaction 
(F1.36 = 7.37, p = 0.0101) and the main effect of time 
(F1.36 = 89.71 p < 0.0001) was significant. Single effect 
analysis between the groups revealed the improvement 
in RMS of left quadriceps femoris in the iTBS group 
was greater than in the sham group (t = 2.72, p = 0.010) 
(Fig. 3C).

Effect of cerebral intermittent theta-burst stimulation 
on gait pattern after incomplete spinal cord injury

WS and SL were key technical parameters in gait 
analysis (33). Repeated measures ANOVA applied 
to the WS found a significant group time interaction 
(F1.36 = 10.32, p = 0.0028) and significant main effects 
of time (F1.36 = 75.20, p < 0.0001), while the main effect 
of the group was no significant (F1.36 = 2.053, p = 0.16). 
Post hoc t-tests revealed that this difference was largely 
driven by iTBS treatment effects observed in WS at 
9 weeks (p < 0.05) (Fig. 3D). SL is the vertical straight-

line distance between 2 points when the left heel or toe 
touches the ground successively. Repeated measures 
ANOVA showed significant group–time interaction 
on left SL (LSL) (F1.36 = 9.29, p = 0.0043) and right SL 
(RSL) (F1.36 = 14.18, p = 0.0006). Unpaired t-test show-
ed that increases in the LSL and RSL in the iTBS group 
were greater than in the sham group; the difference was 
statistically significant (p < 0.05) (Fig. 4A, B).

Effect of cerebral intermittent theta-burst stimulation 
on walking ability after incomplete spinal cord 
injury

To evaluate the effect of iTBS on walking ability in 
patients with iSCI, the HWAS test was applied pre- 
and post-iTBS treatment. Two-way repeated-measures 
ANOVA revealed a significant group–time interac-
tion (F1.36 =v15.93, p = 0.0003), main effects of time 
(F1.36 = 67.1 p < 0.0001), and main effects of group 
(F1.36 = 5.12, p = 0.03). Single-effect analysis indicated 
significant changes in the HWAS before and after tre-
atment in the 2 groups (t = 3.45, p = 0.002). Also, the 

Table I. Patient characteristics at baseline

Characteristics at baseline Cerebral iTBS (n = 19) Sham iTBS (n = 19) p - value

Age, years, mean±SD 45.6 ± 15.3 37.5 ± 14.2 0.096e

Sex (male/female), n 15/4 15/4 1c

BMI, mean±SD 27.8 ± 5.7 24.4 ± 7.5 0.836e

Time since SCI onset (days), mean±SD 109.8 ± 100.8 101.1±67.5 0.755e

Injured segment (neck/chest/ waist), n 10/3/6 8/5/6 0.623c

Aetiology (traumatic/non-traumatic), n 14/5 14/5 1c

NLIa, mean ± SD 14.79 ± 7.89 15.58 ± 7.62 0.756e

AISb, median (95% CI) 3 (2; 3) 3 (2; 3) 0.418d

SD: standard deviation; BMI: body mass index; SCI: spinal cord injury; NLI: neurological level of injury; AIS: American Spinal Cord Injury Association (ASIA) 
Impairment Scale; iTBS: Intermittent Theta-burst Stimulation; 95% CI: 95% confidence interval. aCalculated as C1 = 1, C2 = 2… S5 = 30. 
bAIS classification, calculated as A = 0, B = 1, C = 2, D = 3. 
cAnalysed by χ2 test. 
dAnalysed by Wilcoxon Mann–Whitney U test. 
eAnalysed by Student’s independent t-test.

Fig. 3. Effect of cerebral intermittent theta-burst stimulation (iTBS) on key muscle strength of lower extremity, root-mean square of quadriceps 
femoris, and walking speed after incomplete spinal cord injury (iSCI). Significant differences were observed between the iTBS and sham groups in 
(A) overall left lower extremity motor score (LEMS), (B) left root mean square (LRMS), (C) right root mean square (RRMS), and (D) walking speed 
(WS) at 9 weeks after the start of the intervention. Values are expressed as the mean±standard error of the mean (SEM). *p < 0.05, **p < 0.01, 
***p < 0.001, significant difference between the 2 groups.
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Cerebral theta-burst stimulation in patients with iSCI p. 7 of 10

improvement in the iTBS group was greater than in 
the sham group (Fig. 4C).

Effect of cerebral intermittent theta-burst stimulation 
on daily living ability after incomplete spinal cord 
injury

MBI is the most commonly used method for evaluating 
patients’ daily living ability. Repeated measures ANOVA 
applied to MBI revealed a significant group–time inte-
raction (F1.36 = 9.64, p < 0.0037) and significant main ef-
fects of time (F1.36 = 104.5, p < 0.0001), but no significant 
main effects of group (F1.36 = 1.461, p = 0.23). Single 
effect analysis showed significant change in the HWAS 
before and after treatment in the 2 groups (t = 3.11, 
p = 0.004), while the improvement in the iTBS group 
was greater than in the sham group (Fig. 4D).

DISCUSSION

Recent studies have proposed exercise training combined 
with non-invasive regulation techniques as an effective 
way to improve motor dysfunction caused by central 
nervous system (CNS) injury (11, 19, 34, 35). The current 
randomized, double-blind, sham-controlled pilot study 
aimed to investigate the short-term effects of brain iTBS 
combined with physical therapy on the recovery of lower 
limb movement and daily living ability in patients with 
iSCI, and to provide a reference for larger future studies. 
To the best of our knowledge, this is the first study to 
measure changes in objective data, such as LEMS, RMS 
of EMG, WS and SL, combined with evaluation using 
HWAS and MBI, in examining the therapeutic effect of 
iTBS on lower limb motor function and daily living ability 
of patients with iSCI. 

Nine weeks of cerebral intermittent thetaburst stimula-
tion with physiotherapy intervention resulted in improved 
recovery of lower extremity motor recovery in patients 
with incomplete spinal cord injury.

Lower limb muscle strength was associated with step 
length, step speed, walking ability, fall risk and fun-
ctional independence after SCI (36). The current study 
showed that 9 weeks of iTBS treatment in the cortical 
M1 region combined with physical therapy increased 
LEMS scores from 21.7 to 32.6. This is consistent with 
Krogh’ study, which reported an increase in LEMS sco-
res from 28 to 45 in patients with SCI after 4 weeks of 
20 Hz rTMS treatment (37). This is also in agreement 
with our observations in clinical practice, encouraging 
further research into its therapeutic potential. 

The muscle strength of the lower limbs in patients 
with SCI is mainly affected due to the interruption 
of motor nerve conduction tracts to different degrees 
(38), resulting in interruption of motor control pat-
hways, signal transduction, and axonal growth and 
myelination (39). Most patients with AIS grade C–D 
SCI have some residual muscle strength in both lower 
limbs, and their motor nerve control pathway is not 
completely interrupted. Improving muscle strength is 
of great significance for rehabilitating patients with 
SCI (40). The initial understanding of the role of mag-
netic stimulation in motor function after SCI came 
from the fact that transcranial magnetic stimulation 
could generate motor evoked potential in distal limbs 
(41). Krogh et al. found no clear, clinically important 
differences in short-term recovery of maximal leg 
muscle strength in patients under rTMS stimulation 
intervention at 20 Hz (37), which could be because 
the intensity of the magnetic stimulation used may 
have been too low to induce a significant short-term 
increase in lower extremity muscle strength. In the 
current study, iTBS stimulation mode was used to 
observe its effect on the maximum muscle strength 
of the lower limbs in patients with iSCI, and was 
confirmed by the RMS value of the surface EMG 
detection index, which increased more in the iTBS 
group than in the sham group; the difference was 
statistically significant.

Fig. 4. Effect of cerebral intermittent theta-burst stimulation (iTBS) on step length, walking ability, and daily living ability after incomplete spinal 
cord injury (iSCI). Significant differences were observed between the iTBS and sham groups in: (A) overall left stride length (LSL), (B) right stride 
length (RSL), (C) Holden Walking Ability Scale (HWAS), and (D) modified Barthel Index (MBI) (D) at 9 weeks after the start of the intervention. 
Values are expressed as the mean±standard error of the mean (SEM). *p < 0.05, **p < 0.01, significant difference between the 2 groups.
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Motor units consist of neuronal circuits and muscle 
fibers. Stimulation of motor units can increase muscle 
strength. Muscle strength can be altered in two ways: 
one by the number of motor units that are activated, 
and the other by increasing the activation frequency of 
the activated motor units. ITBS increase the excitabi-
lity of neural circuits and therefore may play a role in 
increasing muscle motor function. iTBS intermittently 
produces short TBS sequences to promote cortical 
excitability in the primary motor cortex (M1) (42), 
thereby increasing excitability in the corticospinal 
neural circuit. In their previous studies, Huang et al. 
proved that there are significant post-hoc differences 
between different stimulus modes (16, 43). The current 
study further confirmed the possible importance of the 
high-frequency burst component of iTBS in producing 
long-lasting after-effects. 

Improvement in walking and daily living ability is an 
important rehabilitation goal for patients with SCI (36, 
38). WS and SL are key indicators in gait analysis (29). 
In this study, patients with SCI showed reduced WS 
and shortened SL. The mean WS before treatment was 
0.72 ± 0.51 m/s, and the mean SL was 20.91 ± 14.42 cm, 
which is consistent with previous studies (44). After 9 
weeks of rehabilitation intervention, the WS and step 
length of patients in the 2 groups improved compared 
with before treatment, and the difference between 
the groups was statistically significant, indicating 
that iTBS has a positive effect on improving the gait 
of patients with SCI. In subjects with SCI, muscle 
activation was delayed, and increased motor control 
instability could lead to rapid swing and shortened 
step length (45). iTBS enhances the excitability of the 
corticospinal system by emitting pulses (46) that may 
reduce the delay of nervous system activation of SCI 
lower limb muscle groups. 

At the same time, the current study also observed 
the effects of iTBS combined with physical therapy 
on patients’ walking function and daily living. The 
results showed that the 9-week iTBS intervention had a 
positive effect on the HWAS and MBI in patients with 
iSCI. Considering evidence from previous research 
(47), the possible reasons are related to the long-term 
potentiation effect of iTBS by altering the effectiveness 
of synaptic interactions (46). iTBS not only improved 
the WS and SL of patients with SCI, but also effectively 
increased the stability of lower limb movement control 
and improved walking quality and ADL

People with SCI have a high rate of disability because 
effective nerve regeneration and neural circuit recon-
struction have not resolved after the injury (48, 49). 
Clinically, a large number of patients with SCI have 
incomplete injuries. In fact, only 14.3% of SCIs are 
anatomically complete injuries (50), while the rest 
are considered functional impairments that can utilize 

residual nerve fibres to some extent. Establishing some 
connections or circuits through appropriate interven-
tion is an effective way to restore the motor function of 
SCI (51, 52). In recent years, related studies have found 
that TMS may induce functional reorganization of 
neural circuits and promote remodelling of the nervous 
system by stimulating the injured spinal cord’s central 
pattern generators (CPGs) (53). The effective connec-
tions of the cells may even modulate the function of 
the stimulated area and establish a functional network 
that contributes to the recovery of motor function (54). 
The current study is the first to show that cerebral iTBS 
combined with physical therapy promotes the recovery 
of lower extremity movement and the improvement in 
daily living ability in patients with iSCI. This may be 
based on this neural regulation mechanism. 

Study limitations

The current study has some limitations. First, it did not 
measure corticospinal excitability in patients, and lacks 
an exploration of the underlying mechanism of action 
of iTBS. future studies should include more detection 
tools (such as Functional magnetic resonance imaging 
(fMRI), TMS-EEG, and functional near-infrared spec-
troscopy) for assessing changes in multiple brain regions 
and performing a systematic assessment of the sensory-
cortical-motor circuit. Secondly, although the sample 
size of this study was strictly estimated, a multicentre, 
large sample, randomized, double-blind, and controlled 
clinical trials is required to further verify the reported 
findings. Finally, no long-term follow-up was performed 
in the current study, and it is well known that the most 
important criteria for evaluating neuromodulation techni-
ques are mid- and long-term efficacy and whether the 
effect of neuromodulation treatment can be maintained 
in the long-term.

CONCLUSION

A 9 week treatment with cerebral iTBS combined 
with physical therapy may have a positive short-term 
effect on lower extremity movement and recovery 
of daily living ability in patients with SCI, although 
the clinically relevant mechanism induced by iTBS 
remains unclear. Further studies with longer interven-
tion periods and larger study populations are needed 
to explore the mechanism through which iTBS could 
promote muscle strength recovery in patients with SCI, 
in order to better guide clinical application.
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