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The air quality impact of increased wildfires in a warming climate has often been over-
looked in current model projections, owing to the lack of interactive fire emissions of
gases and particles responding to climate change in Earth System Model (ESM) projec-
tion simulations. Here, we combine multiensemble projections of wildfires in three
ESMs from the Sixth Coupled Model Intercomparison Project (CMIP6) with an
empirical statistical model to predict fine particulate (PM2.5) pollution in the late 21st
century under a suite of Shared Socioeconomic Pathways (SSPs). Total CO2 emissions
from fires over western North America during August through September are projected
to increase from present-day values by 60 to 110% (model spread) under a strong-
mitigation scenario (SSP1-2.6), 100 to 150% under a moderate-mitigation scenario
(SSP2-4.5), and 130 to 260% under a low-mitigation scenario (SSP5-8.5) in
2080–2100. We find that enhanced wildfire activity under SSP2-4.5 and SSP5-8.5
could cause a twofold to threefold increase in PM2.5 pollution over the US Pacific
Northwest during August through September. Even with strong mitigation under
SSP1-2.6, PM2.5 in the western US would increase ∼50% by midcentury. By
2080–2100, under SSP5-8.5, the 95th percentile of late-summer daily PM2.5 may fre-
quently reach unhealthy levels of 55 to 150 μg/m3. In contrast, chemistry-climate mod-
els using prescribed fire emissions of particles not responding to climate change
simulate only a 7% increase in PM2.5. The consequential pollution events caused by
large fires during 2017–2020 might become a new norm by the late 21st century, with
a return period of every 3 to 5 y under SSP5-8.5 and SSP2-4.5.
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Wildfires contribute 15 to 30% of atmospheric primary fine particulate matter (PM2.5)
emissions in the United States (1), with implications for ecosystems, human health,
and climate (2–5). Marked increases in wildfire-burned area over the western United
States in recent decades have been linked to anthropogenic climate change and land
management practices (4, 6–8). Increasing emissions from wildfires have caused sum-
mertime PM2.5 levels to rise in some western US regions, despite efforts to control
anthropogenic emissions (9–11). Millions of people were exposed to very unhealthy or
hazardous PM2.5 concentrations (150 to 650 μg/m3 for 24-h average) for extended
periods during recent large wildfires around the world (11–17). Exposure to dense
smoke from fires has detrimental effects on human health (3, 18–20), with an eco-
nomic cost due to short-term smoke exposure estimated to be $11 billion to $20 bil-
lion per year in the continental United States (21). The US Clean Air Act allows for
screening of air quality exceedances caused by “exceptional events,” such as wildfires,
from counting toward a nonattainment determination (22). Understanding the extent
to which wildfire emissions in a future climate influence PM2.5 exceedances thus has
implications for designing effective air quality policies.
A number of studies have projected enhanced wildfire activity over the western

United States under a warming climate during the 21st century (23–27). However,
owing to the lack of interactive fire emissions of gases and particles responding to cli-
mate change in current chemistry-climate models, projections of future PM2.5 air qual-
ity generally overlook the impacts of changing fires (28–31). A few studies estimated
future fire emissions using statistical regressions of burned area and climate variables
and fed these emissions into an offline chemical transport model to estimate future
PM2.5 air quality (26, 32–35). These studies suggested 80 to 170% increases in fire
emissions of primary aerosols by the 2050s, which would result in 46 to 70% increases
in surface organic carbon concentrations (a key component in fire smoke). Using fire
emissions simulated by a process-based fire model driven by archived meteorological
fields from a chemistry-climate model, several studies estimated 50 to 90% increases in
mean organic carbon concentrations over the continental United States by the late 21st
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century (23, 36). These results have large uncertainties, as the
statistical or offline fire models typically do not include feedbacks
among climate, land use, ecosystem dynamics, and anthropo-
genic influences through ignition and suppression (2, 37–39).
Here, we leverage the Sixth Coupled Model Intercomparison

Project (CMIP6) multimodel and multiensemble simulations of
fire CO2 emissions responding to changes in climate, vegetation,
and population distributions, combined with a multiple linear
regression (MLR) model developed from historical observations,
to project wildfire impacts on PM2.5 means and extremes over
the western United States under a suite of Shared Socioeconomic
Pathways (SSPs; Materials and Methods). The process-based fire
models in CMIP6 are greatly improved compared to those in
CMIP5, with better representation of the impacts of fuel wetness
on fire occurrence and spread, enhanced fire spread rate in forest
crowns, and the ability to simulate multiday fires (40–51). Our
statistical model considers the influence of both local and
regional fires, as well as interstate smoke transport, air stagnation,
and other meteorological conditions. We compare our MLR-
predicted PM2.5 with that simulated in the chemistry-climate
models using prescribed fire emissions of gases and particles not
responding to climate change (Materials and Methods) (29). We
show that drought and increased biomass under a warmer cli-
mate increase the risk of fires in the Pacific Northwest during
the late 21st century, causing a twofold to threefold increase in
PM2.5 levels in late summer to fall.

Results

Observed Correlations between Fires and PM2.5 Air Quality.
We first use historical observations to investigate the extent to
which the interannual variability of PM2.5 means and extremes
at US surface sites can be explained by regional versus local
fires, as well as meteorological conditions. The observed rela-
tionships will serve as a basis for developing the MLR model
used to predict future PM2.5 levels from fire CO2 emissions
and meteorology available from CMIP6 Earth System Models.
We correlate surface PM2.5 observations averaged over a 2° × 2°
grid with fire CO2 emissions integrated over a box with size
varying from 2.5° × 2.5° to 20° × 20° centered at that grid dur-
ing May through November from 1997 to 2020, using simple
linear regression and MLR (Materials and Methods). We consider
four meteorological variables: surface temperature, precipitation,
relative humidity, and air stagnation, which have been shown to
be correlated with surface PM2.5 (11, 52).
During August and September, when fires peak seasonally

over the Pacific Northwest under the present-day climate (53),
mean PM2.5 levels at western US sites show strong correlations
(r2 = 0.5 to 0.9) with regional fire CO2 emissions summed over
a box of 10° × 10° to 15° × 15°, indicating the importance of
regional smoke transport (11) (Fig. 1A). In comparison, the cor-
relations are much weaker (r2 < 0.5) during May through July
and October through November (SI Appendix, Fig. S1) and are
statistically insignificant (P > 0.05) at most eastern US sites,
where fire is not the dominant source of surface PM2.5. In the
following analyses, we thus focus on the US Pacific Northwest
(solid black box in Fig. 1B) during August and September.
The MLR model, including the impacts from meteorological

variables, achieves higher correlations (r2 = 0.7 to 0.9; Fig. 1B)
compared to the simple linear regression with fires alone (r2 =
0.5 to 0.9; Fig. 1A). Fire CO2 emissions on average explain
66% of the observed PM2.5 interannual variability during
August through September in the Pacific Northwest (Fig. 1C),
with air stagnation index being the second most important

predictor (11%), consistent with our prior work suggesting that
air stagnation played an important role in the accumulation of
PM2.5 during the historic 2017 and 2018 fire seasons (11). The
contributions from relative humidity, temperature, and precipi-
tation are each less than 10%. A larger increase in correlation
(r2) with meteorology is found in July and October than in
August or September, suggesting a more important role of
meteorology in controlling PM2.5 during these months (SI
Appendix, Fig. S1). These correlations confirm that it is impor-
tant to consider impacts from both fires and meteorology for a
robust estimation of changes in future PM2.5 air quality.

We next examine the relationship between regional fires and
PM2.5 extremes, defined as the 95th percentile (q95) of avail-
able daily PM2.5 measurements from all sites within a 2° × 2°
grid for August and September (Materials and Methods and SI
Appendix, Fig. S2). We still use monthly mean meteorological
variables, instead of extremes, in the MLR model since the q95
PM2.5 in observations may not coincide with days having
extreme meteorological conditions (i.e., heat wave or stagna-
tion), and there are larger uncertainties in the predicted climate
extremes than mean states. Significant correlations are observed
between fire CO2 emissions and the q95 PM2.5 at most western
US sites in August and September, based on simple linear
regression (r2 = 0.5 to 0.9; Fig. 1D) and MLR (r2 = 0.7 to
0.9; Fig. 1E). Fire CO2 emissions explain 70% of the observed
PM2.5 interannual variability, on average, at US Pacific North-
west sites (Fig. 1F), dominating over meteorological impacts.

The interannual variability of both mean and q95 PM2.5 dur-
ing August through September averaged over US Pacific North-
west sites shows a strong correlation (r2 = 0.8 to 0.9) with
regional total fire CO2 emissions over western North America
(Fig. 1 G and H). In the 2017, 2018, and 2020 fire seasons, the
western United States experienced record-breaking wildfires burn-
ing ∼50% more than the average area over the past two decades
(54–56). The q95 PM2.5 averaged over the US Pacific Northwest
sites during August through September was 76 μg/m3 in 2017,
44 μg/m3 in 2018, and 95 μg/m3 in 2020, respectively, exceed-
ing the US National Ambient Air Quality Standard of 35 μg/m3.

These MLR analyses demonstrate significant interannual cor-
relations of surface PM2.5 pollution with regional fire CO2

emissions and meteorology over the western United States dur-
ing August through September. Cross-validation further con-
firms the robustness of the MLR model in predicting PM2.5 (SI
Appendix, section S1). We obtain regression coefficients for the
MLR model using the relationships of PM2.5, fires, and meteo-
rological conditions observed in August through September
during the period 1997–2020. Then, we drive the MLR model
with the monthly time series of fire CO2 emissions and meteo-
rological variables simulated by CMIP6 Earth System Models
under different climate change scenarios to predict PM2.5

throughout the 21st century (Materials and Methods).

Evaluating Variability of Fires Simulated by CMIP6 Models. To
establish the robustness of future projections, we examine how
well three CMIP6 models, the Community Earth System
Model Version 2 (CESM2) (57), the Geophysical Fluid
Dynamics Laboratory Earth System Model Version 4.1
(GFDL-ESM4.1) (58), and the Centre National de Recherches
M�et�eorologiques Earth System Model Version 2 (CNRM-
ESM2-1) (59), simulate historical fires. We use satellite obser-
vations of burned area from the Moderate Resolution Imaging
Spectrometer (MODIS) (60) and satellite-based estimates of
fire CO2 emissions from the Global Fire Emissions Database
(GFED4s) (61, 62) and the Quick Fire Emissions Dataset
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(QFED2.5) (63). Observations show hotspots of burned area
and fire CO2 emissions over the Pacific Northwest in August
and September (Fig. 2 A and B). We investigate the extent to
which models capture the interannual variability of fires over
this region relative to their respective mean state. Evaluating
normalized interannual variability provides insights into the
sensitivity of simulated fires to meteorological and climatic vari-
ability, which is critical to establish the robustness of projected
fire responses to climate change.
We first examine the land-only experiments driven by

observation-based meteorological forcings to allow direct com-
parison with the observed fires in space and time (Materials and
Methods). The land-only simulations generally capture the
observed normalized interannual variability of burned area (r2

= 0.32 to 0.67) and fire CO2 emission (r2 = 0.25 to 0.60) over
western North America (Fig. 2 C and D), despite mean-state
biases (SI Appendix, Fig. S3). Above-normal fire activity is
observed and simulated in years such as 1988, 2006, 2012,
2017, 2018, and 2020, associated with severe drought condi-
tions (64–69). The CESM2 model performs best in simulating
the interannual variability of burned area (r2 = 0.67; P < 0.01)
and fire CO2 emission (r2 = 0.60 to 0.64; P < 0.01). For
comparison, the correlations for burned area are r2 = 0.49
(P < 0.01) for CNRM-ESM2-1 and r2 = 0.32 (P < 0.05) for

GFDL-ESM4.1. The amplitude of the observed interannual var-
iability of fire CO2 emissions (represented as SD in Fig. 2) is
also best captured by CESM2: SD = 36.4%, compared to SD =
55.9 to 56.2% in observations, SD = 28.3% in GFDL-ESM4.1,
and 20.6% in CNRM-ESM2-1.

The fully coupled ocean–land–atmosphere experiments allow
us to project future fires under varying climate change scenarios.
These coupled model simulations are driven by model-generated
climate and thus are not expected to capture the timing and
location of the observed fires during historical periods. There-
fore, we evaluate the hemispheric to regional patterns in burned
area and fire CO2 emissions, as well as the strength of interan-
nual variability during the 2000–2014 period. Both the land-
only and coupled experiments from all three models simulate the
salient features of the spatial patterns of burned area and fire
CO2 emissions across the Northern Hemisphere, such as captur-
ing fire hotspots over western North America and Mediterranean
Europe in August and September (SI Appendix, Figs. S4–S7).
The models simulate reasonable fire interannual variability over
these hotspot areas, despite large mean-state biases. Over western
North America, total fire CO2 emissions in August and Septem-
ber are overestimated by a factor of 2 in CESM2 and factors of
4 to 5 in GFDL-ESM4.1 and CNRM-ESM2-1, compared to
the estimates from two satellite-based fire emission inventories
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Fig. 1. Observed correlations between fires and surface PM2.5 air quality. (A–C) Correlation (Corr) r2 of mean PM2.5 averaged over each 2o × 2o grid with
regional total CO2 emissions from fires in August (Aug) through September (Sep) during 1997–2020 derived from simple linear regression (A) versus MLR
with consideration of meteorological (Met) variables (B) and the variance explained over the US Pacific Northwest (solid black box in B) by each predicting
variable (C). The width of the box (in degrees [deg]), within which regional total fire emissions are best correlated with PM2.5 at that site, is given in the right
corner in A. The r2 values are color-coded for sites with significant correlations, with gray indicating sites with insignificant correlations (P > 0.05). (D–F) Same
as A–C, but for the q95 of available daily PM2.5 observations at each grid in August through September. (G and H) Time series of the mean and q95 PM2.5 in
August through September averaged over US Pacific Northwest sites from 1997 to 2020, along with regional total CO2 emissions from fires integrated over
western North America (dashed black box in B). Precip, precipitation; RH, relative humidity; T, temperature; ASI, air stagnation index.
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(SI Appendix, Fig. S3B). Similar high biases have previously been
identified in CMIP5 Earth System Models (23, 41) and by the
CMIP6 Fire Model Intercomparison Project (40). These studies
suggest possible biases in the simulated fuel load (biomass), fire
response to human activities, and fuel consumption rate applied
in the models (40, 41, 70).
We conclude that the three CMIP6 Earth System Models have

moderate ability to simulate changes in fire emissions in response
to variations in climate and vegetation, despite varying levels of
mean-state biases. To gauge the uncertainties of our PM2.5 predic-
tions associated with these biases, we compare MLR predictions
driven by the relative changes of fire CO2 emissions versus those
driven by the absolute emission changes in each model. For
CESM2, with small mean-state biases in historical fire CO2 emis-
sions, we find an overall consistent magnitude of western US mean
PM2.5 predictions between the two MLR models (SI Appendix,
Fig. S8 A and B). For GFDL-ESM4.1 and CNRM-ESM2-1, with
high mean-state biases in historical fire CO2 emissions, the MLR
model driven by the absolute changes of fire emissions predicts
much larger PM2.5 in 2080–2020, with the PM2.5 prediction
driven by relative changes agreeing better with that driven by the
CESM2 model (SI Appendix, Fig. S8 C–F). Thus, we conclude
that it is more reasonable to use the relative change of fire CO2

emissions to drive the MLR prediction of future PM2.5 levels.

Changes in Climate and Fires in the 21st Century. We next
investigate changes in climate and fires over western North Amer-
ica in the 21st century from the CMIP6 coupled Earth system
simulations under four climate change scenarios: SSP1-2.6 (low

societal vulnerability combined with radiative forcing of
2.6 W�m�2 by 2100), SSP2-4.5 (intermediate societal
vulnerability, 4.5 W�m�2 forcing), SSP3-7.0 (high societal vul-
nerability, 7.0 W�m�2 forcing), and SSP5-8.5 (fossil-fueled
development, high emissions, 8.5 W�m�2 forcing) (71, 72).
While studies have suggested that fire seasonality may change
in a warming climate (73–75), our MLR model predictions
build upon the strong correlation between PM2.5 and fires dur-
ing August through September over the Pacific Northwest
under present-day climate. To investigate whether it is reason-
able to focus on August through September under future cli-
mate, we examine fire seasonality and spatial pattern over
North America under SSP5-8.5 (Fig. 3).

All three models project a lengthening of the fire season over
the Pacific Northwest in a warmer climate, with elevated fire
CO2 emissions spanning from May to November during
2080–2100 under SSP5-8.5 compared to July to October at
present (Fig. 3A). Nevertheless, all three models suggest that fire
CO2 emissions in the late 21st century peak in August and Sep-
tember, similar to the current climate. Therefore, we continue
to focus our projections on changes in fires and PM2.5 air quality
in August and September. During August and September, fire
CO2 emissions are projected to increase significantly (P < 0.05)
over western North America (Fig. 3B) and Mediterranean
Europe (SI Appendix, Figs. S9 and S10) in the late 21st century
under SSP5-8.5, according to our multiensemble and multimo-
del projections. These regions are particularly susceptible to
water scarcity in a warming climate (76, 77), which could
impact regional air quality via vegetation feedbacks (78).
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Fig. 2. Evaluating model simulations of fires over western North America. (A and B) The 2001–2020 climatology of August (Aug) through September (Sep)
total burned area from MODIS satellite observations and fire CO2 emissions from GFED4s over North America. (C) The relative changes of August through
September total burned area over western North America (WNA; black box on map) from 1980 to 2020 versus 2000–2014 averages from MODIS satellite
observations (black) and from three CMIP6 land-only experiments (solid lines). (D) Same as C, but for fire CO2 emissions from two satellite-based inventories
(black for GFED4s and gray for QFED2.5) and from three CMIP6 land-only experiments (solid lines). SDs (in percentages) and correlations r2 between models
and observational datasets (QFED2.5 in parentheses) are shown in C and D.
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Fig. 4 illustrates the temporal evolution of surface tempera-
ture, soil moisture, vegetation carbon mass, burned area, and
fire CO2 emissions from CESM2, which best simulates the
observed interannual variability of fires, as discussed previously
(Fig. 2). Changes in fire CO2 emissions and burned area from
the other two models are also shown for comparison. CESM2
projects an ∼2 K increase in August through September mean
surface temperature over western North America by the 2040s
(versus present day), with little difference across the SSPs (Fig.
4A). Surface temperatures among scenarios diverge afterward,
with a 7.5 K increase under SSP5-8.5 compared to a 2 K
increase under SSP1-2.6 by the late 21st century (versus
present day). Following climate warming and rising CO2 con-
centrations, which stimulates vegetation growth, CESM2 sim-
ulates a decrease in surface soil moisture and an increase in
vegetation carbon mass (Fig. 4 B and C), both providing more
favorable conditions for fires. Under the SSP3-7.0 and SSP5-
8.5 high-warming scenarios, CESM2 projects an ∼10%
decrease in surface soil moisture by the end of the 21st cen-
tury. The projected decrease is consistent with the overall
drying trend projected by 13 CMIP6 models (79), attributed
primarily to enhanced evaporative demand and water use by
vegetation in a warmer climate (80). Vegetation carbon mass

shows an ∼50% increase by 2100 under SSP5-8.5, partly
driven by CO2 fertilization, increased temperature, and land-
use changes (81–83).

Following the projected trends in climate and vegetation,
CESM2 shows 50 to 120% increases in burned area and 110
to 250% increases in fire CO2 emissions among different SSPs
by 2100 over western North America (Fig. 4 D and G and SI
Appendix, Table S2). The different increases in fires among the
scenarios reflect impacts from both climate and population dis-
tributions (37). The projected increases in fire CO2 emissions
are ∼250% under the SSP3-7.0 and SSP5-8.5 extreme warm-
ing scenarios, more than twice that under the SSP1-2.6
climate-mitigation scenario. We note a smaller increase in fire
burned area under SSP5-8.5 (100%) compared to SSP3-7.0
(120%) (red versus yellow lines in Fig. 4G). This may be
related to the larger population projected under SSP5-8.5 (84)
and thus stronger effects of fire suppression (85, 86). The influ-
ence of population density on fire suppression is also evident in
historical simulations (SI Appendix, Fig. S11). Across all scenar-
ios, the projected increases in fire CO2 emissions are about
twice those in burned area (Fig. 4), indicating increased emis-
sion efficiency per area burned, driven partly by increased vege-
tation biomass or increased fire duration in a warming climate.

All three models project substantial increases in burned area
and fire CO2 emissions in the late 21st century, although the
magnitudes of the projected changes, the spatial patterns, and
the spreads across scenarios and across ensemble members differ
(Fig. 4 and SI Appendix, Figs. S9 and S10). The projected per-
centage increase in fire CO2 emissions per degree warming is
∼40% in CESM2 and GFDL-ESM4.1 and ∼20% in CNRM-
ESM2-1. Under SSP5-8.5, by the late 2100s, the projected
increase in fire CO2 emissions over western North America is
260% from GFDL-ESM4.1, 240% from CESM2, and 130%
from CNRM-ESM2-1 (Fig. 4 D–F). GFDL-ESM4.1 shows
the largest cross-scenario spread, with a 70% increase in fire
CO2 emissions under SSP1-2.6 and a 260% increase under
SSP5-8.5 by the late 21st century (Fig. 4E). Among the three
models, CNRM-ESM2-1 has the simplest fire module, but has
the greatest number of ensembles (Materials and Methods and
SI Appendix, Table S1). The larger ensemble spread for both
historical and future simulations in CNRM-ESM2-1 results in
a better estimate of the influence of the internal climate vari-
ability on fire emissions. There are also some intermodel differ-
ences in the spatial distribution of the projected fire increases
over western North America (SI Appendix, Figs. S9 and S10).
CESM2 shows larger increases of fire-burned area and emis-
sions over the northern Great Plains, while CNRM-ESM2-1
and GFDL-ESM4.1 simulate larger increases over the Pacific
Northwest. These results highlight the importance of multimo-
del and multiensemble projections to access uncertainties.

Comparison with Previous Studies. A few prior studies have
estimated changes in fire emissions in the 21st century. Here,
we present a brief comparison with our results. Under SSP2-
4.5, by midcentury, the three CMIP6 models we consider pro-
jected a 60 to 80% increase in fire emissions over western
North America. Our projected changes are smaller than the
∼150% increase projected by a statistical fire model considering
impacts from climate, but not land use and population density
(26). This is consistent with the smaller increase in fire carbon
emissions over western North America during the 1960s to the
2010s from the CESM2 coupled historical simulations using
interannually varying versus fixed-1850 land use and popula-
tion density (SI Appendix, Fig. S11). Increased population
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Fig. 3. Changes in fire seasonality in the late 21st century. (A) Monthly
mean fire CO2 emissions over western North America (WNA) under present
day (1990–2010, solid lines) and SSP5-8.5 (2080–2100, dashed lines) nor-
malized by the month with peak emissions at present day from CMIP6 cou-
pled model experiments. Also shown are satellite-based estimates for the
present-day climate (black). (B) Multimodel and multiensemble mean
changes in CO2 emissions from fires (in Gg C) in August (Aug) through Sep-
tember (Sep) during the late 21st century under SSP5-8.5 (2080–2100
minus 1990–2010). The results are first averaged across the available
ensemble members from each model (three for CESM2, one for GFDL-
ESM4.1, and five for CNRM-ESM2-1) and then averaged across the models.
Stippling indicates grids with less than two models that show statistically
significant (P < 0.05) changes or where the three models do not agree in
sign. For each model, a change is defined as significant if >50% of the
ensemble changes are statistically significant (P < 0.05).
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density leads to greater fire suppression, wood harvest, and con-
version of natural land (i.e., forest) to managed land (i.e., crop-
land), resulting in reduced forest biomass available for burning
(40, 43, 87). Our projection of a 60 to 80% increase in fire
CO2 emissions over western North America is higher than the
45% increase projected by an offline process-based fire model
driven by archived meteorological fields (23). The larger
changes from our projection may be related to a positive feed-
back between fire and climate, e.g., increased fire risk due to
enhanced surface temperature caused by fire-induced damage in
vegetation canopy, which is not included in the offline simula-
tion (37, 42, 88). The comparisons suggest that it is important
to consider the impacts from climate, land use, and population
influence for a robust projection of fires and feedbacks.

Increasing PM2.5 Pollution from Wildfires in a Warming
Climate. Changes in fire CO2 emissions and meteorology pro-
jected by three CMIP6 Earth System Models are used to drive

the MLR model to predict PM2.5 over the western United States
under four SSP scenarios (Fig. 5 and SI Appendix, Table S2).
The MLR model driven by historical fires generally captures the
observed variability and increasing trend of western US PM2.5 in
August through September during 1997–2020, demonstrating
the credibility of the MLR-based PM2.5 estimations (red versus
black lines in Fig. 5 D–F). The MLR model driven by simulated
future fires projects August through September mean PM2.5 lev-
els at western US sites to increase by ∼50% in the coming deca-
des (2020–2050), even under the SSP1-2.6 strong-mitigation
scenario with global CO2 emissions cut severely and reaching
net-zero around 2050. Under the “middle-of-the-road” SSP2-4.
5 scenario, CO2 emissions hover around current levels before
falling midcentury, but do not reach net-zero by 2100 (71, 72);
wildfire emissions and resulting PM2.5 pollution would continue
to increase after 2050 and almost double by 2100 compared to
present-day levels (green lines in Figs. 4 D–F and 5 D–F).
Under SSP5-8.5, with CO2 emissions roughly double present

1900 1950 2000 2050 2100

−2

0

2

4

6

8
S

ur
fa

ce
 te

m
pe

ra
tu

re
 (

K
) CESM2A

3
1
3
3
3

HIST
SSP1−2.6
SSP2−4.5
SSP3−7.0
SSP5−8.5

1900 1950 2000 2050 2100
−3

−2

−1

0

1

2

3

S
oi

l m
oi

st
ur

e 
(k

g/
m

2 )

CESM2B

3
1
3
3
3

1900 1950 2000 2050 2100

0.0

0.5

1.0

1.5

V
eg

et
at

io
n 

ca
rb

on
 (

kg
/m

2 )

CESM2C

3
1
3
3
3

Changes in climate and vegetation (Aug−Sep, WNA, CESM2)

1900 1950 2000 2050 2100

0

100

200

300 CESM2

3

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 D

1
3
3
3

1900 1950 2000 2050 2100

0

100

200

300 GFDL−ESM4.1

3

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 E

1
3
1
1

1900 1950 2000 2050 2100

0

100

200

300 CNRM−ESM2−1

5

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 F

5
5
5
5

Changes in fire CO2 emissions (Aug−Sep, WNA, 3 models)

1900 1950 2000 2050 2100

−50

0

50

100

150
CESM2

3

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 G

1
3
3
3

1900 1950 2000 2050 2100

−50

0

50

100

150
GFDL−ESM4.1

3

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 H

1
3
1
1

1900 1950 2000 2050 2100

−50

0

50

100

150
CNRM−ESM2−1

5

%
 c

ha
ng

e 
re

la
tiv

e 
to

 1
99

0−
20

10 I

5
5
5
5

Changes in burned area (Aug−Sep, WNA, 3 models)

Fig. 4. Changes in climate and fires during August (Aug) through September (Sep) in the 21st century. Changes in 10-y running average of surface tempera-
ture (A), soil moisture in top 10 cm (B), and carbon mass in vegetation (C) relative to the 1990–2010 averages in August through September over western
North America (WNA) from CESM2 historical simulations (gray) and future projections (colors) under four SSPs (SI Appendix, Table S1). (D–I) Same as A, but
for total fire emissions of CO2 (in percent) (D–F) and burned area (in percent) (G–I) from three CMIP6 Earth System Models: CESM2 (Left), GFDL-ESM4.1 (Cen-
ter), and CNRM-ESM2-1 (Right). Thick lines represent the multiensemble mean, with shading illustrating the spread of available ensemble members (numbers
denoted at the bottom-right corner of each graph).
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levels by 2050 (71, 72) and western US summer mean tempera-
ture rising 6 to 8 K by the end of the century (Fig. 4A), mean
PM2.5 levels resulting from increasing wildfires during August
through September could double to triple compared to present-
day levels (red lines in Fig. 5 D–F), reaching 15 to 45 μg/m3 for
the US Pacific Northwest and northern California by the late
21st century (Fig. 5 A–C and SI Appendix, Table S2). These
PM2.5 increases are primarily driven by marked increases in fire
emissions in the warming climate (SI Appendix, Fig. S12), with
a small contribution from increasing stagnation frequency (SI
Appendix, Fig. S13).
In contrast, PM2.5 simulated directly by chemistry-climate

models, using prescribed fire emissions of aerosol precursors
responding to changes in land use, but not climate (Materials
and Methods), do not show significant changes (+7%)
throughout the 21st century under SSP5-8.5 (tan lines in
Fig. 5 D–F). The prescribed fire emissions show little trend
over western North America during the 21st century (SI
Appendix, Fig. S14). The minor changes in anthropogenic
emissions from the combustion of fossil fuels over western
North America are not accounted for in our MLR PM2.5

predictions.
We next examine changes in PM2.5 extremes predicted by

our MLR model in response to enhanced fire activity under the
intermediate-mitigation SSP2-4.5 and low-mitigation SSP5-8.5
scenarios (Fig. 6). We predict considerable deterioration of
PM2.5 air quality over the western US in the 21st century
under SSP5-8.5, caused by fires. By 2080–2100, under SSP5-
8.5, the q95 of daily PM2.5 in August through September is 20
to 170 μg/m3 at Pacific Northwest sites, with 72 to 96%

(model spread) of the sites experiencing q95 PM2.5 above the
35 μg/m3 US national standard, 52 to 68% above the
unhealthy level (55 μg/m3), and 0 to 8% above the very
unhealthy level (150 μg/m3; Fig. 6 A–C). The q95 PM2.5 in
August through September averaged over US Pacific Northwest
sites exceeds the 35 μg/m3 US national standard by the mid-
21st century under both SSP2-4.5 and SSP5-8.5 (Fig. 6 D–F).
By the late 21st century, the estimated q95 PM2.5 levels aver-
aged over US Pacific Northwest sites in individual models and
ensembles could reach as much as 85 to 125 μg/m3 under
SSP2-4.5 and 115 to 155 μg/m3 under SSP5-8.5.

Large fires burning across the US West in 2017, 2018, 2020,
and 2021 caused historic levels of air pollution, loss of human
life, and property damage (12, 54, 56). Unhealthy to hazardous
concentrations of PM2.5 (55 to 500 μg/m3) were recorded at
sites in the US Pacific Northwest and California for extended
periods during summer to fall (11, 12). We use extreme value
theory to examine whether these historically consequential
events are more likely to occur in a future climate under inter-
mediate- and high-emissions scenarios (Materials and Methods).
We analyze large samples of q95 PM2.5 at each site over the US
Pacific Northwest during August through September from his-
torical extremes (2017, 2018, and 2020), all historical observa-
tions for 1997–2020, and the MLR projections for 2080–2100
(Fig. 7). We find that the shape of the exceedance probability
distribution of q95 PM2.5 during the late 21st century under
SSP5-8.5 resembles that for the historic PM2.5 extremes of
2017, 2018, and 2020 caused by fires: ∼70% of sites have
q95 PM2.5 exceeding the 35 μg/m3 US national standard, com-
pared to only 16% for average conditions observed during the
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Fig. 5. Projected changes in August (Aug) through September (Sep) mean PM2.5 due to increasing fire emissions. (A–C) The August through September
mean PM2.5 in 2080–2100 at western US sites (averaged over a 2° × 2° grid) predicted by MLR driven by fires from three CMIP6 models under SSP5-8.5. Only
grids with MLR correlation r2 > 0.5 are shown. (D–F) Temporal evolution of August through September mean PM2.5 averaged over US Pacific Northwest sites
(box on map) during 1900–2100 from the chemistry-climate model (CCM) simulations with prescribed fire emissions (tan lines) versus from the MLR model
predictions, considering the impacts of future climate change on fire emissions under SSP1-2.6 (blue lines), SSP2-4.5 (green lines), and SSP5-8.5 (red lines).
Thick lines represent 10-y running multiensemble averages, and thin lines represent averages for individual years from each ensemble member of each
model (three for CESM2, one for GFDL-ESM4.1, and five for CNRM-ESM2-1). The August through September interannual time series from observations (OBS;
black lines) is also shown for comparison.
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past two decades (Fig. 7A). Under SSP2-4.5, the PM2.5 distri-
bution also shows a substantial shift toward extreme conditions.
Fig. 7B shows the return period of the q95 PM2.5 at US Pacific
Northwest sites, fitted using a generalized extreme value distri-
bution, from historical observations and the MLR PM2.5 pre-
dictions. For a range of return periods (e.g., 5, 10, and 20 y),

the estimated q95 PM2.5 would double to triple in the MLR
projections compared with historical observations. The return
period of the recent pollution extremes of 2017, 2018, and
2020 (with a mean August through September q95 PM2.5 of
72 μg/m3) would decrease to ∼5 y in the late 21st century
under SSP2-4.5 and to 3 y under SSP5-8.5.
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Fig. 6. Projected changes in PM2.5 extremes in August (Aug) through September (Sep) due to increasing fires. (A–C) The q95 of daily PM2.5 during August
through September in 2080–2100 at western US sites (computed over a 2° × 2° grid) predicted by MLR driven by fires from three CMIP6 models under SSP5-
8.5. Only grids with MLR correlation r2 > 0.5 are shown. (D–F) Temporal evolution of the q95 PM2.5 in August through September averaged over US Pacific
Northwest sites (box on map) from the MLR model projections under SSP2-4.5 (green) and SSP5-8.5 (red). Thick lines represent 10-y running multiensemble
averages, and thin lines represent averages for individual years from each ensemble member of each model (SI Appendix, Table S1). The August through
September interannual time series from observations (OBS; black lines) is also shown for comparison.

0 50 100 150 200 250

0

20

40

60

80

100

E
xc

ee
da

nc
e 

pr
ob

ab
lit

y 
(%

)

q95 PM2.5 (µg/m3)

Obs_all (1997−2020, 1210)
Obs_extremes (2017,2018,2020, 163)
MLR_SSP2−4.5 (2080−2100, 3086)
MLR_SSP5−8.5 (2080−2100, 3086)

A

0 5 10 15 20 25 30

0

50

100

150

200

Return period (Years)

B

q9
5 

P
M

2.
5 

(µ
g/

m
3 )

Obs_extremes (2017,2018,2020)

MLR predicted q95 PM2.5 during 2080−2100 (Aug−Sep, US Pacific Northwest)

Fig. 7. Likelihood of historical pollution extremes in a warming climate. (A) Exceedance probability of the q95 of daily PM2.5 at US Pacific Northwest sites
during August (Aug) through September (Sep): from observations during 1997–2020 (gray solid line) and during the 2017, 2018, and 2020 extreme fire sea-
sons (black dotted line), from the MLR PM2.5 predictions driven by fires in three CMIP6 models during 2080–2100 under SSP2-4.5 (green) and SSP5-8.5 (red).
The arrow denotes the 35 μg/m3 US National Ambient Air Quality Standard for 24-h average PM2.5. Numbers in brackets represent sample size for calculat-
ing the exceedance probability. (B) Return period of the q95 of daily PM2.5 at US Pacific Northwest sites in August through September fitted using general-
ized extreme value distribution from observations during 1997–2020 (black solid line) and from the MLR PM2.5 predictions driven by fires in three CMIP6
models during 2080–2100 under SSP2-4.5 (green) and SSP5-8.5 (red). The q95 of daily PM2.5 in August through September of 2017, 2018, and 2020 is marked
as the horizontal dotted line. Shading for observations represents the 95% CIs of estimated PM2.5 levels for different return periods. Shading for MLR projec-
tions represents the maximum and minimum of estimated PM2.5 levels for different return periods from different model ensembles. Intercepts between the
horizontal black dotted line and the fitted solid lines represent the return periods for the observed 2017–2020 extremes in present and future climates.
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Conclusions and Implications

Using an empirical statistical model driven by observations and
CMIP6 Earth System Model projections of fire CO2 emissions
and meteorology, we project western US PM2.5 air quality in
the 21st century under a suite of SSPs. Late summer to fall
PM2.5 pollution over the US Pacific Northwest is projected to
double to triple by 2080–2100 due to enhanced fire activity
associated with drought and increased biomass under interme-
diate (SSP2-4.5) and high warming scenarios (SSP5-8.5). Even
with strong mitigation under SSP1-2.6, western US PM2.5 pol-
lution would increase ∼50% by midcentury. The occurrence of
four severe fire years in quick succession during 2017–2021
over the western US raises the possibility that climate change is
already driving strong changes in fire regimes that may be
underestimated by our models. Our study suggests that severe
PM2.5 air pollution caused by these historic fire events could
occur every 5 y in the late 21st century under an intermediate
climate change scenario (SSP2-4.5). Air quality exceedances
caused by wildfires can be classified as “exceptional events,”
which are not counted toward a nonattainment determination,
according to the US Environmental Protection Agency. How-
ever, a considerable increase in the frequency of fire-driven
exceedances may complicate this policy, as these events become
a new norm in the changing climate. The large spread across
climate change scenarios highlights the cobenefits of climate
mitigation for wildfires and air pollution. Multiagency collabo-
rations, addressing climate mitigation, air quality, and forest
management, are needed to minimize the adverse health
impacts projected to result from fire smoke.

Materials and Methods

Multiple Linear Regression Model. The MLR model is developed using
observational datasets of surface PM2.5 concentrations, meteorological variables,
and fire CO2 emissions over western North America during 1997–2020. This
observation-based MLR model is then applied to predict future PM2.5 levels
driven by fire CO2 emissions and meteorology projected by the CMIP6 Earth Sys-
tem Models. Considering that climate model projections are more robust on
larger scales, all observational datasets and CMIP6 model fields used for the
MLR analysis are averaged onto a 2° × 2° grid. The MLR model predicts the
mean and the q95 of PM2.5 at each 2° × 2° grid d and month i in the form of:

PM2:5d,iðtÞ ¼ βd,iFired,iðtÞ þ ∑
4

k¼1
βd,i,kMetd,i,kðtÞ þ bd, i, [1]

where Fire(t) is the anomaly time series of fire CO2 emissions in percentage rela-
tive to the present-day climatology, Met(t) is the anomaly time series of meteoro-
logical variables (i.e., surface temperature, precipitation, relative humidity, and
air stagnation) relative to the present-day climatology; and β and b are regres-
sion coefficients fitted by the MLR. We select these four meteorological variables
that have been previously identified to be correlated with surface PM2.5 (11, 52).
We perform the regression by adding and deleting prediction parameters step-
wise to obtain the best fit based on the Akaike Information Criterion. The relative
importance of each predictor is determined by using a bootstrap approach
described in ref. 92. The performance of the MLR model is tested by using
leave-one-out cross-validation (SI Appendix, section S1).

The observation-based MLR model is applied to predict mean and the q95 of
surface PM2.5 concentrations at each 2° × 2° grid, driven by monthly time series
of fire CO2 emissions and meteorology projected by the CMIP6 Earth System
Models under a suite of climate change scenarios over the course of the 21st
century. To ensure that we only apply the MLR predictions at locations where
PM2.5 levels are primarily driven by fire emissions, we limit our analysis to west-
ern US grid cells where the observed correlation r2 from the MLR model is
greater than 0.5 during August and September; as such, sites located in urban
areas with large anthropogenic influence are filtered out. For PM2.5 prediction
at each valid grid, we calculate the anomaly time series (in percentage relative
to the present-day 1990–2010 climatology) of total fire CO2 emissions in a

projected future climate, integrated over a regional box where the maximum
correlation with PM2.5 is found based on historical observations (Fig. 1). This
approach thus accounts for the influence of regional smoke transport. Anomaly
time series of meteorological variables in the future climate are calculated as the
absolute differences from the present-day 1990–2010 climatology for each valid
2° × 2° grid.

Observational Datasets. Daily observations of PM2.5 at surface-monitoring
sites during 1997–2020 are obtained from the US Environmental Protection
Agency’s Air Quality System (https://www.epa.gov/aqs). To maximize data avail-
ability, we include PM2.5 measured with both the Federal Reference Methods
and non-Federal Reference Methods, as a strong linear correlation (r2 = 0.92)
between these two methods has been found at colocated monitors (93). To be
consistent with the other datasets used for the MLR analysis, as well as to
increase the statistical power and robustness of the analysis, we average all avail-
able daily surface PM2.5 observations onto a 2° × 2° grid. For each month at
each 2° × 2° grid cell, we calculate the average and the q95 of available daily
PM2.5 from all sites within that grid. Most grids have sample sizes of 50 to 200
daily PM2.5 observations each month; only grids with at least 20 samples per
month are considered in our analyses (SI Appendix, Fig. S2).

To represent the intensity and severity of wildfires, we use satellite observa-
tions of burned area and satellite-based estimations of fire CO2 emissions, con-
sistent with the datasets available from the CMIP6 fire models. The monthly
burned area is from the Collection 6 MODIS climate model grid burned-area
product (2000–2020, 0.25° × 0.25°) (60). Fire emissions of CO2 are obtained
from the Global Fire Emissions Dataset Version 4 with small fires (GFED4s;
1997–2020, 0.25° × 0.25°) based on satellite-retrieved burned area (61, 62)
and the Quick Fire Emission Dataset Version 2.5 (QFED2.5; 2000–2019, 0.1° ×
0.1°) based on satellite-observed fire radiative power (63). The MLR model only
uses fire CO2 emissions from GFED4s averaged onto a 2° × 2° grid, while both
GFED4s and QFED2.5 are used to evaluate the CMIP6 fire models.

The MLR analysis includes four meteorological variables that have been previ-
ously identified to have correlations with surface PM2.5 (11, 52): surface temper-
ature, precipitation, relative humidity, and air stagnation (SI Appendix, section
S2). Monthly mean surface temperature, precipitation, and relative humidity are
obtained from the European Centre for Medium-Range Weather Forecasts Rean-
alysis Version 5 (1997–2020, 0.1° × 0.1°) (94). The air stagnation index is
obtained from the US National Centers for Environmental Information (95). All
original datasets are averaged onto a 2° × 2° grid for the MLR analysis.

CMIP6 Fire Models. We use simulations from three CMIP6 Earth System Mod-
els (CESM2, GFDL-ESM4.1, and CNRM-ESM2-1) that archived CO2 emissions
from fires and meteorological variables needed for the MLR model. The models’
horizontal resolutions range from 1.0° to 1.5° (SI Appendix, Table S1). Vegeta-
tion structure and functioning in all three models (e.g., leaf area index) respond
to changes in climate. GFDL-ESM4.1 simulates daily vegetation distribution (58,
96–98), while CESM2 and CNRM-ESM2-1 use prescribed land use and land
cover change files (49, 59). Fire CO2 emissions in all three CMIP6 models are
simulated dynamically, coupled to climate and vegetation (SI Appendix, section
S3) (42, 43, 45–47, 50, 51, 99). However, these models do not calculate fire
emissions of particles or non-CO2 gases, so atmospheric chemistry in these mod-
els is not coupled to interactive fire emissions responding to climate change.

Two sets of experiments from these models are used: 1) land-only experi-
ments (LAND-HIST experiment from the Land Use Model Intercomparison)
driven by the observation-based meteorological forcings (derived from dynamic
downscaling of the 20th-Century Reanalysis) (100, 101); and 2) coupled
land–atmosphere–ocean historical simulations (CMIP6 HIST experiment) and
future projections (from the Scenario Model Intercomparison Project) driven
by emissions of greenhouse gases and aerosols under four SSPs: SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 (71). The land-only experiments driven by
observed climate allow for direct comparison with observations in space and
time in order to understand biases related to the modeling of fire dynamics
(Fig. 2). The coupled model simulations are used to understand changes in fires
under climate change scenarios, which serve as a key predictor for future PM2.5

levels (Figs. 5–7). To understand the drivers of the temporal evolution of histori-
cal fires (SI Appendix, Fig. S11), we analyze three CESM2 coupled-model experi-
ments: 1) with all historical forcings (HIST); 2) the control simulation with
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preindustrial forcings, including constant land cover and land use, land manage-
ment, and population density at 1850 levels (pi-Control) (102); and 3) with all
historical forcings the same as HIST, but with land use held constant at 1850 lev-
els, as in pi-Control (HIST_NoLU) (101).

Chemistry-Climate Model PM2.5 Simulations Using Prescribed Fire
Emissions. We compare the MLR-based estimations of PM2.5 driven by interac-
tive fires responding to climate change with PM2.5 directly simulated by three
chemistry-climate models (103–105). In these chemistry-climate models, fire
emissions of particles are prescribed for both historical and future simulations.
Historical simulations of these models use fire emissions of gases and particles
from GFED4s for 1997–2014 and historical reconstructions from the Fire Model
Intercomparison Project prior to 1997 (28, 48). Future fire emissions of gases
and particles are prescribed based on the spatial distribution of the 2005–2014
climatology from GFED4s and consider the impacts from land use, but not cli-
mate change (29). There are no substantial trends or interannual variability in
biomass burning emissions of aerosols used for future PM2.5 projections from
these chemistry-climate models (SI Appendix, Fig. S14). Future PM2.5 levels sim-
ulated by these chemistry-climate models thus reflect the impacts from changes
in anthropogenic emissions and meteorology, but overlook the impact of
climate-driven increases in fire emissions of aerosols and aerosol precursors.

Calculation of Exceedance Probability and Return Period. To examine
how prevalent the recent PM2.5 pollution extremes caused by fires in 2017,
2018, and 2020 may be in a warming climate, we compare the exceedance
probability and return period of the q95 of daily PM2.5 in August through Sep-
tember at US Pacific Northwest sites from historical observations with MLR pro-
jections under SSP2-4.5 and SSP5-8.5 scenarios.

The exceedance probability is calculated as 1 � Fn, where Fn is the empirical
cumulative distribution function, calculated as FnðtÞ ¼ 1

n∑
n
i¼11Xi≤t , where n is

the total number of the predicted monthly q95 PM2.5 at each site in the US
Pacific Northwest in August and September.∑n

i¼11Xi≤t is the number of events
with the predicted q95 PM2.5 smaller than a given q95 PM2.5 level of t.

The return levels and return periods are estimated by using extreme value
theory (106). Extreme value theory has been used in previous studies to

estimate return levels and days of ozone pollution events under present and
future climates (107–109). Here, in this study, we perform the extreme event
analysis with the extRemes package in R (110) using large samples of q95
PM2.5 at each site in the US Pacific Northwest during August through September
from historical extremes (2017, 2018, and 2020), from all historical observations
for 1997–2020, and from the MLR projections for 2080–2100. The observed and
MLR-predicted q95 PM2.5 are fitted by using a generalized extreme value distri-
bution function. The 95% CIs are estimated based on the delta method using
the parameter covariance (110).

Data Availability. All study data are included in the article and/or SI
Appendix. The data from three CMIP6 models used in this study (89–91) are
publicly available at https://esgf-node.llnl.gov/projects/cmip6/. Surface observa-
tions of PM2.5, meteorological variables from reanalysis datasets, satellite obser-
vations of burned area, and fire-emission inventories are publicly available
through the links provided at the corresponding references, as described in
Materials and Methods.
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