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ABSTRACT: Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which 
encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each 
vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, 
and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets 
in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 
macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this 
classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD 
is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage 
phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.

VISUAL OVERVIEW: An online visual overview is available for this article.
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Atherosclerotic cardiovascular disease (ASCVD) is the 
leading cause of morbidity and mortality worldwide.1 
Vascular inflammation, even after robust cholesterol 

lowering, is considered an important contributor to the risk 
of recurrent atherothrombotic events, and macrophages 
represent a likely contributor to residual inflammatory risk. 
Initiated by the retention of apoB (apolipoprotein B)-con-
taining lipoproteins in the arterial wall, ASCVD represents 
a failure to resolve the inflammatory response.2–4 Vascular 
lipid deposits activate the immune system leading to the 
local accumulation of both innate and adaptive immune 
cells, which facilitates the formation of lipid-rich lesions. 
Plaques may form in any number of vascular beds, with 
ASCVD most commonly referring to either coronary artery 
disease, peripheral artery disease, cerebrovascular dis-
ease, or aortic atherosclerosis. Atherosclerotic lesions 
grow slowly over the years, eventually impeding blood flow 
and leading to the clinical manifestation of stable angina 
or claudication. However, obstructive and nonobstructive 
lesions may also erode or abruptly rupture, resulting in the 

local accumulation of tissue factor and platelet activation, 
culminating in rapid thrombotic vascular occlusion and 
life-threatening conditions, such as myocardial infarction, 
stroke, acute limb ischemia, and cardiovascular death.

Please see www.ahajournals.org/atvb/atvb-focus  
for all articles published in this series.

MACROPHAGES IN ASCVD 
PROGRESSION
Predominantly derived from circulating monocytes and 
local proliferation,5–8 macrophage numbers increase up 
to 20-fold within mouse aortae during atherogenesis.2,9,10 
Additionally, there is evidence that vascular smooth mus-
cle cells can dedifferentiate to a plaque macrophage-
like state.11–14 Recruitment of monocytes into the intimal 
space is a process that occurs early in life, with the ini-
tial stages evident in infants less than a year old,15,16 and 
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atherosclerotic plaques are prevalent in adolescents and 
young adults.17–19 ASCVD represents a chronic inflamma-
tory process that continues throughout adulthood, and for 
many culminates in a major adverse cardiac event.

A key feature of ASCVD is lipoprotein ingestion and 
accumulation by arterial macrophages, which gives rise to 
foam cells. Foam cell buildup contributes to plaque lipid 
storage and sustained plaque growth.10,20 Macrophages 
contribute to the maintenance of the local inflammatory 
response by secreting proinflammatory cytokines, chemo-
kines, and producing reactive oxygen and nitrogen spe-
cies. Additionally, macrophages engage in crosstalk with 
vascular smooth muscle cells, amplifying the inflammatory 
cycle by producing additional proinflammatory cytokines 
and extracellular matrix components, further promoting 
the retention of lipoproteins.2,21 Plaque macrophages 
have a decreased ability to migrate, impeding inflamma-
tion resolution, promoting the progression of lesions into 
complicated, rupture-prone plaques. Moreover, this per-
sistent inflammation drives macrophage apoptosis, and in 
the absence of efficient efferocytosis, leads to the accu-
mulation of debris and apoptotic cells, facilitating necrotic 
core formation in atherosclerotic plaque.2,10,22

A defining feature of macrophages is their plastic-
ity, which allows them to produce a tailored response to 
local microenvironment stimuli.23–26 During inflammation, 

macrophages may act to either promote inflammation or 
resolve it during wound and tissue repair.24,27 The classical 
model of macrophage activation defines both pro- and anti-
inflammatory macrophages with distinct physiological roles 
and activators. At the broadest level, macrophages are clas-
sified as either M1, classically activated, or M2, alternatively 
activated.23,28 In vitro, M1 macrophages polarize in response 
to toll-like receptor ligands, interferons, pathogen-associated 
molecular complexes, lipopolysaccharides, and lipoproteins. 
Fueled primarily by glycolysis,29 M1 macrophages contrib-
ute to tissue destruction and secrete pro-inflammatory fac-
tors including high levels of IL (interleukin)-1β, IL-6, and 
TNF-α (tumor necrosis factor-α).26,30,31 Consistent with their 
inflammatory phenotype, they express pro-inflammatory 
transcription factors, including nuclear factor-κB and STAT 
(signal transducer and activator of transcription)-1. M2 mac-
rophages are at the other end of the spectrum with a fatty 
acid oxidation dependent-phenotype and anti-inflammatory 
properties.32 M2 macrophages are polarized in response to 
the cytokines IL-4 and IL-13 and secrete anti-inflammatory 
factors such as the IL-1 receptor agonist, IL-10 and colla-
gen. M2 macrophages are characterized by their expression 
of CD163 (cluster of differentiation 163), mannose receptor 
1, resistin like-β, and high levels of arginase-1.

In the context of plaques, macrophages adhering to 
both the classically activated and alternatively activated 
subsets are present in human and mouse lesions, with 
M1 as the predominant subtype.33–37 In human lesions, 
macrophages expressing proinflammatory markers are 
in rupture-prone, unstable regions, and M2-like macro-
phages in stable regions and the adventitia.38–43 How-
ever, recent evidence suggests that macrophages exist 
on an activation continuum and that the M1/M2 clas-
sification system is an oversimplification of macrophage 
heterogeneity and their diverse functions.36,43,44

In the context of murine ASCVD, several alternative 
macrophage classifications are described.36,45 These 
alternate phenotypes include hemorrhage-residing Mhem 
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Highlights

• Macrophages in atherosclerotic cardiovascular 
disease play a central role in the development of 
plaques.

• Classically activated M1 macrophages are impli-
cated in initiating and sustaining inflammation, 
and alternatively activated or M2 macrophages are 
linked to inflammation resolution.

• Macrophage plasticity makes them attractive thera-
peutic targets to stem the development of and sta-
bilize existing atherosclerosis.

• Understanding the basis of metabolic and epigenetic 
reprogramming of macrophage polarization is antici-
pated to translate to new therapeutic opportunities 
to promote atherosclerotic cardiovascular disease 
regression to reduce residual inflammatory risk.
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macrophages, which phagocytize and use erythrocyte 
remnants and hemoglobin deposits.46–48 This subset is 
atheroprotective and resistant to foam cell formation, 
attributed to their high expression of the cholesterol trans-
porters ABCA1 (ATP-binding cassette transporter A1) and 
ABCG1 (ATP-binding cassette transporter G1) and the 
nuclear receptors, LXR (liver X receptor)-α and LXR-β.49 
Mox macrophages, a proatherogenic subset induced by 
oxidized phospholipids that protect from oxidative stress 
through nuclear factor erythroid-derived 2-related factor 
2–mediated expression of antioxidant enzymes such as 
heme oxygenase 1, thioredoxin reductase 1, and sulfire-
doxin-1. In hypercholesterolemic mice, Mox macrophages 
are reported to account for 30% of plaque macrophages, 
with M1 and M2 subsets making up 40% and 20% of the 
remaining cohort, respectively.50 Finally, M4 macrophages 
are a subset polarized by platelet factor 4.51 This popula-
tion is found in human lesions52 and characterized by high 
expression of matrix metalloprotease 7 and S100A8.53 
M4 macrophages are defined as atherogenic based on 
their production of proinflammatory cytokines (IL-6 and 
TNF-α) and defective phagocytic properties.51,52

Macrophage heterogeneity in plaques was first appre-
ciated using immunohistochemistry and, at the molecular 
level, by laser capture microdissection.54,55 Technological 
advances, including mass cytometry time of flight and single-
cell RNA sequencing, have further expanded our knowledge 
of macrophage heterogeneity in progressing plaques.56,57 
These technologies have assisted in characterizing the het-
erogeneous nature of plaque macrophages, and have iden-
tified a new previously unreported subset identified.58–60 
Termed triggering receptor expressed on myeloid cells 2 
(TREM)hi macrophages, this subset expresses high levels of 
the genes Trem2, Cd9, Ctsd, and Spp1 and low expression 
of inflammatory cytokines, with ascribed biological func-
tions of lipid metabolism and cholesterol efflux.58–60 This 
unique population is proposed to be cholesterol-enriched 
and represents foamy macrophages.59 Altogether, TREMhi 
macrophages provide an alternate hypothesis in which 
macrophages subsets in plaques are inflammatory.

As described above, there are various modes of macro-
phage activation. Collectively, they demonstrate that mac-
rophages in plaques may have only a partial resemblance 
to M1 and M2 macrophage phenotypes. Further research 
is necessary to identify gene-expression profiles and tran-
scriptional pathways that underlie the identity and diversity 
of macrophages in ASCVD. Additionally, whether results in 
mice are translatable to human plaques, which have distinct 
phenotypic differences (eg, hemorrhage and rupture), is 
essential to determine for the development of therapies to 
reduce macrophage-associated residual inflammatory risk.

ATHEROSCLEROSIS REGRESSION
Macrophages are the hallmarks of ASCVD contribut-
ing to plaque development, local inflammation, and the 

promotion of thrombosis. This central role, coupled with 
their plasticity, makes macrophages attractive therapeu-
tic targets to stem the progression of plaques and stabi-
lize existing atherosclerosis.

Studies in the 1970s undertaken in nonhuman primates 
and pigs made the initial observations of macrophages con-
tributing to atherosclerosis regression.61–63 These seminal 
studies employed atherogenic high-fat, high-cholesterol diets 
to induce atherosclerosis progression and subsequent low-fat, 
low-cholesterol diets to reduce hypercholesterolemia. In both 
models, 4 to 6 months of regression diet feeding decreased 
aortic lesion macrophage foam cells, reduced necrotic plaque 
area, and increased the thickness and density of fibrous caps. 
An ASCVD regression review in 1985 stated, “it is obvious 
that the role of macrophages in regression may be very com-
plex and a comprehensive study of such is unattainable by a 
single experiment by one or a small group of investigators”.61 
Since then, the generation of hyperlipidemic mouse mod-
els,64–66 extensively used to model human ASCVD,67,68 which 
allow for the rapid, reproducible development of plaques, has 
further increased the field’s understanding of the regulators 
of plaque progression. In 2001, in response to the need for 
further murine atherosclerosis model development basic 
research into the mechanisms that govern ASCVD regres-
sion or stabilization was stimulated by the establishment of 
an aortic transplantation approach.64

Clinical trials in humans have demonstrated that robust 
cholesterol reduction prevents major adverse cardio-
vascular events.65,66 Imaging studies using intravascular 
ultrasound and optical coherence tomography suggest 
that dramatic LDL (low-density lipoprotein) lowering (ie, 
statins, PCSK9 [proprotein convertase subtilisin/kexin 
type 9] inhibition) prevents plaque progression and may 
even induce plaque regression.67–70 The development of 
LDL-C (LDL cholesterol)-lowering therapies that facilitate 
unprecedented reductions in LDL-C, relative to traditional 
statins, are likely to provide further insight into the role of 
residual inflammatory risk and plaque progression and 
regression.22,71–74 Advances in imaging techniques pro-
vide insight into the compositional changes in remodeling 
plaques.75 Optical coherence tomography allows detailed 
visualization of plaques and provides information on plaque 
composition (eg, lipids and calcification) and thickness of 
the fibrous cap, a classical marker of plaque inflammation 
and vulnerability. Given that plaque lipid concentrations are 
positively associated with macrophage accumulation, this 
relationship provides indirect evidence for reduced plaque 
macrophage count during human ASCVD regression.76

Evidence for monocyte and macrophage phenotypes 
associated with plaque vulnerability are derived from 
plaques taken from subjects with different stages of ath-
erosclerosis.41–43,77 However, translation of macrophage 
studies in mice to human ASCVD regression carries the 
caveat that responses of monocyte-derived macrophages 
from mice and humans are still needed to be compared 
side-by-side.24 Further imaging advancements indicate 
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that monitoring of plaque macrophage content and phe-
notype may one day be a possibility in humans as it is in 
mice.78 These data are likely to further our understanding of 
human and murine lesions during ASCVD regression.79,80

Reviewed below are the current murine models of 
ASCVD regression, the well-described contribution of 
macrophages, and preclinical efforts to develop macro-
phage-targeted therapeutics to suppress plaque growth 
and inflammation.

MOUSE MODELS OF ASCVD 
REGRESSION
Relative to baseline plaques, murine ASCVD regression 
encompasses one or more of the following, a reduction 
in plaque (1) size, (2) cholesterol content, or (3) macro-
phage content. All models begin with a progression phase 
to establish a baseline plaque in which plasma apoB lipo-
protein levels are high (LDL-C >300 mg/dL), followed by 
a phase of low atherogenic lipoprotein levels (VLDL [very-
low–density lipoprotein] and LDL-C) to induce regression. 
Preclinical models of ASCVD regression are considered 
analogous to high-intensity statin treatment in humans.81

Plaque Transplantation
Representing the first ASCVD model of regression, the 
plaque transplant model involves transplanting an athero-
sclerotic thoracic arch64 or aortic arch segment82,83 from a 
hyperlipidemic donor mouse (eg, ApoE−/− or Ldlr−/−) into 
a normolipidemic recipient mouse (ie, C57Bl/6J). The 
rapid change in atherogenic apoB lipoproteins induces 
plaque regression, characterized by decreased lesion, 
macrophage, and lipid areas over a short period.34,64,74,84,85 
This original model has been instrumental in elucidat-
ing mechanisms that contribute to regression and the 
assessment of ASCVD-reducing therapies.30,74,86,87

Elimination of Atherogenic Lipoprotein 
Production
Reversa mice are LDLR (LDL receptor) deficient and 
genetically modified via the introduction of a conditional 
allele of Mttp (microsomal triglyceride transfer protein) 
in the liver (Ldlr−/−Apob100/100Mttpfl/flMx1-Cre+/+) and 
can serve as a reversible ASCVD model.88 Inhibition of 
microsomal triglyceride transfer protein (IFN-α [inter-
feron-alpha], IFN-β, or synthetic double-stranded RNA 
[eg, polyinosinic:polycytidylic acid, pIpC]), in conjunction 
with a switch to a chow diet, results in reduced VLDL 
and LDL (apoB lipoprotein cholesterol; >1000 mg/dL to 
<150 mg/dL) and rapid regression of plaques.89 Similar 
changes in atherogenic lipoproteins and plaque regres-
sion can also be achieved in Ldlr−/− mice treated with the 
microsomal triglyceride transfer protein inhibitor, such 

as BMS 212122.90 Additionally, the elimination of apoB 
production with an Apob antisense oligonucleotide pro-
motes ASCVD regression in Ldlr−/− mice.91

Modulation of LDL Receptor or ApoE 
Expression
Early lipid lowering approaches in mice used adeno-
associated virus therapies to induce hepatic overexpres-
sion of Apoe in ApoE−/− mice and Ldlr in Ldlr−/− mice.92–94 
Recent studies in wild-type mice have also described the 
utility of LDLR antisense oligonucleotides in raising apoB 
lipoprotein cholesterol levels and withdrawal of the anti-
sense oligonucleotide and subsequent antagonism with 
sense oligonucleotides to accelerate the reduction of 
lipid levels and facilitate regression.95 Similarly, increas-
ing PCSK9 levels, a protein that directs hepatic LDLR for 
degradation,96 elevates circulating LDL-C and induces 
atherosclerosis in wild-type mice.37,97–99 The PCSK9 
adeno-associated virus model can be used for regression 
studies by a diet switch to chow, with lipid lowering further 
accelerated by the inclusion of an microsomal triglycer-
ide transfer protein inhibitor to the diet.37 Given that they 
override the necessity for complicated and time-consum-
ing backcrosses, ASCVD models that are genotype-inde-
pendent will facilitate the relatively rapid assessment of 
factors that regulate ASCVD regression. Further, mecha-
nistic work will benefit from the rapid induction of gene-
specific phenotypes in adult mice with established lesions 
to test candidates that may regulate regression.100

Reduction in Dietary Cholesterol
A simple switch in diet from an atherogenic high-fat, 
high-cholesterol diet to a low-fat, low-cholesterol diet in 
some atherosclerosis-prone mouse models is sufficient to 
induce ASCVD regression and comparable to the use of 
statins or beneficial dietary changes in humans. However, 
this method of regression is slower and, in some mice apoB 
lipoprotein cholesterol levels (eg, ApoE−/− mice) may not 
normalize to sufficient levels to achieve regression.37,101,102

MACROPHAGES IN ASCVD REGRESSION
Plaque macrophage content is determined by monocyte 
recruitment and macrophage proliferation, emigration, 
and death.2 Historically, atherosclerosis studies have 
placed a significant emphasis on understanding mech-
anisms of monocyte recruitment into the vascular wall 
and devising strategies to block their influx into plaques.2 
However, recent studies show that there are also factors 
that determine macrophage retention within plaques,10 
and it is hypothesized that if these processes are favor-
ably modulated, plaque macrophage content may be 
reduced and ASCVD regression achieved.
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Broad changes in the plaque macrophage transcrip-
tome are characteristic of ASCVD regression, most com-
monly distinguished by enrichment of M2-associated 
transcripts.54,85,86,103–105 The dynamic change in plaque 
macrophage phenotype raises the possibility that induc-
ing of macrophage polarization potential in vivo will rep-
resent a viable therapeutic option for ASCVD regression 
and suppress residual inflammatory risk. Detailed below 
are known factors that modulate plaque macrophage con-
tent and phenotype in the context of ASCVD regression.

FACTORS THAT REGULATE PLAQUE 
MACROPHAGE REGRESSION
Macrophage Trafficking
Plaque macrophage emigration is characteristic of 
regressing lesions in several murine models of regres-
sion.86,103,106 Consistent with macrophage motility, cytoskel-
etal-binding, and Rho GTPase genes are among the top 
enriched transcripts in plaque macrophages in response 
to lipid lowering.107 One mechanism for decreased plaque 
macrophage content shown in the aortic transplantation 
model is increased macrophage egress to lymph nodes, 
mediated via CCR7 (C-C chemokine receptor type 7).87,106 
Macrophage CCR7 transcript expression is, in part, regu-
lated by a sterol response element in its promoter. Thus, it 
is hypothesized that lipid lowering induces plaque macro-
phage CCR7 expression and migration.85,108 In mice defi-
cient in low-density lipoprotein receptor-related protein 1, 
a separate group independently presented evidence for 
a role of CCR7 in regression. During regression, LRP-1 
(low-density lipoprotein receptor-related protein 1) defi-
ciency increased macrophage cholesterol efflux and 
CCR7 expression and promoted macrophage emigration 
to lymph nodes and plaque regression.109

Epigenome-guided analysis of the transcriptome of 
plaque macrophages during ASCVD regression revealed 
activation of the Wnt signaling pathway.107 Given that in 
macrophages, Wnt signaling promotes cell motility through 
a β-catenin-dependent mechanism,110 and β-catenin 
knockdown promotes atherosclerosis progression,111 this 
pathway may represent an unexplored regulator of ASCVD 
regression. Additionally, the macrophage retention factors, 
netrin 1 and semaphorin 3E, transcripts differentially reg-
ulated in progressing and regressing plaques, also hold 
promise as potential mediators of plaque macrophage 
content given their ability to modulate macrophage reten-
tion and migration in progressing plaques.2,54,112,113

Monitoring plaque macrophage flux is an essential com-
ponent in the assessment of the effectiveness of therapies 
designed to promote ASCVD regression. The most readily 
used technique in murine regression studies takes advan-
tage of the ability of monocytes to take up fluorophore-
labeled beads (eg, Rahman et al,74 Nagareddy et al,86 Distel 
et al,103 and Potteaux et al114). The monocyte bead label-
ing technique can be used to monitor plaque monocyte 

entry and macrophage egress.89 To monitor entry, mice are 
injected intravenously with beads before harvest (typically 
24–72 hours), and to monitor macrophage egress, mice 
are injected with beads before the induction of regression 
(typically 24–96 hours). Quantification of bead-bearing 
cells in plaques at the time of harvest allows for the assess-
ment of monocyte and macrophage trafficking.

This technique represents a relatively rapid and 
straightforward labeling procedure and does not alter 
the phenotype of bead-bearing cells.115 The predominant 
drawback of this approach is the relatively low incorpora-
tion of beads into circulating monocytes (≈5%–10%) and 
the selectivity of Ly6Clo monocytes in taking up the beads, 
the monocyte subset with reduced capacity to enter 
lesions. Prior injection of mice with clodronate liposomes, 
to deplete all circulating monocytes, can skew bead label-
ing to the Ly6Chi subset.116 However, this comes with 
the inherent drawback of potential depletion of plaque-
residing macrophages given their ability to deplete mac-
rophage populations in the spleen, bone marrow, and 
liver.116,117 Alternatively, Ly6Chi monocytes may be labeled 
with the modified thymidine analog EdU (5-ethynyl-2´-
deoxyuridine) that at time points less than 72 hours is 
selectively incorporated in the Ly6Chi subset.74,114 Ly6Chi 
monocytes that enter plaques are determined by staining 
for EdU. Dual staining with the proliferation marker Ki67 
allows for the distinction between recruited monocytes, 
and macrophages proliferating in situ.

Fluorescent reporter lines (eg, GFP-CD68 [green flu-
orescent protein CD68], CX3CR1-GFP [CX3C chemo-
kine receptor 1 green fluorescent protein]) and congenic 
mice (eg, CD45.1, CD45.2) also allow for monitoring 
plaque monocyte/macrophage trafficking.104,116 The util-
ity of these models is best suited to regression studies 
undertaken in the transplant model, as this allows for dif-
ferential labeling of either donor plaque cells or recipient 
circulating cells to assess regression-mediated changes. 
The utilization of inducible reporter lines (eg, CreloxP or 
FLP-FRT [flippase/flippase recognition target] system) 
that could be triggered at the time of regression also rep-
resents a viable method to track myeloid cell trafficking in 
transplant-free regression models. Fluorescent reporter 
lines represent a useful model to monitor monocyte/
macrophage flux via intravital imaging. However, the rela-
tively short monitoring window and the need to expose 
the site of interest to detect signals limit this approach.

Macrophage Polarization
Macrophage polarization is considered a dynamic pro-
cess,23,26 and editing of this potential is an emerging 
therapeutic area for a variety of inflammation-based dis-
orders.23,118 M1 macrophages characterize progression 
lesions while regressing plaques are enriched in M2 mac-
rophages.69 M2 macrophage enrichment in plaque regres-
sion is consistent with the view that M1 macrophages are 
pro-atherogenic and promote an unstable plaque, while 
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M2 macrophages promote tissue repair and plaque stabil-
ity. In vitro, the phenotypes of M1 and M2 macrophages 
are reversible, and there is evidence that this may occur 
in mice in vivo.119–121 However, whether macrophage inter-
conversion occurs in the context of ASCVD regression, in 
humans or mice, is largely unknown and is an area of active 
research. Alternate possibilities for plaque M2 macrophage 
enrichment during regression are (1) egress of M1 mac-
rophages from plaques, (2) entry of monocytes and their 
polarization to M2 macrophages, and (3) proliferation of 
resident yolk-sac-derived M2 macrophages.6,122

In atherogenic mice, the deletion of NR4A1, a transcrip-
tion factor that regulates the Ly6Clo monocyte phenotype 
and favors M2 macrophage differentiation,123 results in 
plaque M1 macrophage enrichment and accelerates ath-
erosclerosis.124,125 Similarly, the deletion of the transcrip-
tion factor KLF4 (Krüppel-like factor 4), which promotes 
M2 and inhibits M1 macrophage polarization,126 enhances 
pro-inflammatory M1 macrophage activation, foam cell for-
mation, and accelerates atherosclerosis in ApoE−/− mice.127 
Likewise, stimulation of the PPAR-γ (peroxisome prolifer-
ator-activated receptor-gamma) pathway, which promotes 
M2 macrophage polarization,128 decreases atherosclerosis 
development in the ApoE−/− and Reversa mice.89,129 Simi-
larly, loss of Akt2 enhances the ability of macrophages to 
polarize to the M2 state and suppresses atherogenesis.130 
Treatment of Ldlr−/− mice with the M2-polarizing cytokine 
IL-13 promotes a plaque M2 macrophage phenotype, 
along with an increase in plaque collagen content, and a 
reduction in monocyte recruitment in lesions and macro-
phage content.131 However, it remains to be established 
whether the mechanisms that promote or hinder macro-
phage M2 polarization under conditions of hypercholes-
terolemia can be applied to regressing plaques.

A recent study reported that after reversal of hyper-
cholesterolemia, the recruitment of Ly6Chi monocytes and 
their STAT6-dependent conversion to M2 macrophages 
is essential for reducing plaque macrophage content and 
suppression of ACSVD inflammation during regression.74 
To date, the factors that regulate STAT6-signaling to medi-
ate this change are unknown, but given IL-4 and IL-13 
facilitate M2 polarization through a STAT6-dependent 
pathway, it is hypothesized that local production of these 
cytokines (eg, by basophils, eosinophils) during regression 
may mediate this process. Important to note, however, are 
findings in an alternate model of plaque regression, which 
found that suppression of monocyte recruitment is essen-
tial for plaque macrophage regression.114 This is consistent 
with studies in diabetic mice showing impaired regres-
sion after lipid lowering because of increased monocyte 
recruitment.103 These findings in different murine models 
of regression reveal that many different pathways posi-
tively affect the regression of established plaques. They 
also highlight that despite robust apoB lipoprotein lower-
ing, plaques did not regress completely, providing evidence 

for additional unidentified mechanisms that contribute to 
residual inflammatory risk during regression exist.

A defined function of macrophages is their effero-
cytotic capacity, an essential process for the resolution 
of inflammation and plaque stabilization by reducing 
necrotic core area.132,133 Macrophage efferocytosis, refer-
ring to their ability to clear apoptotic cells and debris, is 
mediated through receptors including MERTK (tyrosine-
protein kinase MER), LRP-1 and CD47 and is regarded 
as a protective anti-inflammatory function of M2 macro-
phages.134,135 Thus, enrichment of M2 macrophages, or 
enhancement of macrophage efferocytotic capacity (eg, 
via PPAR-γ activation136), may represent a viable strategy 
to promote ASCVD regression and plaque stabilization.

Recent studies demonstrate that macrophage inflam-
matory responses and their metabolism are codepen-
dent.137 Classically activated M1 macrophages shift to 
anabolic metabolism by upregulating either glycolysis or 
the pentose-phosphate pathway, while M2 macrophages 
are fueled by oxidative phosphorylation and fatty acid 
oxidation.138 In the context of ASCVD, environmental sig-
nals including hyperlipidemia, hypoxia, and hyperglycemia 
skew macrophage polarization toward a glycolytic inflam-
matory M1-like phenotype, a macrophage phenotype of 
both unstable murine and human plaques.77,86,103,139–142 
How metabolic shifts in macrophages contribute to lesion 
progression and stability and the changes that occur after 
LDL-C lowering are currently unknown. However, pre-
clinical studies provide insight into how reprogramming of 
macrophages to an anti-inflammatory M2-like phenotype 
suppresses plaque progression. Antagonism of miR-33, 
a microRNA elevated in macrophages in progressing 
lesions, promotes regression105 and skews macrophages 
towards an M2 state, as evidenced by increased mRNA 
expression of genes encoding AMP kinase and fatty 
acid oxidation, elevated mitochondrial respiration, and 
decreased glycolysis.102 Additionally, the treatment of 
Ldlr−/− mice with the M2-polarizing cytokine IL-13 inhibits 
atherosclerosis progression, in part by its ability to skew 
plaque macrophage phenotype towards an M2 state.131

Cholesterol Efflux
During ASCVD plaque regression, reductions in athero-
genic apoB lipoproteins result in an improved HDL-C (high-
density lipoprotein cholesterol) to LDL-C ratio. Increased 
concentrations of functional HDL particles are likely to 
represent a significant contributor to ASCVD regression, 
given their ability to mediate cholesterol efflux, facilitate 
foam cell migration, and induce M2 polarization.85,120,143 In 
vitro, treatment of macrophages with HDL enhances the 
expression of M2 macrophage markers (arginase 1 and 
retnlb) in a STAT6-dependent process120 and induces the 
transcriptional regulator ATF3, a repressor of inflamma-
tion.144 Given that ATF3 activates Wnt/β-catenin signaling 
in macrophages to mediate migration,145 a process that is 



AT
VB

 IN
 F

OC
US

 - 
AL

Barrett Macrophages in Atherosclerosis Regression

26  January 2020 Arterioscler Thromb Vasc Biol. 2020;40:20–33. DOI: 10.1161/ATVBAHA.119.312802

promoted by HDL in cholesterol-loaded macrophages,146 
these data may provide further mechanistic insight into the 
beneficial effects of HDL during regression.

In vivo studies further support a role of raising levels 
of functional HDL particles during the regression phase, 
as demonstrated by studies where HDL was raised in 
transplant recipients (by transgenic overexpression of 
human apoA-I), or by infusion of HDL, and accelerated 
plaque regression.85,147 Further, in ApoE−/− mice with 
established lesions, intervention with injections of apoA-
I or statin-containing HDL particles suppressed plaque 
progression.148–150 Antagonism of miR-33, a negative 
regulator of circulating HDL levels, as noted above, also 
represents another option to promote plaque M2 macro-
phage enrichment and plaque regression.102,103,105

The beneficial role of cholesterol efflux in ASCVD 
regression is supported by preclinical LXR-focused 
studies. LXR is a transcription factor that induces the 
expression of genes involved in cholesterol transport and 
efflux151,152 and is essential for retarding atherosclero-
sis progression and promoting atherosclerosis regres-
sion.84,153 Additionally, the nonspecific efflux molecule, 
cyclodextrin, promotes atherosclerosis regression via 
LXR-mediated macrophage reprogramming to improve 
cholesterol efflux and exert anti-inflammatory effects.154

The lymphatic vasculature, localized in the adventi-
tia, may also represent an underappreciated pathway 
contributing to ASCVD regression.155 In murine models, 
the lymphatic system was shown to be a critical com-
ponent of reverse cholesterol transport, facilitating the 
effective removal of cholesterol effluxed from plaque 
macrophages.155,156 In the aortic transplant model, lym-
phatic-mediated reverse cholesterol transport accounted 
for 50% of cholesterol delivery from cholesterol-loaded 
macrophages into the plasma compartment and was 
essential for ASCVD regression.156 In mice, hypercho-
lesterolemia is proposed to induce lymphatic dysfunc-
tion and drive atherosclerosis.157,158 While it remains to be 
established whether lymphatic function is restored after 
cholesterol-lowering in mice, experimental evidence indi-
cates that during the regression phase, plaque choles-
terol content is reduced and monocyte-derived cells exit 
plaques with some reaching lymph nodes.156 However, a 
recent report indicates that the proximity of a macrophage 
to the lymphatic vasculature before lipid lowering deter-
mines its egress capacity, rather than functional changes 
to the cell.115 Whether lymphatic-mediated cholesterol 
mobilization represents a significant plaque stabilizing or 
regression-inducing pathway in humans is unknown.159

DIABETES MELLITUS IMPAIRS PLAQUE 
MACROPHAGE INFLAMMATION 
RESOLUTION
Despite advances in therapies to reduce CVD risk, patients 
with diabetes mellitus have a 2- to 4-fold higher risk of 

ASCVD and associated morbidity and mortality.66,160,161 
Notably, diabetes mellitus not only increases CVD events 
but also impairs the resolution or regression of ASCVD.161 
Consistent with the clinical data, diabetic mice have 
impaired atherosclerosis regression, as measured by the 
quantity and inflammatory state of plaque macrophages 
after aggressive lipid lowering.103,104,162,163 Diabetes mel-
litus in mice also increases monocytosis by activation of 
myelopoiesis, enhancing monocyte infiltration and plaque 
macrophage content, and impairs the polarization of plaque 
macrophages to the M2 state despite lipid lowering.86,104,164 
Recently, we considered the outcome of raising functional 
HDL in diabetic mice and established that HDL can over-
come diabetes mellitus–mediated impairments to regres-
sion by promoting a plaque M2 macrophage phenotype 
and suppressing aberrant myelopoiesis on lipid lower-
ing.103,143 In the context of regression, we ascribe the ben-
eficial effects of raising functional HDL to its cholesterol 
efflux capacity and anti-inflammatory functions—pathways 
dysregulated in both diabetic patients and mice.143

THERAPEUTIC TARGETING OF PLAQUE 
MACROPHAGES
Even with potent cholesterol reduction, many patients expe-
rience a major adverse cardiac event. This is highlighted 
by data from the FOURIER trial (Further Cardiovascular 
Outcomes Research With PCSK9 Inhibition in Subjects 
with Elevated Risk), which demonstrate that patients with 
ASCVD randomized to a PCSK9 inhibitor (in conjunction 
with statin therapy) reached a median LDL-C of 30 mg/dL; 
10% of all patients still experienced a cardiovascular event 
during a median follow-up of 26 months.165 These data, 
along with other trials, of potent LDL-C lowering, demon-
strate that lowering cholesterol alone is not sufficient to 
completely reduce ASCVD-associated morbidity and mor-
tality.70,166–170 While robust LDL-C lowering is maintained 
with PCSK9 inhibitors and may induce ASCVD regression, 
the degree of regression is limited.70 Residual inflammatory 
risk has emerged as a mechanism predisposing individuals 
to cardiovascular events, which remains even after aggres-
sive LDL-C lowering therapies in humans.22,72,73 Addition-
ally, even in mice, aggressive LDL-C lowering does not, in 
most cases, lead to the complete regression of lesions (eg, 
74,143). Indeed, maximal plaque regression did not occur if a 
decrease in macrophage inflammation was prevented at 
the same time lipid levels were lowered.74 In combination 
with lipid lowering therapies, specific targeting of plaque 
macrophage-mediated inflammation may represent a 
viable option to reduce residual inflammatory CVD risk in 
humans and accelerate plaque regression in both humans 
and mice. Namely, therapies that reduce plaque macro-
phage content by promoting macrophage efferocytosis, 
emigration, or polarization to a pro-resolving phenotype are 
likely to have beneficial clinical outcomes when coupled 
with optimal medical therapies.



ATVB IN FOCUS - AL
Barrett Macrophages in Atherosclerosis Regression

Arterioscler Thromb Vasc Biol. 2020;40:20–33. DOI: 10.1161/ATVBAHA.119.312802 January 2020  27

Current preclinical efforts have included the targeted 
delivery of LXR agonists to reduce plaque macrophage 
inflammation and promote cholesterol efflux (eg, Guo et 
al171 and Yu et al172). While the benefits of LXR-pathway 
activation are appreciated, preclinical studies have not 
translated well clinically, as synthetic LXR ligands strongly 
activate sterol regulatory element-binding protein 1c, induc-
ing hypertriglyceridemia.173 Recently, however, desmosterol 
and synthetic desmosterol mimetics were shown in vivo to 
specifically target LXR pathways in macrophages and have 
minimal effects on hepatocytes, providing a potential new 
therapeutic strategy.174 In addition to reducing plaque lipid 
content, increased cholesterol efflux would be expected 
to favorably affect the inflammatory state of macrophages 
and enhance their ability to emigrate.89,146

Preclinical and clinical observations indicate that 
the reprogramming of plaque macrophages to an anti-
inflammatory M2 phenotype will promote ASCVD regres-
sion and plaque stabilization. Treatment of Ldlr−/− mice 
with helminth-derived antigens, a eukaryotic parasitic 
worm that strongly induces anti-inflammatory, immune 
responses, was found to suppress myeloid cell activation, 
intraplaque inflammation (TNF-α, MCP-1) and reduce 
the recruitment of macrophages to lesions.175 These 
studies raise the interesting hypothesis that helminth-
derived components or alternate strategies to induce M2 
polarization may provide novel opportunities to mediate 
ASCVD regression and reduce systemic inflammation.176

During ASCVD regression, the balance of M1 and M2 
macrophages switches, with M2-like macrophages more 

Figure. Dynamics of macrophage plasticity and trafficking in atherosclerosis. 
Atherosclerotic lesions are characterized by proinflammatory macrophages which sustain lesion growth by contributing to local and systemic 
plaque inflammation. Atherosclerosis development and macrophage dysfunction is accelerated during hypercholesterolemia (high LDL-C [low-
density lipoprotein-cholesterol), and hyperglycemia. Atherogenic lipid-lowering remodels lesions towards a stable phenotype, a process driven 
mainly by macrophages. Broad changes in the plaque macrophage transcriptome are characteristic of atherosclerosis regression, most commonly 
distinguished by enrichment of M2-associated transcripts. The dynamic change in plaque macrophage phenotype raises the possibility that 
inducing of macrophage polarization potential in vivo will represent a viable therapeutic option for atherosclerotic cardiovascular disease regression 
and suppress residual inflammatory risk.
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predominant. The role of metabolic shifts in determining 
the phenotype of macrophages in lesions and how this 
alters in response to cholesterol-lowering is an area of 
active research. Further research to decipher what induces 
metabolic and epigenetic reprogramming in plaque mac-
rophages, and factors that promote or inhibit macrophage 
polarization in vivo (ie, mitochondrial function, inducible 
glycolysis inhibitors177,178) will likely translate to new thera-
peutic opportunities to promote ASCVD regression.

VACCINE-MEDIATED SUPPRESSION 
OF PROINFLAMMATORY IMMUNE 
RESPONSES
Plaque macrophages and dendritic cells can function as 
APC (antigen-presenting cells) to activate members of 
the adaptive immune system including T and B cells, and 
evidence of APC-T cell interaction suggests antigen-
specific immune activation through immune synapses 
in the plaque.179 The interaction of plaque macrophages 
with T cells is increasingly recognized to alter macro-
phage and plaque inflammation, as factors secreted by 
T helper type 1, Th2, and regulatory T cells (Tregs) can 
differentially skew macrophage phenotype.180 Tregs can 
dampen effector T cell responses by secretion of anti-
inflammatory cytokines,181–183 promote the polarization of 
M1 macrophages to M2 macrophages by secretion of 
IL-10, and reduce macrophage lipid accumulation.184,185

The beneficial effects of Tregs to influence mac-
rophage phenotype indicate that therapies promoting 
endogenous and antigen-specific Treg activity may alle-
viate plaque inflammation. In the context of atherosclero-
sis, the primary antigens identified to be responsible for 
triggering T cell activation are epitopes of oxLDL (oxi-
dized low-density lipoprotein),186 apoB-100,187 and HSP 
(heat shock protein) 60/65.188 Research into immuniza-
tion with antigenic proteins and peptides for the resolu-
tion of ASCVD by balancing pro- and anti-atherogenic 
T cell responses is currently confined to preclinical 
studies.189,190 This approach, however, holds promise as 
atherosclerosis-relevant antigens have been shown to 
induce antigen-specific Tregs and be atheroprotective in 
mice.191 These studies provide optimism that a therapy 
that restores tolerance to autoantigens may represent 
a viable strategy to reduce residual inflammatory risk in 
humans with ASCVD and promote ASCVD regression by 
polarizing macrophages to a tissue reparative state.

CONCLUSIONS
We increasingly recognize that on lipid lowering, macro-
phages can modulate plaque progression, regression, rup-
ture, erosion, or stabilization. Detailed knowledge of how 
macrophage physiology contributes to clinical outcomes is 
essential to understand processes that promote macrophage 

pro-resolving characteristics. Further research is necessary 
to identify gene-expression profiles and transcriptional 
regulators of macrophage phenotype and function and rec-
oncile how divergent plaque macrophage phenotypes (ie, 
M1, M2, Mhem, Mox, M4, and Tremhi) contribute to ASCVD 
stability. Currently, pro-resolving macrophages that partici-
pate in efficient efferocytosis, tissue remodeling, migration, 
and suppression of inflammatory processes are considered 
optimal for atherosclerotic regression (Figure). Thus, the 
development of therapeutics to enrich this phenotype may 
reduce cardiovascular morbidity and mortality by resolution 
of residual inflammatory risk.

Additionally, despite preclinical models playing a crucial 
role in expanding our understanding of the heterogeneous 
nature of plaque macrophages, it is essential to ascertain 
how these findings translate to human pathophysiology. 
Translation to humans is essential given that the events 
that precipitate myocardial infarction, stroke, and acute limb 
ischemia (eg, plaque erosion and rupture), do not occur 
in current murine models. Recent advancements in lipid 
lowering therapies, which facilitate robust and sustained 
LDL-C reductions, are likely to increase our understand-
ing of changes to plaque composition during regression. 
Additionally, an increased understanding of the role of 
macrophages in human ASCVD through omics studies and 
characterization of human tissue are anticipated to recon-
cile murine and human ASCVD and facilitate the develop-
ment of strategies to promote ASCVD regression.
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