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Abstract
Microblogs generate a vast amount of data in which users express their emotions regarding almost all aspects of everyday life.
Capturing affective content from these context-dependent and subjective texts is a challenging task. We propose an intelligent
probabilistic model for textual emotion recognition in multidimensional space (TERMS) that captures the subjective
emotional boundaries and contextual information embedded in a text for robust emotion recognition. It is implausible with
discrete label assignment;therefore, the model employs a soft assignment by mapping varying emotional perceptions in a
multidimensional space and generates them as distributions via the Gaussian mixture model (GMM). To strengthen emotion
distributions, TERMS integrates a probabilistic emotion classifier that captures the contextual and linguistic information
from texts. The integration of these aspects, the context-aware emotion classifier and the learned GMM parameters provide
a complete coverage for accurate emotion recognition. The large-scale experimentation shows that compared to baseline and
state-of-the-art models, TERMS achieved better performance in terms of distinguishability, prediction, and classification
performance. In addition, TERMS provide insights on emotion classes, the annotation patterns, and the models application
in different scenarios.

Keywords Emotion recognition · Text classification · Valence-Arousal · Gaussian mixture model · Emotion distribution ·
Subjectivity

1 Introduction

With the emergence of social media, a vast amount of
big heterogeneous data is generated on various platforms,
where users express their opinions regarding almost all
aspects of everyday life. An essential piece of information
that could be extracted from this user-generated data is the
emotional content, which provides very expressive aspects
of human lives [1]. In big heterogeneous data (texts, images,
videos, and audio), the text is one of the most abundant
and effective mediums for understanding emotions. It
is succinct in the expressing of opinions; for example,
microblogs contain a high density of relevant, sentiment-
bearing terms that are readily accessible [2]. In microblogs,
such as those found on Facebook and Twitter, emotions
are expressed via short and direct text messages containing
individual opinions that make them particularly valuable
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sources of information for effective emotion recognition [3].
Mining emotions from these large volumes of textual
opinions in microblogs can provide expressive information
for understanding collective human behavior that can be
extremely valuable in many domains, such as product
review analysis [4], marketing campaigns [5], political
stance detection [6, 7], healthcare [8, 9], stock market
analysis [10] etc. Therefore, intelligent textual emotion
recognition systems applicable to microblogs are highly
desirable.

A great deal of research has been conducted on emotion
recognition and the classification of microblog texts,
which can be broadly categorized into two computational
directions: deterministic and dimensional models [11].
Deterministic models use a discrete and finite set of emotion
labels that most fit a given text, based on the strength of
the predicted emotion [12, 13]. Such discrete emotion labels
are generally taken from pioneering models, such as those
of Ekman [14] and Plutchik [15] that specify the primary
emotions.

However, the deterministic approach associates each text
with a discrete label without the attribute of personaliza-
tion; in other words, it does not capture personal differences
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as the definition of emotions can differ for each individual
based on their background and culture. Dimensional mod-
els, on the other hand, are flexible in personalizing emotions
in terms of valence, arousal, and other dimensions. The
dimensional models project each emotion as coordinates in
a space of continuous dimensions of valence and arousal as
numerical values. Valence (x-axis) represents the pleasant-
ness of a stimulus, and arousal (y-axis) shows the intensity
of an emotion provoked by a stimulus [16, 17]. Any affec-
tive experience can be expressed as a combination of these
two independent dimensions, which is then interpreted as
representing a particular emotion [18]. This method enables
a personalized and quantified analysis as the emotions are
projected in a multidimensional numeric space, which is
effective and useful for analyzing the fuzzy boundaries for
different emotion features.

The texts on microblogging sites are usually written in
a casual style in which the short length and inconsistent
language make it difficult to completely recognize and
predict the affective information [3]. We anticipated that
dealing with informal and ambiguous texts would be crucial
in designing a model for accurately identifying emotions
in microblogs. Designing such a model, however, is fairly
challenging because of the following reasons [19]. First,
user-generated text in a microblog may contain linguistic
variations and contextual information. For instance, in the
text “Thanxxx mom for cooking the same meal every day,”
the word “thanxxx” is a linguistic variation of thanks,
which requires an understanding of the semantic similarity
between the two terms. In addition, the term “thanks” is
usually associated with joy or a positive sentiment, but
in this instance, it refers to an annoyance. Therefore, to
accurately classify the user’s intended emotions, it is crucial
to consider contextual information. Second, user-generated
text in a microblog can be highly opinionated and subjective
in nature, where users may perceive different emotions from
the same text [20, 21]. For example, the text “the virus is
spreading” can communicate emotional states of both fear
and sadness, which is partially dependent on the reader’s
state of mind. Therefore, capturing the varying emotional
perceptions and fuzzy emotional boundaries is essential for
personalized and complete coverage of possible emotional
content embedded in a text.

To address this problem, we propose a probabilistic
model for textual emotion recognition in multidimensional
space (TERMS), which takes the contextual information
and subjective nature of the microblog text into account for
emotion recognition. The contextual information requires
additional details from a text to interpret the given
information such as the topic, structure, patterns and
sentiment orientation. In view of this, TERMS introduces
a probabilistic context-aware emotion classifier that takes
syntactic structure and semantic meaning of a text into

account to expose the relevant contextual and linguistic
information. The syntactic structures automatically captures
the pattern of the text via a graph-based algorithm
and further enriches them with embeddings to gather
semantic content. Second, to cater to the subjectivity
of emotions, it is known that emotional perceptions are
inherently subjective and cannot be covered by a single
point or discrete emotion label. Therefore, we consider
varying perceptions and generate them as distributions. A
distribution is the exhibition of multiple perspectives and
better reflects the nuances of emotion content embedded in
a text. TERMS maps the multiple emotional perspectives
of every single text as distributions (numerical values) into
a multidimensional space, which better personalizes the
emotion variations. TERMS models the subjective emotion
content of the text as a probabilistic emotion distribution
through a Gaussian mixture model (GMM) and learns its
parameters for a soft assignment. To effectively recognize
emotions, TERMS integrates the proposed context-aware
emotion classifier and the GMM modeled probability
emotion distribution to describe the emotions thorough
low-level textual feature space and high-level emotion
space, respectively. Moreover, due to its probabilistic and
generative nature, TERMS is conveniently scalable, and
assigns soft labels in a multidimensional space.

To our knowledge, a model of this kind that caters
to subjectivity by parameterizing emotion distributions
in an emotional space has been only applied to music
excerpts [22, 23] and speech [24]. Modeling texts has been
challenging due to their single modal nature that does not
provide added information of tone, expression and prosody
to understand the full emotional content as compared to the
rich representation of music and speech. The challenges are
further escalated owing to microblogs’ self-focused topics,
short and informal writing format. For microblog texts, the
TERMS integrated approach is a novel attempt to model
varying perspectives as distributions in emotion space. We
cater to these challenges through a context-aware classifier
and personalized emotion distributions in TERMS. The
main contributions of the article are summarized as follows:

– We propose TERMS, a probabilistic model for textual
emotion recognition in multidimensional space, which
takes the contextual information and subjective nature
of a microblog’s text into account.

– We propose the soft modeling of the affective content
in a multidimensional space by parameterizing the
emotion distribution through a GMM, which provides
insight into dealing with subjectivity and indistinct
emotional boundaries.

– TERMS integrated approach enhances emotion recog-
nition by estimating emotional weightage combined
with multiple emotional perceptions for each text, thus
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taking complete advantage of both the models, deter-
ministic and dimensional.

– We annotated our collected data by different annotators
in order to conduct large-scale simulations to evaluate
the performance of TERMS. Our simulation results
show that compared to baseline and state-of-the-
art models, TERMS achieves better distinguishability,
prediction, and classification performance.

The rest of the article is organized as follows. Section 2
summarizes the related work. Section 3 presents the
overview, preliminaries, and the proposed probabilistic
TERMS model. Section 4 describes the evaluation, compar-
ative models, performance metrics, setup, and the overall
results. Section 5 discusses the predicted results and the
impact of annotators’ number on model’s prediction perfor-
mance and Section 6 concludes the paper.

2 Related work

Affective computing is an established research field that
is burgeoning due to its relevance in many application
domains desiring the feature of emotion recognition from
different forms of user-generated data such as texts, music,
speech, and images [11]. Two of the driving interrelated
factors in this flourishing field are social networks and
microblogs. Microblogs provide an effective platform for
emotion recognition as they provide a wide variety of self-
focused topics published in real time [2]. The texts are
explicit and succinct with relatively clear projections of
users’ emotions. The focused nature and higher density
of affective terms make these platforms highly useful for
emotion recognition as compared to topic-based platforms,
such as product and movie reviews [3]. The work on
microblog text emotion recognition can be broadly divided
into two categories, deterministic and dimensional models.
We provide a comprehensive survey on these two categories
in this section.

2.1 Deterministic models

There is a substantial well-vetted body of research on
microblog emotion recognition, which focuses on classify-
ing texts into a set of discrete emotion classes [25, 26].
Deterministic models utilize supervised, unsupervised, or
semi-supervised methods by employing statistical models,
such as machine learning and deep learning.

Using machine-learning models, Meo and Sulis [12]
considered structural and lexical-based features from text
to automatically identify affective content and compared
the results with latent factors and traditional classifiers.

Suttles and Ide [27] recognized emotions from texts based
on Plutchik’s eight emotional classes by applying distant
supervision. Perikos and Hatzilygeroudis [28] used an
ensemble classifier schema by combining knowledge-based
and statistical machine-learning classification methods for
the automatic identification of emotions in text. Symeonidis
et al. [29] applied soft computing techniques, namely NB,
support vector machines (SVM), logistic regression, and
convolution neural networks (CNN) for analyzing emotions.
Recent significant additions in emotion classification
domain are two of the largest and dynamic emotion
corpora, GoEmotions and Vent [30, 31]. GoEmotions is
the manually annotated dataset for 58k English Reddit
comments, labelled for 27 emotion categories by the
readers [30]. Likewise, the Vent dataset contains more than
33M comments from the social media sites, tagged with 705
emotions explicitly by the writer [31]. These datasets are
widely being used in the recent academic works [32, 33].

Regarding research with deep learning models, the per-
formance of textual emotion recognition tasks is enhanced
due to statistically rich and granular framework of deep
learning models [34]. Abdul-Mageed and Ungar [13] pro-
posed a model named Emonet to predict emotions into
eight emotional classes based on the gated recurrent neural
networks algorithm (GRNN). Another renowned emotion
prediction model is DeepMoji presented by Felbo et al. [35],
which was trained on billions of emoji-labeled tweets for
affective modeling and recognition. Rosenthal et al. [36]
identified the sentiment of tweets as per the challenge
of SemEval-2017 Task 4: Sentiment Analysis in Twitter.
The same series provided SemEval-2018 Task 1: Affect in
Tweets, a challenge that organized a subtask of multi-label
emotion classification in which teams used state-of-the-art
methodologies to predict emotions from microblog affec-
tive content [37]. Zhang et al. [38] implemented a multi-
layer CNN with an attention mechanism that modelled
context representations to perform target-dependent senti-
ment classification. Sadr et al. [39] proposed a multi-view
deep network that takes into account intermediate features
extracted from convolutional and recursive neural networks
to enhance classification performance. The deep-learning
models are effective; however, they require complex com-
putations and extensive training data for better performance,
while our proposed model is relatively simple and performs
well even on limited data.

2.2 Dimensional models

Another significant way to represent affective states is
dimensional models, which provide a continuous fine-
grained alternative for conducting affective text analy-
sis [11]. These models contribute in understanding the
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conveyance of emotions through language and how the emo-
tional dimensions influence people’s behaviour [40]. Rus-
sell [41] proposed a dimensional representation model of
affect, named the circumplex model, that distinguishes three
components: valence, arousal, and dominance (VAD). Stud-
ies have shown the modeling of affective states on a valence
and arousal map by adopting varying machine-learning
approaches [16, 42] and lexicon-based methods [43, 44].
Hasan et al. [45] present a model for real-time emotion
tracking by employing [46] and developing an Emo-
texStream framework. Preotiuc-Pietro et al. [18] predicted
valence and arousal on Facebook posts by performing lin-
ear regression and released an expert annotated dataset.
Mohammad and Bravo-Marquez [47] provided the first
emotion intensity dataset (EmoInt) using a best-worst scal-
ing technique. Buechel and Hahn [17, 48] published a
benchmark dataset called Emobank (10548 sentences) in
which each sentence was manually annotated on the VAD
dimensions. Recent studies proposed frameworks that learn
from Emobank, the categorical emotion annotations cor-
pus to predict continuous VAD scores [49, 50]. Cheng
et al. proposed a Bi-directional Long Short-Term Memory
(BiLSTM) model that identifies and forecasts the sentiment
information in terms of VA-values and integrated it into a
deep learning model to optimise Government social man-
agement [51]. Another recent experimental work aimed at
testing the role of five emotions (valence, arousal, dom-
inance, approach-avoidant, and uncertainty) on the inter-
vention effect of the Learning Mindset study [52]. The
SemEval-2018 Task 1: Affect in Tweets challenge asked
for the prediction of intensities (arousal) and valence from
a stream of texts in terms of regression and ordinal clas-
sification [37, 53]. The winning team [54] proposed a
unified architecture for both subtasks by using an ensem-
ble of multiple prediction models and heterogeneous feature
extraction methods. Dimensional models provide useful
measures of emotions; however, they are unable to capture
varying perceptions of emotions, which are subjective and
might differ regarding the affective content of the same text.

To address the subjective nature of emotion perceptions,
the extension of VA-based models were proposed where the
representation of emotions was transformed to probability
distributions from points on VA-emotional space [55]. In
view of this, recent studies used Gaussian parameter-based
approaches to estimate emotion distributions on the VA-
space that take into account covariance information along
with the mean [22, 56]. This approach estimates emotion
distribution as a Gaussian with integrated methods. Zhao
et al. [57] presented a work that predicts an image’s
continuous probability distribution by using a GMM in a
VA-space. Another work by Sun et al. [58] aimed to unify
discrete and dimensional emotion models by introducing
a typical fuzzy emotion subspace for affective video

content analysis. Gaussian distributions in dimensional
models have also been widely applied in music-listening
behavior analysis [22, 23, 59]. In the work conducted by
Wang et al. [22], an acoustic GMM was employed to
classify music with the utilization of valence and arousal,
which increased the accuracy of acoustic classification.
Applications of such an approach have also been widely
adopted for speech emotion recognition [24, 60, 61].
However, to our knowledge, the Gaussian parameter-based
approach has not been applied to microblog texts, which
motivated us to personalize this approach for textual
emotion recognition. The transformation in mediums has
been challenging due to the single modal nature of texts that
contain little information to apprehend underlying emotions
and intensities relative to speech and music, which are
enriched with emotional cues such as tone, expression,
accent, prosody etc. The single-mode of information can
impact the classification task and annotations. We address
this issue by proposing a context-aware emotion classifier
with a GMM in the VA-space, which captures the nuances
of embedded emotions and varying perceptions in a text.

3 The probabilistic TERMSmodel

For the purposes of this discussion, the text in a microblog
refers to a single statement posted by a locutor. A locutor
in this article refers to the person who is writing a text. The
text is an expression that reflects the emotionl state of the
locutor. The text can be a thought, mood, or an opinion of a
locutor based on his or her prevailing emotional state. The
emotions relevant for this study are the emotions felt by
the locutor that were embedded in the writing of the posted
text. The proposed model aims to recognize these embedded
emotions from the texts.

The texts posted on microblogs are enriched with emo-
tions, which are seemingly succinct and straightforward. It
can be assumed or misunderstood that these explicit texts
can be conveniently assigned eight emotion classes defined
by Plutchik [15]. The emotional classes are anger, anticipa-
tion, disgust, fear, joy, sadness, surprise, and trust. However,
a given tweet contains complex granular details and is
embedded with (i) contextual information and (ii) multiple
perspectives; thus, it is not easy to classify a microblog’s
text with a straightforward emotion allocation approach.

This study proposes solution to these problems starting
with preliminaries in Section 3.1. TERMS is designed
to address these problem through three major modules.
The first module textual emotion classification (EmoClass)
solves the first issue with the help of a context-aware
classifier that estimates the emotion probabilities for each
class based on syntactic templates and word embeddings
(elaborated in Section 3.2). To handle the second issue,
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TERMS proposes emotion GMM (EmoGMM) that maps
the multiple perspectives of each tweet into VA-space via
a GMM and learns its parameters (detailed in Section 3.3)
and lastly, the third prediction module jointly exploits the
emotion probability and the learned parameters of the GMM
to predict the emotion distribution of the text. This is clearly
explained in Section 3.4.

3.1 Preliminaries

Before introducing the details of our approach, we highlight
a few notable concepts that are useful in understanding it.
For clarity, the notations used are explained in Table 1.

We denote the microblog texts as X =
{x(1), x(2), . . . , x(N)}, where x(i) ∈ R

M represents an
M-dimensional feature vector of a tweet i. Let z be
the associated discrete emotion or affective state, where
z ∈ {1, 2, 3..., K}. Consider that (v, a) represents a pair of
valence and arousal values (or simply, VA-value), where v

denotes a valence value and a represents an arousal value.
Since each individual tweet is rated by different annotators
for diverse perspectives (as explained in Section 4.1); we
thus denote the valence and arousal ratings (or simply, VA-
ratings) by y = (v, a). y is the position of the text x(i) on
the multidimensional VA-space.

Let g(θ) be an arbitrary probability density function
(PDF), parameterized by θ . If the valence and arousal
ratings y = (v, a) obey the PDF g(θ), then an emotion
distribution is defined as follows:

y ∼ g(θ). (1)

Since the emotions defined in VA-space are described by
a distribution, (1) can be expressed via a mixture model as

Table 1 Notations’ Table

Notation Description

X Feature vector of all texts

x(i) Feature vector of text i

g(θk) Emotion distribution for emotion k

πk Mixing coefficient for emotion k

μk Mean of k-th emotion distribution

�k Covariance matrix of k-th emotion distribution

N Gaussian distribution

Y Labelled valence and arousal dataset

y
(i)
j The i-th text rated by j -th annotator

NAi Number of annotators for text i

L Labelled dataset of texts and VA-ratings

μpre, �pre Predicted mean and covariance for a text

K Number of emotional classes

follows:

p(y) =
K∑

k=1

πkg(θk), (2)

which illustrates that the emotion distribution of a text
is a linear combination of K emotion probabilities, where
g(θk) is the k-th emotion distribution, termed as the k-
th component of the mixture. πk is called the mixing
coefficient, representing the emotion probabilities of the
k-th component.

To combine these distributions, we employ the widely
used GMM that combines the K Gaussian distributions, also
referred to as mixtures of Gaussians. On this account, g(θk)

is specified as a bivariate Gaussian distribution as it maps
emotions into a two-dimensional VA-space. The reasons
for employing the GMM are as follows: (i) the GMM is
able to approximate almost any continuous PDF to arbitrary
accuracy by using a sufficient number of Gaussians (K)
and by adjusting their parameters (θk) as well as the
coefficients (πk) [62]; and (ii) the continuous text ratings
are well modeled by the GMM, considering they follow a
bivariate Gaussian distribution. To verify (ii), we tested if
the VA-ratings of each text from different annotators were
similar to the bivariate Gaussian distribution. The Mardia
multivariate normality test [63] with a significance level of
0.05 was performed on our data to determine the adequacy
of the GMM for modeling the emotion distributions. The
results achieved were 100%, asserting that all the texts were
similar to the bivariate Gaussian distribution, thus making
the GMM an obvious and favorable choice.

Technically, TERMS follows a graphical approach with
the form X → z → y. X → z is carried out via textual
emotion recognition through our proposed classifier that
outputs the posterior probability of texts into selected
affective classes z (as detailed in the next section).
z → y is the emotion GMM modeling on a VA-space.
It maps the associated emotion classes z into VA-space
by parameterizing emotion distributions (as described in
Section 3.3). The process flow of the TERMS probabilistic
model is demonstrated in Fig. 1.

3.2 Textual emotion classification (EmoClass)

To classify the microblogs texts into emotions, X → z, we
propose a classifier named the Emotion Classifier (EC). that
outputs the posterior probability of the texts into selected
affective classes z, as in (3). Adding posterior probabilities
to emotion distributions would enrich the distributions with
linguistic and contextual information.

p(z = k|x(i)) ∼ EC. (3)

We refer to the probabilities accumulated from the texts
by the emotion classifier as the emotion probability. This
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Fig. 1 An illustration of the TERMS probabilistic process. EmoClass
is a textual emotion classification module that outputs emotion prob-
abilities for each text into specified affective classes. EmoGMM is an
emotion GMM modeling that takes in the probabilities and combines

them with VA-ratings to parameterize emotion distributions in a VA-
space. The prediction module employs a single affective Gaussian on
weighted GMMs to predict an emotion distribution for each unseen
text

part of the TERMS model is referred to as textual emotion
classification, or EmoClass. In the following, we explain
the proposed emotion classifier.

Emotion Classifier: To estimate the emotion probabilities
p(z = k|x(i)), we generalize an emotion classifier from
our previous works, Saravia et al. [64, 65]. We employ this
classifier as it provides an in-depth contextual information
through syntactic templates. For a given text, the classifier
assigns probabilities to each associated emotion class z,
according to affinity based on the context-aware emotion
pattern extracted from the text. Specifically, it is a graph-
based algorithm, which constructs syntactic templates from
the corpus to extract context-aware emotion patterns. We
refer to these features as context-aware as they take syntactic
structures and semantic meaning of a text in account to
construct pattern-based emotion features. The syntactic
structures offered by a graph construction is useful to
automatically expose the relevant linguistic information
(i.e., contextual and latent information) from a large-
scale emotion corpus, whereas to capture and preserve
the semantic relationships between patterns, we implement
word embeddings on the extracted patterns. This is followed
by emotion probability computation, where each pattern is
assigned a weight. The weight identifies the relevance of a
pattern to an emotion category. In the context of emotion
classification, patterns and their weights play the role of
features.

The graph-based emotion feature extraction algorithm is
summarized in the following steps:

a) Graph construction. Given an emotion corpus, we
construct a graph G(V ; A), where vertices V are
a set of nodes that represent the tokens extracted
from the corpus, and edges, denoted as A, represent

the relationship of words extracted using a window
approach [65]. This will help to retain the syntactic
structure of the data. For an arc ai ∈ A, its normalized
weight can be computed as:

w(ai) = f req(ai)

maxj∈Af req(aj )
, (4)

where f req(ai) is the frequency of arc ai .

Token categorization. To extract the emotion patterns,
we divide the syntactic structures into two families
of words, connector words (cw) and subject words
(sw). This provides the foundation for extracting
context-aware emotion patterns as the structures are the
sequences of these words. The sw correspond to the
words that are high on subjective content, while cw

reflect the most frequent words in a text that have high
connectivity to influential nodes. To find the cw, we use
eigenvector centrality, and to estimate sw, we compute
the clustering coefficient elaborated in [65].

Pattern extraction. The syntactic templates constructed
based on the cw and sw are applied to the dataset,
resulting in the patterns. The subject words in the
extracted patterns are replaced with an asterisk (“*”), a
proxy to cater to linguistic nuances and unknown words
that are not present in the training corpus. Furthermore,
it enhances the applicability of the model to other
domains as well.

b) Enriched patterns. The extracted patterns are enriched
with word embeddings to make them pertinent for
emotion classification and to capture the perspectives
and semantic relationships between patterns. We
employ agglomerative clustering to link the patterns
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to relevant clusters based on the sw component. The
details of this procedure can be found in [65].

To this end, the resulting enriched patterns con-
tain both the semantic information provided by the
word embeddings and the contextual information
gained through the graph components, hence providing
context-aware emotion patterns.

c) Emotion probability. The enriched emotion patterns
are then weighted with respect to each emotion
category. It exhibits how relevant a pattern is to the
respective emotion category. This outputs the score of
each emotion for a given text. We refer to score as the
emotion probability. It is computed as follows:

p(z = k|x(i)) ← exp(−tsk)∑K
k=1 exp(−tsk)

, (5)

where sk is the score of emotion k computed
with a customized version of term frequency-inverse
document frequency (tf-idf) proposed in [65], and K is
the number of emotions. t is an adjusting coefficient
that scales the scores, 0 < t ≤ 1.

3.3 Emotion GMM (EmoGMM)

The subjectivity in emotion perceptions is inherent and
can be summarised as emotion distributions. The emotion
distribution in the VA-space is described as a bivariate
Gaussian distribution with {μk, �k} as its parameters
associated with emotion k as

y ∼ N (μk, �k) (6)

Since the distribution of y given an emotion class z = k

is Gaussian, by following [22] for the rest of analysis, we
have

p(y|z = k) ∼ N (μk, �k), (7)

where the parameters μk and �k are associated with the k-
th emotion class as well. This transformation of z → y in
the VA-space is a second module in TERMS, referred to as
EmoGMM . It maps the associated emotion classes z into
VA-space by parameterizing the emotion distributions.

The probability density function for y is then given by
the following:

p(y) =
K∑

k=1

πkN (y|μk, �k), (8)

where πk is a mixing coefficient, which we reparameterize
as

πk = p(z = k|x(i)). (9)

πk is set as the computed emotion probability (5) from
EmoClass. It is used as the weighted mixing coefficient for
modeling EmoGMM. We interpret it as the probability of
emotion k for a given text.

For any given text, the emotion distribution is denoted
as p(y|x(i)). An emotion distribution would be a weighted
combination of {N (μk, �k)}Kk=1 that uses p(z = k|x(i)) as
the weights. Accordingly, by combining (5), (8), and (9), the
emotion distribution of y given text x(i) is

p(y|x(i)) =
K∑

k=1

N (y|μk, �k)p(z = k|x(i)), (10)

where {p(z = k|x(i))}Kk=1 is the weight of the k-th emotion
for a given text x(i), stating the emotion probabilities com-
puted via the proposed emotion classifier. The computed
z = k connects the EmoClass to an emotional space by
parameterizing the emotion probabilities with a GMM. The
process of training a GMM with emotion probabilities as
input is referred to as EmoGMM (see Fig. 1). This learning
process requires annotated VA-ratings of texts for the GMM
estimation, where each text is labeled by multiple anno-
tators. With those VA-ratings and emotion probabilities,
{μk, �k}Kk=1 can be estimated by the expectation maxi-
mization (EM) algorithm [66]. The EM algorithm has been
widely adopted to parameterize emotion distributions for
music and speech, but rarely employed to map emotional
perceptions in VA-space for a text.

The EM algorithm aims to solve the latent parameter
estimation problem in a numerical way. It first computes
possible values for the parameters to be estimated by taking
expectations on all the known variables, which is called
the E-step, and secondly, the M-step maximizes the log-
likelihood function with the possible values computed in
the E-step. Thus, a clear form of the likelihood function is
provided for applying the EM algorithm.

We denote y
(i)
j as the i-th text rated by the j -th annotator.

Y (i) = {y(i)
1 , ..., y(i)

NAi
} is the set of VA-values rated by the

annotators, in which NAi is the number of annotators for
text i. Such VA-values are provided by the annotators for all
N texts. Let L = {x(i), Y (i)}Ni=1 denote the entire annotated
dataset.

We first derive the general form of the posterior
probability of z = k given y, denoted as follows:

p(z = k|y) = p(z=k)p(y|z=k)
p(y,z=k)

,

= p(z=k)p(y|z=k)∑K
i=1 p(z=i)p(y|z=i)

,

= πkN (y|μk,�k)∑K
i=1 πiN (y|μi ,�i )

.

(11)
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In the E-step, according to (11), we compute the posterior
probability given y

(i)
j , as follows:

p(z = k|y(i)
j ) = p(z = k|x(i))N (y

(i)
j |μk,�k)

∑K
j=1 p(z = k|x(i))N (y

(i)
j |μj , �j )

. (12)

In the M-step, the updating forms for the mean vector and
covariance matrix are as follows:

μnew
k ←

∑
i,j p(z = k|y(i)

j )y
(i)
j

∑
i,j p(z = k|y(i)

j )
, (13)

�new
k ←

∑
i,j p(z = k|y(i)

j )(y
(i)
j − μnew

k )(y
(i)
j − μnew

k )T

∑
i,j p(z = k|y(i)

j )
.

(14)

Thus, (12), (13), and (14) are the iteration forms for
estimating {μk, �k}Kk=1. We use μnew

k and �new
k to compute

the log-likelihood function to check if it converges. The
general form of the log-likelihood function is given by

� = log
N∏

i=1

NAi∏

j=1

p(y
(i)
j |x(i)),

=
∑

i,j

log
∑

k

N (y
(i)
j |μk, �k)p(z = k|x(i)). (15)

The pseudocode of the EM algorithm for estimating
the EmoGMM parameters by the VA-ratings is shown in
Algorithm 1. The algorithm takes the emotion probabil-
ity {p(z|x(i))}Ni=1 from EmoClass and {μ0

k, �
0
k}Kk=1 as the

inputs along with the number of iterations and stopping cri-
teria and outputs the mean and covariance {μnew

k , �new
k }Kk=1

parameters of each emotion distribution. We initialize the
log-likelihood function l0 and iterative parameter r in line 1.
The learning loop computes the EM algorithm by estimat-
ing the posterior probabilities using (12) and updating the
mean vector and covariance with (13) and (14) in lines 2–6.
Line 7 halts the loop as per the stopping criteria, while line 8
shows the assignment of the computed mean and covariance
to the output parameters, which are utilized to map the emo-
tion distributions in VA-space. We implement Algorithm 1
in its standard complexity of O(NK), where N is the num-
ber of tweets and K is the number of emotion classes while
K << N .

3.4 TERMS prediction

To demonstrate emotion distribution for each text on
VA-space, this module provides statistical estimations. It
represents the outcome of the model for the unseen texts by
summarizing the weighted GMMs for each text as well as
serves as an evaluation of the performance of the emotion
distribution on the unseen texts, as shown in the rightmost
part of Fig. 1.

Consider p(z = k|xunseen) as the unseen text emotion
probability that is calculated as shown in Section 3.2, and
μk and �k are the estimation of the GMM model derived
in Section 3.3; thus, the weighted GMM for unseen text is
represented as follows:

p(y|xunseen) =
K∑

k=1

p(z = k|xunseen)N (y|μk, �k). (16)

To summarize the weighted GMM for the unseen text,
p(y|xunseen), we estimate a single affective Gaussian
represented as N(μpre, �pre) and thus approximated as
follows:

μpre =
K∑

k=1

p(z = k|xunseen)μk, (17)

�pre =
K∑

k=1

p(z = k|xunseen)(�k + μ∗
k
T
μ∗

k), (18)

where μ∗
k = μk − μpre.

The above computations indicate the position and shape
of an unseen text in the VA-space. An affective Gaussian
on the weighted GMM estimates a single mean and a
covariance, thus providing a single distribution as the
prediction outcome. This makes the evaluation between the
predicted emotion distribution and the ground truth easier to
estimate and comprehend in VA-space.
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4 Performance evaluation

In this section, we report on the performance evaluation of
TERMS that was conducted with large-scale simulations.

4.1 Data collection

For the experimental analysis, we collected data from
Twitter, where texts have rich affective content. To collect
relevant data, we retrieved sentiment-related hashtags
placed at the end of the text, which conveyed the emotion
in the text is felt by the locutor as stated in [13]. Based
on this method, after some refinement, we gathered 4000
texts from Twitter with labels that were the same as the
eight emotions in the wheel of emotion model presented
by Plutchik [15]. The eight emotion candidates were anger,
anticipation, disgust, fear, joy, sadness, surprise, and trust.
The number of affective text selections was designed to
maintain balance among all the classes of sentiments. The
statistics of the emotion distributions are shown in Table 2.

Each of the selected texts was rated with VA-values by
five different annotators who passed a sample qualification
test on Amazon Mechanical Turk (AMT), which is
considered a reliable service to obtain high-quality data
inexpensively and rapidly. The ratings by five different
annotators for each text makes the collection of 20000
rating for the given 4000 texts. We adopted [67] to design
an affective slider (AS) in the form of two slider bars to
rate valence and arousal independently. The ranges of the
valence and arousal were set as v ∈ [1, 9] and a ∈ [1, 9].
The rating interface is shown in Fig. 2.

4.2 Comparativemodels

For comparative evaluations, we tested TERMS with
baseline models as well as state-of-the-art models. We
implemented baseline models that are known to perform
well in classification tasks and had been extensively used
for emotion recognition. The baseline classifiers used for
the comparative analysis are elaborated below.

Baseline Classifiers For baseline models, we implemented
four prevalent supervised models to compute emotion
probabilities and parameterize distributions. The classifiers
employed are multinomial naı̈ve Bayes (NB) [1], support
vector machine (SVM) [16], gradient boosting (GBM) [68],
and convolution neural network (CNN) [65]. All these
approaches directly output the probability of each emotion
category for a given text; thus, their outputs were directly
used as emotion probabilities.

State-of-the-art models We also compared our model with
four benchmark studies. The first was the DeepMoji

emotion prediction model [35]. The second was that of
the winning team of the emotion classification subtask in
SemEval-2018 Task 1: Affect in Tweets challenge [37, 69].
The third study is a semi-supervised approach for valence
and arousal prediction based on variational autoencoder
model [70] and the fourth is a context-aware model for
emotion classification and sentiment score prediction [71].

DeepMoji It is an established model and has been used as
a foundation in many recent studies. It has been trained on
billions of tweets and uses the GRNN algorithm for emotion
prediction. We used the model1 available on the GitHub
platform and finetuned it with our dataset.

NTUA-SLP NBOW and NTUA-SLP LSTM The second com-
parative study is related to the SemEval-2018 Task-1 chal-
lenge, which proposed five subtasks related to intensity
(arousal) and valence detection and multi-label emotion
classification. The first four subtasks required the identi-
fication of arousal and valence scores in tweets in terms
of regression values (Subtasks 1 and 3) and ordinal clas-
sification (Subtasks 2 and 4), and the fifth subtask was
emotion classification, the assignment of multiple labels
to the tweets based on the best fit. We compared our
TERMS model with the results of the fifth subtask and
arousal and valence regression subtasks (Subtasks 1 and
3). The winning team for the fifth subtask was NTUA-
SLP [69], which also took second and fourth place in
Subtasks 1 and 4, respectively. We obtained the team’s pre-
trained model2 and implemented it on our data. The team
had implemented two approaches: NTUA-SLP NBOW and
NTUA-SLP LSTM. NTUA-SLP NBOW used neural bag-
of-words model (NBOW) with word2vec and affective word
embeddings fed into an SVM classifier. NTUA-SLP LSTM
employed a transfer learning model, which consisted of a
two-layer bidirectional long short-term memory (LSTM)
with a deep self-attention mechanism. We evaluated the
NTUA-SLP model for both the implemented approaches,
NTUA-SLP NBOW and NTUA-SLP LSTM for compara-
tive evaluation.

SRV-SLSTM It is a semi-supervised regression variational
autoencoder (SRV) that identifies VAD scores. The model
architecture consist of three modules, encoder, sentiment
prediction and decoder. Encoder uses LSTM to encode
text into hidden vectors, a sentiment prediction module
scores text via a 2-layer stacked Bi-LSTM and decoder
reconstructs the original text. We use SRV-SLSTM model

1https://github.com/bfelbo/deepmoji
2https://github.com/cbaziotis/ntua-slp-semeval2018

https://github.com/bfelbo/deepmoji
https://github.com/cbaziotis/ntua-slp-semeval2018
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Table 2 Emotion distribution statistics

Emotions Anger Anti. Disgust Fear Joy Sad. Surprise Trust Total

No. of texts 535 482 481 539 495 511 470 487 4000

publicly available at GitHub platform3 and employed it on
our dataset.

Context-LSTM-CNN (C-LSTM-CNN) The model combines the
strength of LSTM and CNN with the lightweight context
encoding algorithm Fixed Size Ordinally Forgetting (FOFE)
for emotion classification and sentiment score prediction
based on contexts and long-range dependencies. The model
used for comparative evaluation is available at GitHub
platform4.

4.3 Evaluationmeasurements

We used the following performance metrics to evaluate the
proposed TERMS and comparatives models.

Distinguishability: This shows the average distance among
the K emotions: the greater the average distance, the higher
the distinguishability of emotions. We denote the average
distance between the emotion distributions on VA-space by
AEmoD, which is computed as follows:

AEmoD = 1

Npair

K∑

i �=j

||μi − μj ||, (19)

where Npair = K(K−1)
2 , and μi and μj are the means of

emotion i and j , respectively.

Prediction Correctness: This shows the correctness of the
predicted emotions with respect to the direct observations,
which were provided by the annotators. The ratings
obtained from the annotators were averaged for each
text and used as the ground truth for the comparative
evaluation. To quantify the prediction correctness, we
used the average Kullback-Leibler (AKL) divergence,
average Euclidean distance (AED), and Pearson correlation
coefficient (PCC). The AKL divergence [72] measures the
distance and similarity between two distributions expressed
as an average difference. A smaller AKL indicates the
two distributions are similar, hence implying the predicted
emotion distribution is close to the ground truth. AKL is a
notable measure for evaluation as it takes both the mean and
covariance of distributions into account for the correctness
test. In addition to AKL divergence, we also calculated the
AED, which shows the mean square difference between

3https://github.com/wuch15/SRV-DSA
4https://github.com/deansong/contextLSTMCNN

the two emotion distributions. A smaller value of AED
indicates higher prediction correctness. PCC, denoted as
r , was utilized to measure the correlation between the
predicted emotion and direct observations. It was used with
valence and arousal independently. Differing from the AKL,
the PCC is only concerned with the position of emotion
distributions on VA-space, by measuring how close the
predictions are to the direct observations.

Classification Performance To evaluate the performance of
the classifiers employed for soft emotion classification, we
use standard evaluation metrics, such as precision, recall,
and F1-score computed with macro-averaging. The reason
to use macro-averaging for these metrics is the balanced
structure of emotion classes in the dataset. Precision (Pe)
denotes the fraction of true positives predicted in the
processed data, whereas recall (Re) measures the fraction
of true positives predicted from all the positives in the
ground truth data [61]. The F1-score is the harmonic mean
of the precision and recall. These performance metrics are
estimated as follows adapted from [37]:

Pe = No. of texts correctly assigned to emotion class e

No. of texts assigned to emotion class e

(20)

Re = No. of texts correctly assigned to emotion class e

No. of texts in emotion class e
(21)

Fe = 2 × Pe × Re

Pe + Re

, (22)

F1 − Score = 1

|E|
∑

e∈E

Fe (23)

To further validate the classification performance, the
Jaccard index is computed as in [37]. The Jaccard index
computes the accuracy of the models by dividing the
intersection size of the predicted and ground truth labels
with the size of their union as shown in (24), where t refers
to a text, Gt is the set of ground truths, and Pt is the set of
predicted labels.

Jaccard = 1

|T |
∑

t∈T

Gt ∩ Pt

Gt ∪ Pt

(24)

The described evaluation metrics are considered effective
in assessing the efficiency of classifiers and have been

https://github.com/wuch15/SRV-DSA
https://github.com/deansong/contextLSTMCNN
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Fig. 2 Valence and arousal
rating interface. Top: arousal.
Bottom: valence

used in many pioneering studies [53, 38]. We selected
these evaluation metrics as higher scores in all of them
represented higher classification performance.

Another evaluation metric that is essential to signify
the better classification performance of TERMS model
is Bayesian analysis [73]. In Bayesian analysis, the
experiment is summarised by the posterior distribution. The
posterior describes the distribution of the mean difference
of accuracies between the two classifiers. Formally,
the interval [−0.01, 0.01] defines a region of practical
equivalence (rope) for classifiers [73, 74]. By querying the
posterior distribution, we infer the probability that TERMS
is better than other comparative models, if the posterior
probability of the mean difference are positive, namely
the integral of the posterior on the interval [0.01, ∞].
Alternatively, if the mean difference is negative (interval
[−∞, −0.01]), it states the proposed model is not better,
and lastly, if over the rope interval ([−0.01, 0.01]) means
the posterior probability of the two classifiers are equivalent
[73].

4.4 Setup

Since none of the models use a GMM to map the
(elliptical) emotion distributions in the VA-space, we
utilized all the described baseline models and DeepMoji
to map the emotion distributions in the VA-space as
had been done with the TERMS model. The baseline
classifiers (NB, GBM, and SVM) use the bag-of-words
(BoW) model with term frequency features to train the
classifiers. The classifiers employed were MultinomialNB,
GradientBoostingClassifier, and SVC(linear) respectively
from the Python sklearn toolkit. For the parameter setting
of the classification models, we used GridsearchCV that
exhaustively evaluates all the parameter combinations and
retains the best combination to fit the data. For CNN, the

TextCNN algorithm with Adamax optimization is used with
word embeddings (128 dimensions) as features, batch size
100, and layers for kernel sizes 2 to 5 were included.

To train the models for emotion probability estimation,
we collected another data set with similar textual content.
The data set was gathered from Facebook and Twitter,
which, after refining, was reduced to 14350 texts. The
texts were labeled with eight emotions (as per the wheel
of emotion model) by three psychological experts from
the field and were also verified by the authors themselves.
This data set was merely used for training models in order
to compute emotion probabilities for the primary data set
(4000 texts). Once the emotion probabilities were estimated,
they were infused into a GMM like the proposed model
with the same VA-annotations for comparative evaluation.
The state-of-the-art models NTUA-SLP, SRV-SLSTM, and
C-LSTM-CNN performed the prediction of valence and
arousal in their own setting, therefore, we did not infuse
it into our model. NTUA-SLP LSTM used its multilayered
design with three main steps: word-embedding pre-training,
transfer learning, and fine-tuning. The first two steps of the
model were implemented likewise in [69]. For the transfer
learning approach, the biLSTM network with deep self-
attention mechanism was pre-trained on the Semeval 2017
Task 4A dataset (SA2017). The pre-trained model was
combined with the final layer of the model, which was
attributed to the subtasks, such as predicting valence and
arousal and multi-label classification. We have fine-tuned
the final layer of the model for our dataset with respect
to each subtask. The same 4000 rated texts were used
to fine-tune valence and arousal prediction subtasks. The
experimental settings for SRV-SLSTM and C-LSTM-CNN
had been kept same as in the original works as the models
seemed to perform best on the specified settings. SRV-
SLSTM was trained for various ratios of labeled training
data; however, it showed best performance on 40% of
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labelled data; therefore, we compared our model to those
scores. Each experiment was performed 10 times for SRV-
SLSTM and the average results were added in the paper.
The approach for C-LSTM-CNN model was modified in
a similar way to [75] in order to return the dimensional
emotion scores.

In addition, we did not assess these models (NTUA-
SLP, SRV-SLSTM, and C-LSTM-CNN) for the metrics of
distinguishability and prediction with AKL and AED, as
the model’s architectures were not designed for mapping
emotion distributions in VA-space and had their own
function for computing the VA-values. This eliminated the
need to test it in our setting and enabled us to evaluate our
model in the dynamic environment.

To evaluate the prediction performance of the TERMS
and comparative models, five-fold cross-validation was
carried out on the 4000 rated texts. The data was split into
an 80/20 ratio, where for each fold, 80% was used as the
training data, and the remaining 20% was used as the testing
data. The validation process was completed five times, with
each 20% of the set serving once as the testing data, in order
to gather the overall results.

4.5 Results

The main take-away messages and simulation results are
provided in this section. We first demonstrate results for
distinguishability, followed by prediction correctness, and
at the end the classification performance of the TERMS and
comparative models are elaborated.

4.5.1 Distinguishability

This part compares the distinguishability achieved by
TERMS and all the other models as displayed in Fig. 3.
Figure 3a illustrates that all the emotion distributions for
the proposed TERMS model are well separated and have a
better adjustment (i.e., positive emotions on the right and
negative on the left in all four quadrants of the VA-space),
thus, exhibiting well-discriminated emotion distributions.
The deep learning models such as, CNN (Fig. 3b) and
DeepMoji (Fig. 3c) show good distinguishability compared
to other baseline models, where all the emotion distributions
lie correctly on the valence dimension with better clarity.
The DeepMoji model blended fairly well in the TERMS

Fig. 3 Distinguishability results



TERMS: textual emotion recognition in multidimensional space

setting with an appropriate allocation of emotion polarities
in the VA-space. The baseline models (Fig. 3d–f) also show
fair adjustment, however with marginal difference, they
fell short of distinct projections of emotion distributions.
Upon close inspection, we observe that compared to all
the other models, our proposed TERMS model have higher
distinguishability.

To quantify distinguishability, we computed the AEmoD
for each model via (19). Figure 4 shows the achieved results.
A higher value of AEmoD indicates more scatteredness and
distinguishable emotion distributions. From Fig. 4, we can
see that the deep learning models performed well; however,
the TERMS model achieved the highest distinguishabil-
ity score of 2.642, while the other models scored lower.
The graph-based approach of the TERMS emotion classifier
provides better coverage by capturing rare words through
syntactic relationships and disambiguating emotional mean-
ing using the enriched and refined contextual information of
the patterns. The emotion patterns capture fine-grained lin-
guistic affect information, which helps in distinguishing the
emotions.

4.5.2 Prediction correctness

We evaluated the prediction performance of TERMS and
comparative models by computing the distance between the
ground truth and the predicted distributions via AKL and
AED. Table 3 lists the AKL, AED, and the correlation
coefficient of r for valence and arousal for each model.
We found that among all the models, the proposed TERMS
model achieved the lowest AKL and AED scores (4.71
and 1.32, respectively) and achieved the highest correlation
for valence (0.60) and the third best for arousal (0.30).
The results show the predicted distributions for our model

Fig. 4 AEmoD for each model to determine distinguishability; the
larger the value, the better the clarity in the emotion distributions on
VA-space

were closest to the actual ratings, thus indicating the better
prediction performance of TERMS over the baseline and
state-of-the-art models. The integration of a context-aware
emotion classifier with the varying emotion perceptions
modeled via the GMM distributions provided an edge to
TERMS in capturing the nuances of embedded emotions.
The architecture of the proposed emotion classifier and the
emotion patterns acted as the key components resulting in
the higher prediction performance of TERMS, compared
to other models. NTUA-SLP LSTM performed very well
with the highest correlation in arousal prediction and the
second-best for valence after TERMS. We believe the
2-layer bidirectional LSTM (BiLSTM) with a deep self-
attention mechanism captured the salient words in tweets
by gathering the information from both directions of text.
It provided fair estimation of important words that were
highly indicative of certain emotions. NTUA-SLP NBOW
also performed well, which can be attributed to the fact that
the pre-trained word2vec embeddings combined with the
10 affective dimensions enabled the model to encode the
correlation of each word with different affective dimensions
that could result in better intensity performance. SRV-
SLSTM and C-LSTM-CNN also showed greater prediction
performance compared to the baseline models. The results
also indicated that arousal was more challenging to predict
compared to valence as the r of arousal was lower than that
of valence for all the models.

4.5.3 Classification performance

We evaluated the performance of emotion classification
for the proposed TERMS model and all the comparative
models. Figure 5 presents the calculated results of
precision, recall, F1-score, and Jaccard. We found that
the TERMS emotion classifier achieved higher values
for precision (0.66), recall (0.65), F1-score (0.64), and
Jaccard (0.49). In contrast, the comparative models achieved
lower scores than the TERMS model. Thus, TERMS
outperformed all the comparative models in classification.
This is due to the context-aware emotion patterns that
captured the building blocks in text by creating the syntactic
patterns of connector words and subject words with clear
distinction. This helped to expose the contextual and latent
information, which was followed by the enrichment with
word embeddings to provide semantic relationships. The
enriched emotion patterns offered to capture the minute
details of embedded emotions in a text, such as emotional
intensity expressed through repeating characters in words
like “looove” or similar emotion-relevant verbs like “desire”
and “fancy” that were useful for interpreting context. This
attribute of gathering the embedded emotional information
enabled the emotion classifier to more effectively recognize
the emotions relative to other models.
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Table 3 Overall performance of prediction

Method AKL AED r valence r arousal

GBM 5.97 1.51 0.34 0.26

SVM 4.88 1.36 0.53 0.25

NB 5.45 1.42 0.52 0.23

CNN 5.07 1.35 0.58 0.24

DeepMoji 4.81 1.35 0.54 0.23

NTUA-SLP NBOW NA NA 0.56 0.39

NTUA-SLP LSTM NA NA 0.59 0.40

SRV-SLSTM NA NA 0.53 0.26

C-LSTM-CNN NA NA 0.56 0.28

TERMS 4.54 1.30 0.60 0.30

The model that performed the closest to TERMS in
classification performance was C-LSTM-CNN. C-LSTM-
CNN model’s architecture combined with FOFE algorithm
effectively captured the large context of the focus sentence
that helped in better identification of emotions. NTUA-
SLP NBOW, NTUA-SLP LSTM and CNN also showed
satisfactory classification performance. NTUA-SLP LSTM
performed better on its own dataset for all the subtasks
provided by SemEval-2018 Task 1. However, in our
setting, in contrast, NTUA-SLP NBOW performed better
in terms of classification performance. The deep learning
models, CNN and DeepMoji’s classification performance
was substantially better than the conventional baseline
models, which showed a severe setback in performance
for this task. Altogether, we observed that TERMS scored
higher in classification evaluations followed by the state-of-
the-art and deep learning models, and with a large margin to
baseline models.

In addition to macro-averaging classification metrics
for precision, recall, and F1-score, we evaluated the
classification performance with micro-averaging metrics as
well. The results are displayed in Fig. 6, which shows
that the difference between the macro and micro-averaging
scores is trivial, ascertaining the minor impact of averaging
methods on balanced structure of emotion classes in the
dataset.

To end, we evaluated TERMS model with other
comparative models for Bayesian analysis and the results
are elaborated in Table 4. The Table shows that the TERMS
performs better than the other models as the posterior
probability of the mean difference of accuracies are all
positive and above 0. All the posteriors are towards the right
of the rope i.e. on the interval of [0.01, ∞] shown in last two
columns of the Table 4. The test results estimated further
strengthened the better performance of the proposed model
relative to comparative models.

Fig. 5 Classification evaluation metrics for TERMS and all the comparative models. TERMS performs better by demonstrating higher precision,
recall, F1-score, and Jaccard
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Fig. 6 Classification evaluation metrics with macro and micro-
averaging scores

5 Discussion

This section discusses TERMS with different aspects to
provide insights on emotional classes, VA-annotations and
TERMS in various emotion prediction problems.

Recall by emotion class. The statistical performance of
the TERMS emotion model is shown but it would be
interesting yet essential to discuss which emotion classes
from the dataset were mainly misclassified by the model. In
order to do so, we estimated recall by class for the proposed
model to determine which emotion class has higher count
of false negatives i.e. the class with lowest recall. The
results for recall by class are shown in Table 5. From
the table, the emotion classes that shows lowest recalls
are sadness (0.46) and anger (0.53), which specifies the
misclassifications were made in respective classes. The
error analysis is provided further to identify the underlying
causes of misclassification in these classes.

Both classes with the lowest recall belong to the negative
polarity. We believe the texts related to negative emotions

have a high element of sarcasm, satire and irony in them
that makes these emotion classes difficult to comprehend.
Sarcasm or sardonic statements depend on the prosodic
information or non-verbal aspects of communication such
as tone, pitch, volume, timbre, facial expressions etc. Lack
of these paralinguistic dimensions for anger and sadness
can complicate the identification of such emotions from the
texts. We provide the sarcastic misclassified texts for recall
from our dataset to support our reasoning in Table 6.

Apart from humour and sarcastic comments, the open-
ness of natural language invites ambiguity and misunder-
standing. Lack of explicitness in a statement can make it
difficult for the emotion detection model to interpret the
fuzzy margin between nature of emotions. Table 7 shows the
examples from our dataset that were miss calculated due to
the lack of explicitness. Lastly, we believe the minor reason
that led to low recall was the word sense disambiguation.
The miscassified texts based on word ambiguity are stated
in Table 8.

VA-annotations. Another aspect of this study that needs an
argumentative analysis is valence and arousal annotations.
Figure 7 shows TERMS predicted valence and arousal
values relative to the ground truth ratings gathered from
AMT. From the figure, we can observe that in general
the predictions follow the curve of the ratings in the
ground truth. For valence, the overall difference between the
predicted values and ground truth is smaller as compared to
arousal. Predictions for arousal seem more conservative and
restricted to individual differences. The arousal dimension
normally is widely subjective and shows subtle variations
among individuals, which makes this parameter challenging
to comprehend.

Furthermore, this study analyzed the impact of a number
of annotators on the VA-rating prediction. The model
was trained for the reduced number of annotators i.e. 3
and 2 to analyze the influence of annotators’ number on
prediction performance. Figure 8 shows the PCC curves
of valence and arousal for a varied number of annotators.
It is explicable that the model performed better for the

Table 4 Bayesian analysis comparative results

Proposed Others t-value p-value Mean diff. Lower Upper

TERMS C-LSTM-CNN 3.12 0.00 0.32 0.18 0.53

NTUA-SLP NBOW 57.10 0.00 2.46 2.41 2.64

NTUA-SLP LSTM 30.46 8E-18 0.23 0.21 0.23

CNN 5.79 8E-09 0.29 0.18 0.38

DeepMoji 15.87 7E-56 0.78 0.70 0.88

GBM 7.64 2E-14 0.37 0.28 0.46

SVM 42.92 0.00 1.88 1.81 1.97

NB 40.19 0.00 1.76 1.99 2.16
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Table 5 Recall by emotion class

Emotions Anger Anti. Disgust Fear Joy Sad. Surprise Trust

Recall 0.53 0.64 0.70 0.61 0.69 0.46 0.73 0.82

Table 6 Misclassified texts (Sarcasm & satire)

Texts Actual Predicted

I love when i can’t sleep. anger trust

seriously?! we had to turn around because my mom forgot the anger sadness

chicken in the freezer.

ummmm grow up? please. thank you! anger joy

sorry sweetheart you downgraded anger joy

lol oh really? is that what its all about?!! hahahaha anger sadness

Table 7 Misclassified texts (Lack of explicitness)

Texts Actual Predicted

royal mail... why you loose my parcel? anger trust

do some girls really think its attractive to look like prostitutes anger disgust

on a daily basis...

that’s fucked up.. anger joy

i don’t even know you anymore. sadness trust

guess i’m not good enough for you... sadness trust

Table 8 Misclassified texts (Word sense disambiguation)

Texts Actual Predicted

this walking dead is very disappointing sadness fear

there are so many disrespectful and disgusting men in this world. anger disgust

had to say it....because this generation is going straight down sadness disgust

the drain.

i hate it when my comforter smells like someone that i miss. sadness disgust

i was in such a good mood...that’s gone out the window! anger joy

Fig. 7 Predicted values of
valence and arousal by TERMS
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Fig. 8 PCC curves of valence and arousal at varied number of
annotators.

highest number of annotators. The difference in prediction
performance between the number of annotators is evident
that ascertains the increased number of annotators would
enhance the quality of the model’s performance. However, it
is notable that the minor variation in annotators’ number has
resulted in a significant improvement in models prediction
performance. We anticipate that model’s prediction quality
and capacity to capture individual differences would
enhance substantially with a slight increase in the number
of annotators for future implementations.

Personalizing VA-annotations For this study, the VA-
ratings used for experiments were annotated through AMT.
The quality checks for the VA-ratings were maintained
during the annotation process; however, it is inferred
that the annotation could be influenced by annotators’
personality traits or culture differences. To test this
inference, a small experiment was conducted with 200
texts from Twitter, annotated again for VA-ratings on
AMT; however, before annotation the personality test
was conducted by Big Five Inventory (BFI) to get
the scores of the personality in each dimension of the
Big Five (extraversion, agreeableness, conscientiousness,
neuroticism and openness to experience) [76]. The results
show the personalities do influence the va-ratings but in
different manner. It shows that people who score high in the
neuroticism dimension would signify the negative emotions,
which can lead to lower VA-ratings for positive emotion. In
contrast, annotators high in agreeableness tend to be more
exciting and pleasant for positive emotions (higher arousal
and valence) and calmer for negative emotions. Extraversion
and openness to experience have minimal impact on the
VA-ratings for negative emotions and the last personality
trait exhibits the annotators high in conscientiousness
have higher VA-ratings for positive emotions; however,

for negative emotions, they tend to signify unpleasantness
(lower valence). The findings conclude that the personality
traits have a moderate influence on VA-rating behaviour.
The model limits in covering the personality difference
in VA-annotations and the impact it can have on emotion
distributions. In future, we would like to integrate an aspect
of personality variation and its influence in recognizing
emotions on dimensional VA-space.

TERMS in emotion prediction problem TERMS have an
absolute significance in the prevailing global crisis, the
Coronavirus pandemic (COVID-19). The model is well
equipped to identify the nuances of emotions and is
applicable for any emotion prediction problem as severe
as the COVID-19 crisis [77]. The trauma of COVID-
19 has spread uncertainty and extreme emotional distress
among people. The variation and uncertainty in emotional
states would be essential to identify and understand the
emotional needs of people in the crisis. The TERMS
context-aware emotion classifier can be effectively used
to capture the emotions from the microblog text before
COVID-19 and during the pandemic to analyse prevailing
emotion dynamics. The resulting emotional classes can
be scaled with any variables that are significant to the
pandemic (such as population, density, migration, etc.) for
any city or location through linear regression to study
its impact on emotional states during and before the
pandemic. This will provide an overview of the emotional
standing or the cognitive narrative of the respective
cities, which is essential in this global crisis to provide
reassurance and designate the contingency plan as per the
emotional needs of city dwellers. Moreover, the model can
significantly be employed for any political scenario. The
microblog texts related to political debates are high on
emotion and sentimental content. The texts contain varying
perspectives, fuzzy opinions, and linguistic variations that
would require a probabilistic context-aware model and
dimensional mapping integrated in a model to capture the
nuance, depth and dimensions of emotions embedded in a
text.

6 Conclusion

Microblog texts are explicit, relevant, and rich in emotional
content; however, their aberrant and informal language
makes emotion recognition a challenging task to be
employed in real-world systems. It is essential to understand
the contextualized information and linguistic variation with
a complete coverage of varying emotional perceptions
towards the same text in order to recognize emotions from
texts accurately. In this article, we propose a probabilistic
emotion recognition model TERMS that addresses the
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above challenges. In particular, the TERMS model captures
the rare and refined contextual emotional information
through the proposed emotion classifier. To capture and
learn from varying perceptions, TERMS utilizes a GMM
to derive the emotion distribution in a VA-space. The
emotional information in the probabilistic form is merged
with learned GMM parameters from the VA-ratings to
generate emotion distributions in VA-space to cover the
varying emotional perceptions. We validate the significance
of emotion distributions through a detailed comparative
analysis with baseline and state-of-the-art models. The
results show that TERMS achieved the best performance
relative to other models based on the performance
metrics of distinguishability, prediction, and classification
performance. Furthermore, the proposed model is scalable
and adaptable since different classifiers can be implemented
to compute emotional probabilities as well as due to
the transparent learning process of the GMM. TERMS
paves the way for the affective modeling of texts by
parameterizing emotion distributions with applications to
behavior analysis, forecasting, healthcare, and affective
human-computer interaction.
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