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A B S T R A C T   

SARS–CoV–2 is accountable for severe social and economic disruption around the world causing COVID–19. 
Non–structural protein–15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uri-
dylate–specific endoribonuclease (EndoU). This domain binds to the uridine 5′–monophosphate (U5P) so that the 
protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. 
Thus, in this current study, ML–based QSAR and virtual screening of U5P analogues targeting Nsp15 were 
performed to identify potential molecules against SARS–CoV–2. Screening of 816 unique U5P analogues using 
ML–based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular 
docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 
57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two 
molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit 
nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the 
formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). 
Principal component analysis and free energy landscape studies showed stable complex formation while MM/ 
GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = –29.4 kcal/mol) and 57398422 
(ΔGTOTAL = –39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = –18.8 kcal/mol). This study aimed to 
identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID–19.   

1. Introduction 

As per international assessments, the 2019 coronavirus pandemic, 
characterized by its severity and global dissemination, was attributed to 
the SARS–CoV–2 pathogen (severe acute respiratory syndrome corona-
virus 2), resulting in widespread fatalities on a global scale (Malik et al., 
2020; Wang et al., 2020). In the most recent 28 days (17 July to 13 
August 2023), the WHO’s six regions recorded over 1.4 million new 
cases of COVID–19 and over 2300 fatalities. This represents a rise of 63 
% and a decline of 56 %, respectively, when compared to the most recent 
28 days prior. As of August 13, 2023, the global tally of verified COV-
ID–19 cases has exceeded 769 million, with the number of recorded 
deaths surpassing 6.9 million (“Weekly epidemiological update on 
COVID–19 – 17 August 2023,” n.d.). According to the findings of an 
investigation of the genomic data, SARS–CoV–2 is most comparable to 
earlier strains of SARS and MERS and expresses 75 and 85 % of sequence 
similarity (Hu et al., 2021; Mercatelli and Giorgi, 2020; Sanders et al., 

2020; Zhu et al., 2020). Humans, birds, and other animals are all sus-
ceptible to the gastroenteritis, hepatitis, and even death that can be 
caused by coronaviruses (Chafekar and Fielding, 2018). Multiple 
comorbidities were found to significantly elevate susceptibility to this 
syndrome. SARS–CoV infections are more common in the elderly 
because of the prevalence of comorbidities such as Parkinson’s disease, 
cancer, stroke, high blood pressure, chronic bronchitis, diabetes, and 
chronic obstructive pulmonary disease (Deng and Peng, 2020; Guan 
et al., 2020; Huang et al., 2020). Constant surveillance of SARS–CoV–2 
transmission across the world is an important aspect of the worldwide 
plan to limit the development of mutations. Nevertheless, it is also 
essential to monitor their propagation in animal populations and in-
dividuals who are chronically infected with the virus (“Tracking 
SARS–CoV–2 variants,” n.d.). 

The SARS–CoV–2 virus is a member of the Nidovirales order, the 
family Coronaviridae, and the smallest known RNA virus genome 
(Gorbalenya et al., 2006; Kim et al., 2020a; V’kovski et al., 2021). 
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Positive, non–segmented, and single–stranded genomic RNA is found in 
the coronaviruses’ genomic makeup (Singh et al., 2021). The translation 
of the structural proteins and accessory proteins, which are derived from 
nested sub–genomic mRNA, is necessary for the expression and repli-
cation of the genome (Sawicki et al., 2007). The replication–translation 
complex (RTC) is formed when the non–structural proteins (NSPs) 
interact with one another to form a complex. The RTC is responsible for 
proofreading, capping, and RNA synthesis (Snijder et al., 2016). NSPs 
stand as the central component within the replication–transcription 
complex. Their primary role involves encoding the functional region 
situated within nsp12, a molecule more frequently denoted as 
RNA–dependent RNA polymerase (RdRp) (Cheng et al., 2005). The role 
of nsp3 and nsp5 revolves around facilitating the assembly of functional 
protein complexes and regulating the operational behavior of the 
remaining enzymes (Subissi et al., 2014). The virus’s growth and 
replication mechanisms rely on a multitude of critical constituents, 
which encompass RdRp (nsp12/nsp7/nsp8), RNA helicase (nsp13), RNA 
exoribonuclease (nsp14/nsp10), RNA endoribonuclease (Nsp15), and 
RNA Cap methyltransferases (nsp14 and nsp16/nsp10). These elements 
collaboratively contribute to the virus’s reproduction process. There-
fore, in contrast to the majority of other viruses, coronaviruses contain a 
significant number of enzymes that have the potential to be employed as 
targets in the development of new antiviral drugs. 

It is well known that Nsp15 (nonstructural protein–15) is crucial to 
the development of the pathology caused by coronaviruses. The 
C–terminal ’EndoU’ domain of Nsp15 serves as a uridylate–specific 
endoribonuclease in the context of single– and double–stranded RNA 
molecules by cleaving the 3′ end of pyrimidines, specifically uridylates 
(Deng and Baker, 2018; Godoy et al., 2023; Ivanov et al., 2004; Kang 
et al., 2007). Evidence suggests that this RNase degrades dsRNA in-
termediates produced by viruses, thereby blocking their recognition by 
the host (Deng et al., 2017; Kindler et al., 2017). Additionally, Nsp15 
plays a crucial part in the processing of the viral genome, which is 
required for the replication of coronaviruses (Pillon et al., 2021). The 
elimination of Nsp15 leads to a dramatic reduction in viral replication 
(Gao et al., 2021; Kang et al., 2007; Kindler et al., 2017). Nsp15 in-
terferes with the identification of the viral RNA, which directly delays 

the type I interferon response. The anti–interferon role of Nsp15 has 
been confirmed by multiple studies using primary cells infected with live 
viruses (Deng et al., 2017; Kindler et al., 2017). In the context of single– 
and double–stranded RNA molecules, the C–terminal ’EndoU’ domain of 
Nsp15 functions as a uridylate–specific endoribonuclease that cleaves 
the 3′ end of pyrimidines, specifically uridylates (Hackbart et al., 2020). 
Nsp15 is an endoribonuclease unique to nidoviruses and has no close 
human homologs, thus can be considered as an excellent target for the 
development of new drugs to treat SARS–CoV–2 infections. Several 
studies showed identification of successful inhibitors against 
SARS–CoV–2 infections that targeted Nsp15 protein (Chandra et al., 
2021; Hong et al., 2021; Kim et al., 2021; Saramago et al., 2022; Sinha 
et al., 2020). The catalytic triad of Nsp15′s active site consists of two 
histidines and a lysine, and it bears a striking resemblance to the active 
site of the well–studied endoribonuclease RNase A (Godoy et al., 2023; 
Kim et al., 2020b; Pillon et al., 2021). Since Nsp15 appears to be the 
endoribonuclease responsible for suppressing the innate immune 
response, it presents itself as a promising therapeutic target. 

In a study, uridine 5′–monophosphate (U5P) bound to Nsp15 active 
site showed interactions with important residues while it is also crys-
talized with the nsp15 structure (Pillon et al., 2021). In a previous study, 
it was found that Tipiracil, a uracil analogue, binds to the Nsp15 uracil 
site (uridine 5′–monophosphate binding site) that inhibits Nsp15 RNA 
nuclease activity tested in vitro (Kim et al., 2021). In this current study, 
analogues of U5P which acts as a substrate of Nsp15 were screened for 
their ability to inhibit SARS–CoV–2 Nsp15. Both ML–based quantitative 
structural analysis and molecular docking–based screening were used in 
the discovery of putative inhibitors of Nsp15. The compounds were 
stable when docked with the nsp15 protein, as demonstrated by mo-
lecular dynamics modelling, principal component analysis, and free 
energy landscape. In addition, the binding free energy of the complexes 
was computed so that the binding affinity of the molecule could be 
verified. As a result, the purpose of this investigation was to deploy 
computational approaches in order to screen and analyse the efficiency 
of U5P analogues against Nsp15, the SARS–CoV–2 binding protein. 
Fig. 1 showed the workflow of the methodology used in this study. 

Fig. 1. Workflow of the methodology used in the present study.  
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2. Materials and Methods 

2.1. Protein and compound library 

The Nsp15 of SAR–CoV–2 complexed with uridi-
ne–5′–monophosphate (U5P) was selected as a target protein in this 
study. The crystal structure was retrieved using the PDB ID: 6WLC (Kim 
et al., 2021) from the Protein Data Bank (PDB) (Berman et al., 2000). In 
this study, the protein’s chain A was obtained due to the protein’s 
homodimeric nature. The binding site residues, which were located 
around the U5P molecule at a distance of 6 Å, were utilised to generate 
the grid box for conducting the subsequent molecular docking analysis. 
The substrate, U5P was used as a control for this study, and was used to 
generate analogues using the Polypharmacology Browser 2 server 
(PPB2) (Awale and Reymond, 2018). PPB2 has determined that the 
compounds connected with the target in ChEMBL are the ones that are 
most similar to U5P. In this instance, the server generates analogs 
through the utilization of a Naive Bayes Machine Learning model, spe-
cifically the ECfp4 model, incorporating 2000 of its closest neighbors. 
For this study, we adopted three distinct methodologies: (a) employing 
the Extended Connectivity fingerprint (ECfp4) in combination with NN 
(ECfp4) + NB(ECfp4), (b) using Molecular Quantum Numbers (MQN) 
along with NN(MQN) + NB(ECfp4), and (c) incorporating Shape and 
Pharmacophore fingerprint (Xfp) together with NN(Xfp) + NB(ECfp4). 
The SMILES of the substrate was provided as input which resulted in 20 
“targets” with nearest neighbor which were used for virtual screening. 
Further the SMILES of these compounds were converted to 3D SDF 
structures using the “SMILES Translator and Structure File Generator” 
from Online SMILES Translator tool (https://cactus.nci.nih. 
gov/translate/index.html#Form) (Weininger, 1988). After minimising 
each of the 3D–SDF files of the compounds, Open–babel was used to 
convert each of the files to PDBQT (O’Boyle et al., 2011). 

2.2. QSAR modelling 

Machine learning approaches were applied to build QSAR (Quanti-
tative structure–activity relationship) model for virtual screening of the 
natural organic molecules. Six regression models were utilised for QSAR 
which include Linear Regression model, Random Forest regressor, 
Bayesian Ridge Regression model, Decision tree regressor, Support 
Vector Regression model, and Gradient Boosting Regression model. The 
compound library for constructing the models was obtained by 
employing the ChEMBL database, which can be accessed at 
(https://www.ebi.ac.uk/chembl/) (Davies et al., 2015). ChEMBL data-
base was searched for “SARS CoV–2″ in all “Targets”, from where the top 
ranked “Target” was retrieved with the highest number of compounds 
with their IC50. After removing blanks from IC50, compounds with IC50 
in units of ug.ml− 1 (microgram per millilitre) were converted into nM 
(nano–Molar) using the equation (1). 

nM =
(
106 ∗ ug.ml− 1)/MW (1)  

Here, MW is molecular weight. After the conversion of the unit, the log10 
of IC50 value was used for QSAR. QSAR models were developed after 
compound properties were calculated using the RDKit programme 
(Landrum, 2014). Using the python packages, Morgan Fingerprints were 
used to construct ML models to predict pIC50 based on physicochemical 
descriptors. Finally, 70 % of these compounds were used to train the 
models, while 30 % were used as test compounds. For the purpose of 
validating the trained models, the coefficient of determination (R2) of 
each model was computed, and the model with the highest value was 
chosen for application in the screening procedure. Since a high value for 
R2 indicates a strong correlation between the model’s predictions and 
the data, it is generally agreed that the model is accurate. After selecting 
the best QSAR model, the analogues of U5P were screened by using the 
most accurate QSAR models that had been developed to estimate the 

bioactivity (IC50). In this part of the process, the compounds that 
demonstrated greater activity in comparison to the control were chosen 
for additional screening using molecular docking. 

2.3. Molecular docking 

The AutoDock 4.2 tool (Morris et al., 2009) was used for constructing 
the grid box including the binding site residues surrounding the uridi-
ne–5′–monophosphate (U5P) of the Nsp15 of SARS–CoV–2 with a dis-
tance of 6 Å. Here, the grid box dimensions were 20 Å × 20 Å × 20 Å and 
centered at 91.23 Å, –21.51 Å, –28.3 Å for x, y and z axis, respectively. 
Hydrogen and Gasteiger charges were introduced into the target protein, 
and water molecules and heteroatoms were removed, as part of the 
docking protocol. The molecular docking screening of these compounds 
was carried out with the help of the programme, AutoDock Vina 
(Eberhardt et al., 2021). The virtual screening process fixed the values 
of certain docking parameters, primarily, binding modes set at 20, 
exhaustiveness set at 10, and a maximum energy difference of 4 kcal/ 
mol. In the AutoDock protocol, the spacing used was 1 Å. Docking was 
proceeded with the ML–based QSAR model screened compounds along 
with the control. Based on the binding scores, the compounds were 
ranked, and the top 10 compounds were analysed for hydrogen bond 
interactions. Furthermore, the most promising compounds were put 
through dynamics simulation analysis. 

2.4. Interaction analysis 

The representation of interactions in 2D and 3D was done using 
Biovia Discovery Studio and the Protein-Ligand Interaction Profiler 
(PLIP) service (Adasme et al., 2021; “BIOVIA, Dassault Systèmes, Dis-
covery Studio Visualizer, v21.1.0.20298, San Diego: Dassault Systèmes, 
2020.,” n.d.). The selected compound was also used for ADME-Toxicity 
analysis to validate the druglike properties of the top hit compound. The 
ADME-Toxicity properties were calculated using SwissADME server 
(Daina et al., 2017) and the ProTox-II - Prediction Of Toxicity Of 
Chemicals server (Banerjee et al., 2018) to study the physico-chemical 
behaviours. 

2.5. Molecular dynamics simulation 

We utilised molecular dynamics simulations (MD) to investigate the 
dynamic stability and adaptability of protein–ligand complexes. The 
selection of the top hit compounds and a control ligand was based on 
these simulations. GROMACS 2021.2 and the CHARMM27 force field 
were used to run MD simulations on all complexes (Berendsen et al., 
1995; Hess et al., 2008). The topologies, hit compound parameter files, 
and standard inhibitor parameter files were all generated using the 
SwissParam server (Zoete et al., 2011). In addition, electrostatic forces 
were calculated using the Ewald Particle Mesh method (Darden et al., 
1993). Following the neutralisation of the system using Na+ and Cl– 
ions, the solvation box had simulation using the TIP3P transferable 
intermolecular potential, which incorporates a three–point (TIP3P) 
water model (Izadi et al., 2014). The complexes were simulated within a 
dodecahedron box, with a buffer spacing of 1 Å. The protein–ligand 
solvated complex underwent energy minimization using the steepest 
descent (SD) technique for a total of 5000 iterations. After heating the 
system to 310 K and using the LINCS algorithm to remove all hydrogen 
bonds, the system is stable (Hess et al., 1997). In order to achieve 
equilibrium, the system was exposed to a uniform ensemble of constant 
temperature (NVT) and pressure (NPT) conditions for 1 ns at 310 K and 
1 atm, respectively. In this case, the 100 ns production run utilised the 
equilibrated system. The Parrinello–Rahman pressure method (Parri-
nello and Rahman, 1981) was used to keep the pressure constant, while 
the velocity–rescaling method (Bussi et al., 2007) was used to couple the 
temperature. The analysis of post–MD data was conducted utilising the 
GROMACS tools to investigate the parameters such as root mean square 
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deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen 
bonding. 

2.6. PCA: Principal component analysis 

PCA was performed using the default settings in GROMACS 
(Berendsen et al., 1995; Hess et al., 2008)on protein–ligand complexes. 
The trajectory was preprocessed to remove periodic conditions in 
preparation for principal component analysis. The covariance matrix for 
the transformed trajectory was determined with the help of the ’gmx 
covar’ tool in GROMACS. The covariance matrix characterises the re-
lationships between the protein–ligand complex’s atomic fluctuations. 
The ’gmx anaeig’ function was used to compute the covariance matrix’s 
eigenvalues and eigenvectors. To visualise the trajectory on the PCs, we 
used the ’gmx anaproj’ GROMACS tool to calculate the PC coordinates 
for each frame. 

2.7. Free energy landscape (FEL) 

Protein conformational changes associated with different energy 
states can be effectively revealed using free energy landscape (FEL) 
(Maisuradze et al., 2010). By analysing the steady state, represented by 
the FEL minima, and the transient state, represented by the FEL barriers, 
the dynamics of biological systems can be studied to gain insight into 
phenomena such as biomolecule recognition, aggregation, and folding. 
The FEL was calculated by the following equation: 

ΔG(X) = − kBTln P(X)

In this scenario, ΔG stands for the change in Gibbs free energy, kB stands 
for the Boltzmann constant, T stands for the absolute temperature, X 
corresponds to the reaction coordinate, and P (X) indicates for the sys-
tem’s probability distribution along the reaction coordinate. 

2.8. MM/GBSA calculations 

Employing the GROMACS plugin known as gmx MMPBSA, we 
determined the binding free energy of the complex over the last 20 ns of 
the simulation, utilizing the MM/GBSA (Molecular Mechanics General-
ised Born Surface Area) approach. The computation of the binding free 
energy was carried out via the MM/GBSA method, which utilizes the 
following equations: 

ΔG = Gcomplex −
[
Greceptor +Gligand

]
(2)  

ΔGbinding = ΔH − TΔS (3)  

ΔH = ΔGGAS + ΔGSOLV (4)  

ΔGGAS = ΔEEL + ΔEVDWAALS (5)  

ΔGSOLV = ΔEGB + ΔESURF (6)  

ΔESURF = γ.SASA (7)  

where, Gcomplex, Greceptor and Gligand are, in the context of Eq (2), the total 
free energies of the protein–ligand complex, the free form of protein, and 
the ligand in the solvent, respectively. The other equations in Eqs (3)–(7) 
showed that the change in solvation free energy, ΔGSOLV, the change in 
conformational entropy, –TΔS, the change in enthalpy, ΔH, and the 
change in gas–phase energy, ΔGGAS. SASA represented the Sol-
vent–accessible surface area, while γ represented the surface tension of 
the solvent. ΔEVDWAALS and ΔEEL represented the van der Waals and 
electrostatic energy changes, while ΔEGB and ΔESURF reflected the polar 
and nonpolar solvation energy changes, respectively. 

Fig. 2. Binding site residues surrounding Uridine–5′–Monophosphate (U5P) of NSP15 Endoribonuclease (PDB ID: 6WLC) (a) Native protein structure with U5P (b) 
U5P in the binding pocket of NSP15 (c) Binding site residues surrounding U5P. 
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3. Results 

3.1. Binding site 

Nsp15 endoribonuclease (endoU) from SARS CoV–2 was retrieved 
with the PDB ID: 6WLC which is complexed with uridi-
ne–5′–monophosphate (U5P). Here, U5P is the substrate and considered 
as a control in the study, that included the molecular docking and mo-
lecular dynamics simulation protocols. Thus, the grid box for molecular 
docking involved the surrounding residues of the U5P bound to Nsp15 in 
the experimental structure. Binding site residues surrounding the con-
trol U5P were His235, Gln245, His246, Gly247, Gly248, His250, 
Asn278, Lys290, Val292, Lys293, Ser294, Val295, Thr341, Tyr343, 
Pro344, Lys345, and Leu346 as shown in the Fig. 2. Previous study 
showed that uridine 5′–monophosphate (U5P) bound to the Nsp15 
endoU active site had the residues His235, His250, Lys290, Ser294, and 
Tyr343, which were also found to be part of the binding pocket depicted 
by the current study (Pillon et al., 2021). Additionally, another study 
showed the catalytic triad His235, His250, and Lys290 of the Nsp15 
were also found to be part of the binding site residues (Ricagno et al., 
2006). All the binding site residues including these active site residues 
and catalytic triad were used for building the grid box for molecular 
docking. 

3.2. Analogues of Uridine–5′–Monophosphate (U5P) 

Here, the substrate (Uridine–5′–Monophosphate) was used to 
generate analogues of the compound and screen them against the pro-
tein target. Polypharmacology Browser 2 (PPB2) was used for gener-
ating analogues of Uridine–5′–Monophosphate using the three methods. 
The ECfp4 Naive Bayes Machine Learning model is utilised by the Pol-
ypharmacology Browser 2 (PPB2), which provides 2000 of its nearest 
neighbours. 

Smiles of the compound Uridine–5′–Monophosphate (U5P) (C1 = CN 
(C(=O)NC1 = O)C2C(C(C(O2)COP(=O)(O)O)O)O) was used as input 
and the output produced 20 targets with the nearest neighbors. PPB2 
determined that the molecules associated with the target in ChEMBL 
were the most similar to U5P, and it selected those compounds for 
further process. Three methods, (a) Extended Connectivity fingerprint 
ECfp4 NN(ECfp4) + NB(ECfp4), (b) Molecular Quantum Numbers MQN 
NN(MQN) + NB(ECfp4), (c) Shape and Pharmacophore fingerprint Xfp 
NN(Xfp) + NB(ECfp4) were used in this study. Extended Connectivity 
fingerprint ECfp4 NN(ECfp4) + NB(ECfp4) generated 726 compounds, 
Shape and Pharmacophore fingerprint Xfp NN(Xfp) + NB(ECfp4) 
generated 509 compounds and Molecular Quantum Numbers MQN NN 
(MQN) + NB(ECfp4) generated 459 compounds. A total of 1694 ana-
logues were generated. After removing duplicates and blanks in SMILES 
of analogues, 816 unique compounds remained. These analogues were 
used for first phase of screening using the ML–based QSAR model. A 
similar study showed the use of Polypharmacology Browser 2 for 
generating target–associated ChEMBL compounds as the closest ana-
logues of triazines for identifying the target Lysophosphatidic Acid 
Acyltransferase β (LPAAT–β) (Poirier et al., 2019). Few other studies 
also showed the successful use of the Polypharmacology Browser 2 
server (Montaruli et al., 2019; Reymond, 2022). 

3.3. ML–based QSAR model 

The ML–based QSAR model was performed using six regression 
models, Linear Regression model, Random Forest regressor, Bayesian 
Ridge Regression model, Decision tree regressor, Support Vector 
Regression model, and Gradient Boosting Regression model. Here, for 
construction the QSAR model, the database of known inhibitors was 
searched in the ChEMBL database. The “SARS CoV–2″ in all “Targets” 
were searched which returned 21 target ids. By sorting according to 
activity, target ”CHEMBL4303835“ had the highest compound activity 

with 37,665 compounds, thus was selected. In target 
”CHEMBL4303835“, 10,086 compounds were found with ”IC50“ which 
was used further in the building the QSAR model. SMILES of the com-
pounds were stored, while their IC50 in ug.ml− 1 were converted into 
nM. After converting the unit, the log10 of IC50 value was used for 
QSAR. Here, 30 % of these compounds were used as a test set and the 
remaining 70 % were used to train the models. The coefficient of 
determination (R2) was calculated for the validation of the trained 
models as shown in the Table 1. It was observed that the Random Forest 
regressor model was predicted to have the highest value possible, which 
was 0.72. This demonstrates that there is a significant correlation be-
tween the values that were predicted and those that were actually 
observed; consequently, the model is considered to be a good fit to the 
data. In addition, it was previously established that those models with an 
R2 > 0.6 were deemed to be acceptable (Guerra et al., 2016). The best 
predicted QSAR model (Random Forest regressor model) was used used 
to perform QSAR for 816 and control to determine activity. As indicated 
in the supplementary Table S1, the QSAR analysis demonstrated that 
397 of the compounds exhibited higher levels of bioactivity when 
compared to the control molecule. These 397 compounds, in addition to 
the control compound, were chosen for further molecular docking 
investigation. Previous studies virtually screened a vast array of com-
pounds utilising QSAR models that were comparable to the models used 
in this work (Bommu et al., 2019; Fan et al., 2019; Rudrapal and Chetia, 
2020). In a separate investigation, the application of QSAR–based vir-
tual screening led to the discovery of a hit molecule demonstrating ef-
ficacy against SARS 3CLpro. (Jawarkar et al., 2022). In a separate study, 

Table 1 
Correlation Co-efficient and Coefficient of determination (R2) of the six models 
from ML–based QSAR.  

Regression models R2 Correlation Co-efficient 

Random Forest  0.72  0.84 
Bayesian Ridge  0.56  0.74 
Linear Regression  0.21  0.45 
Decision tree  0.07  0.26 
Support Vector  0.16  0.4 
Gradient Boosting  0.16  0.4  

Table 2 
The docking scores and the hydrogen bonds of the top 10 hits after virtual 
screening with the target protein Nsp15 along with the control.  

Ligand Docking scores 
(exhaustiveness =
10) 

Docking scores 
(exhaustiveness 
= 100) 

H–Bond 

control_U5P_6030  –5.9  –6.0 GLY248, 
HIS250, 
LYS290, 
THR341, 
TYR343 

lig165  –8.1  –8.1 NA 
lig302  –7.9  –7.9 TRP333, 

TYR343 
lig149  –7.8  –7.9 NA 
lig200  –7.7  –7.9 GLY248, 

THR341 
lig27  –7.6  –7.8 THR341, 

GLN245, 
SER294 

lig32  –7.6  –7.6 GLY248, 
SER294 

lig46  –7.5  –7.7 ASP240, 
GLN245 

lig106  –7.5  –7.6 NA 
lig103  –7.5  –7.7 GLY248, 

LYS290, 
TYR343 

lig118  –7.4  –7.5 NA  
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Fig. 3. 2D interactions of the protein–ligand complexes for (a) control, (b) lig27, (c) lig32, (d) lig46, (e) lig103, (f) lig106, (g) lig118, (h) lig149, (i) lig165, (j) lig200, 
and (k) lig302. 
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the inhibitory activity of 52 different fenarimol analogues against Try-
panosoma cruzi was analysed using QSAR model (Cotuá et al., 2021). 
These studies advocated the application of QSAR in drug designing tasks 
for developing antivirals. 

3.4. Molecular docking 

The screened QSAR based compounds were further screened using 
molecular docking against the target protein Nsp15 along with the 
control U5P. Further, the docked structure of Nsp15 with U5P has been 
aligned with the native structure of protein with U5P (PDB ID: 6WLC). It 
was observed that the alignment showed no change of conformation of 
the docked structure to that of the native as shown in supplementary 
Figure S1. There was minimum deviation from the native structure with 
RMSD of 0.28 Å. Here, a total of 397 analogues of U5P were docked and 
it was found that 236 compounds interacted better than control. 
Moreover, the top 10 hits were used for further investigation of the 
hydrogen bonds interactions and compared to the control. Table 2 
showed the top 10 hit compounds with their best docking scores and the 
hydrogen bond interactions. It was observed that the top 10 hits had the 
docking scores in the range − 7.4 kcal/mol to − 8.1 kcal/mol which were 
better than the control (− 5.9 kcal/mol). Moreover, the docking process 
was carried out with a higher exhaustiveness setting (100), and the 
obtained results were found to be in line with the earlier findings. This 
indicates that variations in exhaustiveness did not yield any notable 
differentiation among the ligands. Previous studies also showed the 
docking scores of − 6.9 kcal/mol for EGCG which was docked against the 
Nsp15 of Sars–CoV–2(Hong et al., 2021). Another study showed the 
docking scores range from –5.1 kcal/mol to –9.8 kcal/mol from docking 
in Vina for the FDA approved compounds against Nsp15(Chandra et al., 
2021). Saikosaponin V and Saikosaponin U which showed high binding 
affinity for Nsp15 of SARS–CoV–2 had docking scores of − 8.35 Kcal/ 
mol and − 7.27 kcal/mol, respectively (Sinha et al., 2020). The top 10 
hits in this current study also showed comparable binding energy as the 
hits from the earlier studies against nsp15 of SARS–CoV–2. 

The 2D interactions of the protein–ligand complexes were visualized 
using the Biovia Discovery Studio (Biovia, 2019) as shown in the Fig. 3. 
The structural stability of the protein–ligand complex is greatly affected 
by hydrogen bonding, making it an important factor in drug develop-
ment (Cichero et al., 2021). Compared to the control which showed 
hydrogen bonds with the residues Gly248, His250, Lys290, Thr341, and 
Tyr343, the compounds lig103 (PubChem CID – 53309102) and lig200 
(PubChem CID – 57398422) showed similar hydrogen bonds. The 
compound 57398422 showed hydrogen bonds with residues Gly248, 
Thr341 while 53309102 showed hydrogen bonds with Gly248, Lys290, 
Tyr343 which were found in the control. These promising compounds 
were selected for further analysis using MD. Moreover, the compound 
lig27 (PubChem CID – 76314921) also showed three hydrogen bonds 
(Thr341, Gln245, Ser294), where one (Thr341) was found in the control. 
Thus, 76314921 was also selected as it had maximum number of 
hydrogen bonds and showed interaction with key residue. All the other 
compounds were not as promising as the three selected compounds as 
they showed less hydrogen bonds. 

Numerous prior investigations have delved into the intricate in-
teractions between the identified compounds and specific amino acid 
residues, namely Gln245, Gly248, Lys290, Ser294, Thr341, and Tyr343. 
These insights were gleaned from the collective findings of three distinct 
studies (Godoy et al., 2023; Hong et al., 2021; Sinha et al., 2020). In a 
distinct analysis, researchers explored the binding of uridine 
5′–monophosphate (5′–UMP) to the active site of Nsp15, elucidating the 
formation of hydrogen bonds with residues His235, His250, Lys290, 
Ser294, and Tyr343 (Pillon et al., 2021). Additionally, a separate 
investigation unveiled the pivotal role of the residues His235, His250, 
and Lys290 within Nsp15, constituting a crucial His–His–Lys triad 
responsible for its endoribonuclease activity, as outlined by (Ricagno 
et al., 2006). Furthermore, various other residues within the active sites 

were found to contribute to oligomer formation and enzymatic activity, 
as corroborated by the works of many scientists (Bhardwaj et al., 2008; 
Kim et al., 2020b; Zhang et al., 2018). Consequently, the robust binding 
affinity exhibited by the three compounds substantiates their selection 
for further in–depth scrutiny. 

3.5. ADMET properties 

In order to evaluate the drug’s ADME (absorption, distribution, 
metabolism, and excretion) properties, as well as its possible toxico-
logical impact on biological systems, an analysis was conducted to 
identify the ADME-toxicity features of the selected compounds 
(53309102, 57398422 and 76314921). The anticipated toxicity class for 
the selected compounds 53309102, and 57398422 listed in Table 2, was 
considered acceptable by the Hazard Communication Standard (HCS) 
with toxicity class 6. The GHS (Globally Harmonised System of Classi-
fication and Labelling of Chemicals) provides the foundation for this 
toxicity class. However, 76314921 had high toxicity level which was not 
acceptable. The compounds 57398422 and 76314921 was found to have 
significant molecular weights (MW) that was less than 500 Da and there 
were less than 10 hydrogen bond acceptors and less than 5 hydrogen 
bond donors. This showed acceptable druglike property of the com-
pounds. The number of rotatable bonds was 3–12 for the compounds, 
signifying good flexibility of the compound. It was observed that the 
compound was soluble in water, as shown in Table 3, while GI absorp-
tion was lower. The molar refractivity (MR) value in the range 101.29 to 
127.77 indicates that the compound has a moderate to high molecular 
volume and polarizability. The topological polar surface area (TPSA) 
value of 339.14 suggests that the compound 53309102 has a relatively 
higher polar surface area, which can also influence its ability to cross 
biological membranes and interact with biological targets. For drug-like 
molecules, an iLOGP between 1 and 5 was considered suitable, thus 
these compounds 90470472 and 74977521 were favorable. It was 
observed that there was 0 alert in PAINS (pan assay interference com-
pounds) for all the compounds, suggesting promising outcomes in in 
vitro and in vivo studies. Overall, the three compounds showed prom-
ising ADMET properties and was selected for further analysis using MD 
simulation. 

3.6. Molecular dynamics simulation 

Molecular Dynamics (MD) Simulations of the protein–ligand com-
plexes were performed to verify the stability and adaptability of the 
analogues of U5P with the protein Nsp15. The extracted complexes’ 
dynamic trajectories were thoroughly explored in a computer simula-
tion. The root–mean–square deviation was one of the metrics used in this 
study (RMSD). In order to measure the complex’s stability and conver-
gence during an MD simulation, RMSD calculation was employed. After 
an MD simulation, the RMSD, RMSF, and Hydrogen bonds of the pro-
tein–ligand complex reveal interesting information about the system’s 
dynamics over time. The protonation state of the titrable amino acids 

Table 3 
The bioactivity using the ADMET properties study of the top three hit 
compounds.  

Molecule 53309102 57398422 76314921 

MW 674.66 448.36 383.42 
Rotatable bonds 12 5 3 
H-bond acceptors 18 8 6 
H-bond donors 7 5 3 
MR 127.77 111.84 101.29 
TPSA 339.14 171.89 128.87 
iLOGP − 0.21 0.8 2.23 
Predicted Toxicity Class 6 6 2 
Solubility Very soluble Soluble Soluble 
PAINS alerts 0 0 0  
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were calculated for the protein. The pKa values for these amino acids are 
listed in the Supplementary Table S2. The isoelectric point (pI) of the 
system was 4.72 and at pH 7.4, the total charge on the system was − 12. 
As observe in Supplementary Table S1, positively charged residues with 
higher pKa than the physiological pH were protonated during the 
simulation, while negatively charged residues that showed a lower pKa 
than the set pH, were deprotonated. This accurately model the ioniza-
tion states of the amino acid residues in the system at the specified pH 
conditions. Further the protonation state of the compounds were also 
calculate as shown in the Figure S2. 

3.7. Trajectory analysis 

The RMSD of the ligands 53309102, 57398422, and 76,314,921 
along with control (U5P) when bound to the protein Nsp15 of 
SARS–CoV–2 as shown in Fig. 4. Here, the RMSD of the ligand was 
calculated by first aligning the protein structure, and then calculating 
the deviation that resulted from that alignment. It was observed that the 
compound 76314921 showed high RMSD post 50 ns of the simulation 
shown in Fig. 4. The conformation of the protein–ligand complex for 
76314921 at 0 ns and 100 ns was observed. It was found that the 
76314921 was stable at the 0 ns, however it moved out of the protein 
binding site at the 100 ns, showing no binding affinity with the protein. 
Thus, 76314921 was not selected for further investigation. 

Fig. 4. RMSD of the ligands 53309102, 57398422, and 76314921 along with control (U5P) when bound to the protein Nsp15 of SARS–CoV–2.  

Fig. 5. RMSD of the protein and ligand complexes for the compounds 53309102 and 57398422, in addition to the control (U5P) (a) RMSD of protein C alpha atoms 
aligned over the original structure in bound and unbound form; (b) RMSD of the ligands. 
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3.8. RMSD 

The root–mean–square deviation (RMSD) was calculated in this 
study by first aligning each frame of the trajectory with the protein’s 
initial equilibrated structure. RMSD of the protein was calculated by 
aligning the Cα–atoms aligned over the initial structure. The RMSD of 
the protein shown in the Fig. 5(a) depicted that the conformation of the 
protein bound to U5P and 53309102 was stable for the entire 100 ns 
simulation. Protein bound to 57398422 showed deviations between the 
trajectories of 40 ns to 60 ns simulation, however the RMSD became 
stable post 60 ns. RMSD of 0.2 nm to 0.3 nm was observed for protein 
bound to the two compounds, along with the control ligand. The un-
bound (apo) protein showed identical RMSD pattern with no major 
fluctuations. It showed RMSD in the 0.2 nm to 0.3 nm which was stable 
and consistent. Similar RMSD trend was observed by a previous study for 
NSP15-ZINC000104379474 complex, which showed promising results 
against SARS-CoV-2(Ibrahim et al., 2022). RMSD values within this 
range represent a relatively stable structure, with minor fluctuations and 
deviations from the starting conformation. The protein is likely 

undergoing some conformational changes when bound to 57398422, 
such as local fluctuations or small rearrangements, but it remains overall 
stable. 

RMSD of the ligands was shown in Fig. 5(b) for the compounds 
53309102, and 57398422 along with the control (U5P) when bound to 
the Nsp15 protein. U5P showed the lowest deviation with RMSD of <0.5 
nm for the first 50 ns. However, it increased to 1 nm and became stable 
for the rest of the 50 ns simulation. Similar trend was observed for 
53309102, with RMSD of <0.5 nm for the first 35 ns and it increased 0.7 
nm where it became stable for the rest of the simulation. Contrastingly, 
57398422 showed high fluctuations in RMSD for the first 50 ns simu-
lation, however post 50 ns, it became stable with RMSD of 1 nm similar 
to the control. It suggested that the ligands shifted from the initial 
binding site of the protein, however, the ligand was still bound to pro-
tein and was stable. Furthermore, the conformation at 0 ns and 100 ns of 
the complexes was investigated. 

In addition, multiple molecular dynamics (MD) simulation replicates 
were conducted following a 10 ns equilibration period. Supplementary 
Figure S3 illustrates the RMSD patterns observed in these replicates, 

Fig. 6. Conformational structure of the protein–ligand complexes at 0 ns and 100 ns of the MD simulation for (a) Control (U5P), (b) 53309102, and (c) 57398422.  
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demonstrating a consistent trend. Notably, the RMSD values for the 
protein remained stable throughout both the initial and subsequent MD 
runs, consistently fluctuating within the narrow range of 0.2 to 0.3 nm. 
Moreover, the RMSD values for the ligand displayed a similar pattern in 
both runs, indicating reproducibility and reliability of the MD simula-
tion protocol. It’s noteworthy that the ligand with the identifier 
76314921 exhibited a notably high RMSD, suggesting its displacement 
from the protein’s binding site, which was also observed in the 1st run. 
This observation further validates the robustness and accuracy of the 
MD simulation procedure employed in this study. 

3.9. Conformational change 

The conformational change of the protein–ligand complex during the 
100 ns simulation was illustrated in the Fig. 6. The change of ligand 
position when bound to the protein at 0 ns and 100 ns simulation was 
compared. It was observed that the control showed conformation 
change from its original binding pocket and moved to surface of the 
protein as shown in the Fig. 6(a, b). However, it was still bound to the 
protein near the binding pocket as also depicted by the RMSD trend. 
53309102 showed similar RMSD trend as the control, it slightly shifted 
from its binding pocket to the nearby pocket of the protein as shown in 
the Fig. 6(c, d). 57398422 changed its conformation slightly and moved 
in the inner side of the pocket shown in Fig. 6(e, f). This indicated that 
both 53309102 and 57398422 was strongly bonded to the protein 

during the 100 ns simulation which was also observed in the RMSD plot 
shown in Fig. 5(b). The conformational changes were due to the for-
mation of more stable bonds as shown further in the hydrogen bond 
prediction. 

3.10. RMSF 

The RMSF of the protein was calculated over the course of 100 ns 
simulation for the control (U5P), 53309102, and 57398422 along with 
the control. The Fig. 7 showed that majority of the residues of the pro-
tein bound to the ligands had a stable RMSF of <0.3 nm. However, few 
residues showed high fluctuations with few peaks. The residue Asp37 
showed high fluctuations over 0.3 nm for both of the compounds 
(53309102, and 57398422) along with the control (U5P). Interestingly, 
this residue also showed RMSF >0.3 nm for the apo protein. These 
findings underscore the dynamic nature of Asp37 within the protein 
structure and its potential significance in ligand binding and structural 
stability. However, 57,398,422 showed high fluctuations (RMSF > 0.3 
nm) for the 18 residues. The study showed similar RMSF trend to that of 
a prior study targeting NSP15 (Ibrahim et al., 2022). These residues 
exhibited significant fluctuations during the simulation could be the 
cause of ligand binding which induced conformational changes and 
increased flexibility in the binding site or nearby regions of the protein. 

3.11. Radius of gyration and COM (Center of Mass) 

The radius of gyration (Rg) is a measure of the protein’s compactness 
as shown in the Fig. 8(a). A higher Rg indicates a more extended 
conformation, while a lower Rg suggests a more compact structure. The 
control protein–ligand complex (black line) maintains a relatively 
consistent Rg throughout the simulation, suggesting a stable confor-
mation. The protein–ligand complex with compound 53309102 (green 
line) exhibits a higher variability in its Rg values, particularly at the 
beginning and end of the simulation. This indicates potential confor-
mational changes or fluctuations during these periods. The protein- 
57398422 complex (red line) has a similar trend to the 53309102, 
though it seems to be more stable in the middle of the simulation. The 
apo state of the protein (blue line) without the ligand remains relatively 
consistent but slightly more compact compared to the other complexes. 
Similar results were observed by the prior investigated protein–ligand 
complex (NSP15-ZINC000104379474 complex) (Ibrahim et al., 2022). 
The protein–ligand complexes exhibit varying degrees of stability, with 
the control appearing the most stable in terms of Rg. The apo state in-
dicates that the absence of a ligand leads to a marginally more compact 
protein structure. 

The Fig. 8(b) plot signifies the average distance between the center of 

Fig. 7. RMSF of the protein during the 100 ns simulation residues for the un-
bound (apo protein) and protein–ligand complexes of Control (U5P), 
53309102, and 57398422. 

Fig. 8. (a) Radius of gyration (b) Distance between the centre of mass (COM) of the protein and the ligand.  
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mass (COM) of the protein and the ligand. A shorter distance indicates a 
tighter binding, while a longer distance can imply weaker interactions or 
potential dissociation events. The control-protein complex (black line) 
maintains a relatively stable distance between the protein and ligand 
COM, suggesting consistent interactions throughout the simulation. The 
protein-53309102 complex (red line) displays a more fluctuating 
pattern, with several peaks indicating potential periods of reduced 
binding affinity or minor dissociation events. The protein-57398422 
complex (green line) exhibits a similar trend to 53309102, though 
with slightly lesser fluctuations. The control-protein complex seems to 
have the most consistent protein–ligand interactions throughout the 
simulation. Both 53309102 and 57398422 complexes show variable 
binding patterns, indicating potential conformational changes affecting 
ligand binding. 

3.12. Hydrogen bond 

The formation of folded proteins is dependent on the stability that is 
provided by hydrogen bonds formed between the protein and the ligand. 
The hydrogen bonds formed by the protein–ligand complexes during the 
100 ns simulation were plotted in the Fig. 9. It was observed that the 
control and the hit compounds showed similar hydrogen bond trend. 
The number of hydrogen bonds were 2–4 for the first half of the 100 ns 
simulation for all the protein–ligand complexes. Later the number of 
hydrogen bonds increased to 5–6 for all the complexes as shown in the 
Fig. 9. Few frames showed 7–8 hydrogen bonds during the 100 ns 
simulation thus, showing strong binding with the protein. Further, the 
hydrogen bond interactions with the significant key residues were 
depicted for the three complexes with the compounds control (U5P), 
53309102, and 57398422. 

3.13. Interaction analysis 

In most cases, the interaction between a ligand and a protein is 
mediated by hydrogen bonding between the two molecules. It’s possible 

that the building blocks of proteins, the essential amino acids, have an 
important part to play in these correlations. When a ligand binds to a 
particular amino acid in the active site or function of a protein, it is 
possible for the ligand to have opposite effects on the protein’s activity 
as a result of the interaction. Thus, the binding of the ligands with the 
key residues are important for the inhibiting the proteins’ function. 
Here, post MD simulation, the complexes were analysed for the inter-
molecular interactions in 2D and 3D as shown in the Fig. 10. The control 
showed a single conventional hydrogen bond with Tyr343 and a single 
pi–cation bond with Lys290. It also showed multiple van der waals 
contact with Glu340 and Thr341 and Met331 while it also showed an 
unfavourable bump with the residue Trp333. 57398422 showed multi-
ple conventional hydrogen bond with Gln347, Tyr343, Leu346 and 
carbon hydrogen bond with residues Gln245 and Lys345. Additionally, 
it also showed van der waals contacts with residues Gly247, Gly248, 
Leu246, His250, Lys290, Cys293, Ser294, Val292, His243, Thr341 and 
also pi–cation bonds with Glu340 and Trp333. Similarly, 53309102 
showed multiple conventional hydrogen bonds with residues Gly248, 
Thr341, His235, Tyr343, His250 and multiple carbon hydrogen bonds 
with Gly247. It also showed van der waals contacts with residues 
Leu249, His243, Glu340, Lys290, Met331, Lys345 and Trp333. Based on 
the fact that His235, His250, and Lys290 are arranged in a manner that 
is strikingly similar to that of the active site of ribonuclease A, it has been 
suggested that these three residues make up the catalytic triad (Ricagno 
et al., 2006). The active site has carries six key residues conserved 
among SARS–CoV–2 proteins including His235, His250, Lys290, 
Thr341, Tyr343, and Ser294 (Kim et al., 2020b). Oligomer formation 
and enzymatic activity are both influenced by these residues that are 
located at the active site (Bhardwaj et al., 2008; Kim et al., 2020b; Zhang 
et al., 2018). Interestingly, it was observed that 53309102 and 
57398422 showed interactions with these catalytic site residues His235, 
His250 and Lys290 post MD simulation, indication significant binding to 
the functional site of the protein. Additionally, 53309102 and 57398422 
showed interactions with the residues Thr341, Tyr343, and Ser294 
which are key residues in the active site. Previous also showed the 

Fig. 9. Hydrogen bond plots for the 100 ns simulation for the protein–ligand complexes of (a) Control, (b) 53309102, and (c) 57398422.  
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inhibitor Saikosaponin V formed bonds with Thr341, Ser294, Trp333, 
Tyr343, Val292, Glu340, and Lys345 amino acids which were also 
observed in this current study for the compounds 53309102 and 
57398422 (Sinha et al., 2020). Overall, both 53309102 and 57398422 
showed hydrogen bonds with important residues indicating strong 
binding affinity with the protein. 

3.14. Principal component analysis (PCA) 

Principal component analysis is a popular dimensionality reduction 
method for extracting important observations from large datasets. The 
movement of the control, 53309102, and 57398422 complexes along 
two main components (PC1 and PC2) were studied using PCA. Fig. 11 
showed the PCA plots of the complexes. Here, all the complexes had a 
similar range of motion modes along primary components. Moreover, 
complexes showed low dispersion indicating less conformational vari-
ation. Stable complex formation was indicated by the fact that binding of 
a compound restricted the free motion of the corresponding complex. 
Compared to the control, 53309102 showed identical dispersion while 

57398422 slightly more dispersion. The free energy landscape analyses 
for 100 ns MD simulation for the control, 53309102, and 57398422 
system were performed to study the energy conformations. 

3.15. Freeenergy landscape (FEL) 

The free–energy landscape (FEL) is an essential tool in studying the 
dynamic behaviour of intricate systems in molecular dynamics simula-
tions. Within this particular context, the Free Energy Landscape (FEL) is 
denoted by two variables, namely PC1 and PC2, which appropriately 
encapsulate the system’s conformational motion. PC1 and PC2 represent 
distinct system features and are crucial in determining the stability of 
the complex. In doing an analysis of the FEL, the regions that are rep-
resented in the colour blue provide significant and meaningful per-
spectives. Significantly, the dimensions and configuration of these blue 
patches can yield insights into the stability of various components 
within the complex. The smaller and more concentrated blue zones are 
indicative of very stable parts within the complex. The notion is further 
elucidated by the three–dimensional projections of the FEL, which 

Fig. 10. 2D and 3D Intermolecular interactions between protein–ligand complexes with the compounds (a, e) Control, (b, f) 57398422, and (c, g) 53309102.  
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visually demonstrate the emergence of a narrow funnel shape. The 
shown funnel illustrates the dynamic progression of conformational al-
terations that unfold during the simulation, culminating in the devel-
opment of a structure characterised by low energy (Baidya et al., 2022). 
write the following paragraph in man writing phrase to remove 
plagiarism (Kannan and Kolandaivel, 2018). 

As shown in the Fig. 12, the complexes formed a single funnel, which 
indicated that they have one local minima. Each of the complexes dis-
played local energy minima across a more extensive free energy land-
scape, denoted by a vivid violet hue. These pronounced basins within 
the graph signify that the complexes have reached a state of minimal 
energy within their respective structures. Thus, all had stable complex 
formation. Compared to the control, 53309102 showed identical free 
energy landscape plot, while 57398422 another small basin with 
centralized blue areas but was comparable to the control. 

3.16. Binding free energy 

The evaluation of the binding free energy of the protein–ligand 
complex was conducted using the MM/GBSA approach. The present 
study was performed using trajectory data acquired from the 100 ns 
simulation. Total solvation energy of the system of the compounds 
53309102 and 57398422 was positive but the higher negative value of 
gas phase energy was responsible for average total binding free energy 
as shown in Fig. 13. However, the total solvation energy of the system of 
the control showed positive gas phase energy while the negative total 
solvation energy was responsible for the average total binding free en-
ergy. Higher negative value of total binding free energy implies more 
stability in the interaction of the complex. The cumulative binding free 
energy (ΔGTOTAL) of the control group was observed as − 17.8 kcal/mol. 
Compounds 53309102 and 57398422 exhibited cumulative binding free 

energies (ΔGTOTAL) of − 29.2 kcal/mol and –23.7 kcal/mol, respectively. 
The data clearly demonstrated that the hit compounds displayed lower 
binding free energies (ΔGTOTAL) in comparison to the control, suggesting 
a stronger and more persistent binding association with the protein. This 
observation indicates a positive and long-lasting interaction between 
these chemicals and the protein. 

4. Discussion 

The findings reported in the present study, provide valuable insights 
into the interaction between SARS–CoV–2 Nsp15 and its ligands, with a 
focus on uridine–5′–monophosphate (U5P) and its analogues. We 
employed a multi–step approach, including analogues generation, ma-
chine learning–based QSAR modeling, molecular docking, molecular 
dynamics simulation, FEP, and free–binding energy analyses to assess 
the stability and binding of these compounds to the target protein. 

First, the Nsp15 binding site was characterised, emphasising critical 
residues crucial for ligand interactions, some of which overlap with the 
previously discovered catalytic triad. Following the creation of U5P 
analogues, the study evaluated these compounds using machine lear-
ning–based QSAR models, selecting 397 candidates for additional 
research. Further molecular docking was used to screening these com-
pounds. Three compounds (53309102, 57398422, and 76314921) stood 
out because of their potent and reliable interactions with Nsp15. In order 
to qualify as potential drug candidates, drug molecules must adhere to 
defined parameters, even though occasional deviations may occur (Van 
De Waterbeemd and Gifford, 2003). Consequently, the compounds un-
derwent rigorous evaluation for Absorption, Distribution, Metabolism, 
Excretion, and Toxicity (ADMET) properties, which revealed their 
suitability for pharmacological applications. 

The root–mean–square deviation (RMSD), root–mean–square 

Fig. 11. Principal component analysis of the two primary components (PC1 and PC1) for the complexes of (a) Control, (b) 53309102, and (c) 57398422.  
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fluctuation (RMSF), and hydrogen bond formation between the ligands 
and the protein were the main topics of a thorough examination of 
molecular dynamics simulations. The analyses of RMSD, RMSF, and 
Radius of Gyration (Rg) plots in this study exhibited patterns consistent 
with a previous investigation targeting Nsp15, as conducted by Ibrahim 
et al. in 2022 (Ibrahim et al., 2022). During the 100 ns molecular dy-
namics (MD) simulation, both compounds 53309102 and 57398422 
demonstrated robust and sustained binding interactions with the pro-
tein, a phenomenon congruent with the RMSD plot. The observed 
conformational changes were attributed to the formation of more stable 
bonds, as corroborated by hydrogen bond predictions. Notably, post-MD 
simulation, both 53309102 and 57398422 displayed interactions with 
critical catalytic site residues, including His235, His250, and Lys290, 
underscoring their substantial binding to the protein’s functional site. 
Furthermore, these compounds exhibited interactions with key residues 
Thr341, Tyr343, and Ser294 within the active site, establishing crucial 
hydrogen bonds with these pivotal residues, as well as with the catalytic 
triad residues His235, His250, and Lys290. These findings provide 
compelling evidence of the compounds’ strong and specific interactions 
with the Nsp15 protein, emphasizing their potential as potent inhibitors. 
These insights aligned with prior studies (Godoy et al., 2023; Hong et al., 
2021; Sinha et al., 2020). It also coincides with the binding site residues 
(residues His235, His250, Lys290, Ser294, and Tyr343) of uridine 
5′–monophosphate (5′–UMP) in the active site of Nsp15 (Pillon et al., 
2021). 

The stability of these complexes was shown by principal component 
analysis (PCA) and free energy landscape (FEL) plots, with two ligands 
(53309102, 57398422) behaving similarly to the control ligand U5P. 
The higher binding affinity of the selected compounds was further 

substantiated by the binding free energy estimates, with ΔGTOTAL values 
indicating more beneficial and stable interactions in comparison to the 
control. 

In conclusion, this comprehensive investigation provides compelling 
evidence that compounds 53309102 and 57398422 hold promise as 
inhibitors of Nsp15 endoribonuclease from SARS-CoV-2. The study of-
fers a thorough understanding of the binding mechanisms, stability, and 
interactions with crucial residues, along with intriguing possibilities for 
drug development. These findings lay a strong foundation for further 
experimental validation and drug design efforts, contributing to the 
development of antiviral medications specifically targeting the SARS- 
CoV-2 virus. 

5. Conclusion 

In this study, analogues of the substrate (Uridi-
ne–5′–Monophosphate) of Nsp15, were screened for their ability to 
inhibit the growth of SARS–CoV–2 by binding to and inactivating the 
virus’s target protein, Nsp15 that mediated the replication of the virus. 
This investigation employed a strategy involved in both QSAR–based ML 
models and physical mechanisms based molecular docking. The top 
three compounds were selected after a two–stage virtual screening 
process that relied on bioactivity pIC50, binding scores, and significant 
hydrogen bonds. The compounds 53309102, and 57398422 were found 
to have the best binding with the protein indicated in MD simulation, 
MM/GBSA, PCA, and FEL analysis. Intriguingly, this study revealed that 
post-MD simulation, compounds 53309102 and 57398422 exhibited 
interactions with the catalytic site residues, His235, His250, and Lys290, 
which signified their substantial binding affinity for the functional site 

Fig. 12. 3D free–energy landscape diagrams indicated by color (lighter to darker represents higher free energy to lower free energy) for the complexes with ligands 
(a) Control, (b) 53309102, and (c) 57398422. 
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of the Nsp15 protein. Moreover, during the 100 ns simulation, both 
compounds exhibited robust and sustained binding interactions with the 
protein, as corroborated by the RMSD plot. The cumulative binding free 
energies (ΔGTOTAL) for compounds 53309102 and 57398422 were 
calculated to be − 29.2 kcal/mol and –23.7 kcal/mol, respectively, 
further confirming their superior binding affinity when compared to the 
control. In conclusion, this study strongly advocates the utilization of 
compounds 53309102 and 57398422 as specific agents targeting Nsp15 
of SARS-CoV-2. These compounds present a promising avenue for 
experimental validation aimed at combating SARS-CoV-2. The 
comprehensive insights provided by this research, supported by the 
significant binding interactions, stability, and robust binding free energy 
estimates, underscore the potential of these compounds as potent in-
hibitors of the viral replication machinery. These findings serve as a 
foundation for further investigations and drug development efforts in 
the quest to develop effective treatments for SARS-CoV-2. 
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