
RESEARCH ARTICLE

Genomic inbreeding and runs of homozygosity

analysis of indigenous cattle populations in

southern China

Yuqiang Liu1,2☯, Guoyao Zhao1☯, Xiaojue Lin2, Jiahao Zhang2, Guanyu Hou3,

Luepei Zhang1, Dewu Liu2, Yaokun Li2, Junya Li1*, Lingyang XuID
1*

1 Innovation Team of Cattle Genetic Breeding, Institute of Animal Science, Chinese Academy of Agricultural

Sciences, Beijing, China, 2 College of Animal Science, South China Agricultural University, Guangzhou,

China, 3 Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences,

Hainan, China

☯ These authors contributed equally to this work.

* lijunya@caas.cn (JL); xulingyang@caas.cn (LX)

Abstract

Runs of homozygosity (ROH) are continuous homozygous segments from the common

ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and

genetic basis of important traits. In this study, three representative cattle populations includ-

ing Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped

using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide

level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The

sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The aver-

age of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands

(with frequency > 0.5) across genome. Based on these regions, we observed several breed-

specific candidate genes related to adaptive traits. Several common genes related to immu-

nity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three

populations. Three genes related to immunity (UGP2), development (PURA) and reproduc-

tion (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-

specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in

HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings

provided valuable insights into understanding the genomic homozygosity pattern and pro-

moting the conservation of genetic resources of Chinese indigenous cattle.

Introduction

Runs of homozygosity (ROH) are continuous homozygous segments inherited from common

ancestors [1]. The size and count of ROH are important factors that reflect potential forces of

genomic change. The generation of ROH can be influenced by inbreeding, genetic drift, popu-

lation bottleneck, as well as natural and artificial selection [2]. Therefore, the detection and

characterization of ROH can help to explore population structure and demographic history.
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The emergence of high-throughput genotyping technology provided new methods for

inbreeding assessment based on single nucleotide polymorphism (SNP). ROH were proposed

as a feasible approach to measure the level of inbreeding in livestock [2–5]. The proportion of

ROH in autosomal genome can be used to estimate inbreeding coefficient at individual or pop-

ulation levels [6]. The estimation of inbreeding coefficient based on ROH outperformed that

of pedigree estimation (because pedigree is often incomplete or inaccurate) [6–8]. Moreover,

ROH can be utilized to assess the distribution of homozygous fragments and identify the spe-

cific regions with high-frequency ROH on the genome [9].

Domestication and selection can reshape the genomic pattern in many livestock species

[10–13]. Strict selection can be achieved by selecting a small number of superior individuals,

which can reduce the haploid diversity and increase the frequency of homozygous segments

containing favorable genes [14, 15]. ROH can provide valuable insight into the genetic archi-

tecture of complex traits [16]. Many studies have been carried out to detect ROH islands and

identify a series of genes related to economically important traits in farm animals. For instance,

Mastrangelo et al. identified genes related to milk production, immune response and resis-

tance in four Italian cattle breeds [16]. A recent study found that many genes are related to

growth, coat color and immunity in different production types of cattle breeds [17]. In local

sheep, many genes in ROH islands related to body size and reproduction were found [18–20].

Moreover, several genes related to reproductive traits, meat quality traits and energy conver-

sion were identified within ROH islands in pig [21, 22]. Estimation of Genome-wide mapping

inbreeding and the relationship between autozygosity and production traits have widely been

explored in dairy and beef cattle [3, 23–26].Moreover, analysis of ROH pattern and their rela-

tion to adaptive traits has also been carried out in many Indigenous cattle [27–31].

Indigenous cattle display genetic merits for disease resistance, parasite tolerance, heat toler-

ance and adapted to local environmental conditions [32]. These cattle can contribute impor-

tant genetic resources for breeding programs [33]. Understanding the genetic basis underlying

adaptive traits can provide valuable resources for global breeding and further help to promote

the application of genetic improvement of these cattle [34]. Three indigenous cattle popula-

tions are raised in the subtropical regions of southern China (Leiqiong cattle (LQC) and

Lufeng cattle (LFC) in Guangdong province, and Hainan cattle (HNC) in Hainan Province).

The three breeds are draft, dual-purpure cattle. They show yellow-brown coat color, short

straight horns, and small body size. After long-term domestication, these cattle have adapted

to the local hot and humid environment, with the merits of strong immunity under rough

feeding conditions [35–37].

Investigation of ROH pattern and identification of potentially candidate genes in indige-

nous cattle populations (LQC, LFC and HNC) living in hot and humid environment condi-

tions are necessary to explain the breed-specific selection in cattle. Despite the ROH pattern of

indigenous cattle from China has been explored in our previous analysis [38]. ROH pattern of

indigenous cattle population in southern China still remain to be explored. The aims of this

work were to (i) evaluate the genome-wide ROH distribution pattern and the inbreeding level

of LQC, LFC and HNC using high-density SNP arrays; (ii) identify high-frequency ROH

islands across genome and investigate candidate genes in indigenous cattle.

Materials and methods

Ethics approval statement

All animals were collected in strict accordance with the Regulations of People’s Republic of

China for the Administration of Laboratory Animals (2017 Revision, CLl.2.293192, State

Council, China). Animal research protocols were approved by the Institutional Animal Care
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and Use Committees (IACUCs) of South China Agricultural University (Approval

No.2018-P002).

Genotyped samples

Samples were collected from three cattle populations including Leiqiong (LQC; n = 30),

Lufeng (LFC; n = 33) and Hainan (HNC; n = 26), which were genotyped by Illumina Bovi-

neHD SNPs array (770K). Genomic DNA was extracted from ear tissue, and DNA with the

A260/280 ratio ranging between 1.8 and 2.0 was subject to further analysis. The sample size,

associated abbreviation and other information of each population are shown in Table 1. We

performed quality control on SNPs array according to the following standards; (i) We

removed individuals (PI-HAT value> 0.25) who are closely related as previously reported

[38]. (ii) We excluded all SNPs assigned to mitochondrial chromosomes, X and Y, whereas

only autosomal SNPs were used in the subsequent analysis. (iii) The individuals with genotype

calling rate of more than 99% and SNPs with missing rate less than 5% were kept. (vi) SNPs

were also filtered with minor allele frequency (MAF) < 0.05 and genotyping rate (geno < 0.1).

ROH estimation

Short ROH can be formed due to linkage disequilibrium across the genome. Therefore, we

only detected ROH with a size greater than 0.5Mb [39, 40]. We used PLINK v1.9 to detect

ROH across autosomes for each individual [41, 42]. ROH were determined as the following

criteria [38]: a sliding window of 50 SNPs across the genome, the proportion of homozygous

overlapping windows was 0.05, a minimum number of 100 consecutive SNPs included in a

ROH, a maximum gap between consecutive homozygous SNPs of 0.1 Mb, one SNP per 50 k,

and maximum two missing SNPs and one heterozygotes genotype in one ROH.

ROH classification and inbreeding coefficient

ROH were divided into three classes based on size: short (0.5-1Mb), medium (1-5Mb) and

large (>5Mb) [38]. We used three methods to evaluate the inbreeding coefficient in the three

populations. (i) The proportion of the genome covered by runs of homozygosity (FROH) was

estimated based on the total length of ROH divided by the length of autosomes per individual

[6]. Moreover, we calculated FROH per chromosome among the three populations [33]. (ii)

compute the FGRM based on genomic relationship matrix(G) as described by previous report

[42–44]. We used GCTA v1.19.2 software to calculate the FGRM according to a previous study

[45]. (iii) The proportion of homozygous SNP (FHOM) based on the observed versus expected

number of homozygous genotypes [9, 41, 42].

Table 1. The descriptive statistics of ROH for three Chinese indigenous cattle populations.

Breed/Population

abbreviation

Size FHOM FROH FGRM Total ROH

numbera
Average ROH number per

individual

Total ROH length

(Mb)b
Average length of ROH per

individual (Mb)

LQC 30 -0.06 0.10 0.02 7760 259 7361 245

LFC 33 0.08 0.12 0.04 10520 319 10258 311

HNC 26 0.10 0.15 0.04 8257 318 9748 375

Note: a. The total number of ROH events for each population.
b. The total length of ROH events for each population. LQC: Leiqiong cattle, LFC: Lufeng cattle, HNC: Hainan cattle, FHOM: the average inbreeding coefficient based on

proportion of homozygous SNP in population, FROH: the average inbreeding coefficient based on proportion of the genome covered by runs of homozygosity in

population, FGRM: the average inbreeding coefficient based on the genomic relationship matrix.

https://doi.org/10.1371/journal.pone.0271718.t001
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Identification ROH island and candidate genes

We conducted a comparison analysis based on the frequency of ROH and identified candidate

genes overlapping with ROH segments. In the present study, we defined ROH island based on

the consensus overlapping homozygous regions with the frequency higher than 0.50 for each

population [46]. In addition, the suggested frequency threshold (0.3) was considered to include

more candidate genes. Moreover, candidate genes located within ROH islands were identified

based on the reference genome UMD 3.1. [47].

The distribution of ROH and ROH enriched genes

To investigate the distribution of ROH across population, we estimated the common ROH

segments using “—homozyg-group” option implemented in PLINK v1.9. The distributions of

ROH were generated using Manhattan plot in R package CMplot (https://github.com/

YinLiLin/CMplot). Moreover, the Database for Annotation, Visualization and Integrated Dis-

covery (DAVID) was used to determine Gene Ontology (GO) terms and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways of candidate genes [48, 49].

Results

Genomic ROH distribution

After quality control, 491,515 SNPs and 89 cattle were considered for the downstream analysis.

We detected a total of 26,537 ROH in 89 individuals. The size of ROH ranged from 0.5Mb to

53.3Mb in the three populations. Moreover, we observed the highest average number of ROH

(319) per individual in LFC, whereas the smallest average number was observed in LQC (259).

The largest total lengths of ROH with 375Mb per individual was found in HNC, whereas the

smallest with 245Mb was found in LQC. The longest ROH was identified in BTA3 in HNC.

Detailed summary statistics of ROH for each population were presented in Table 1.

ROH pattern and inbreeding coefficients

The total ROH length and number for each individual varied among the three populations

(Fig 1). Our results showed that HNC contained a large number of long homozygous seg-

ments. In contrast, the smallest number and length for ROH was in LQC. To assess the pattern

of ROH, we divided ROH into three classes according to their size, as described in previous

studies [38]. The distributions of three ROH size classes were presented in Fig 2. We observed

proportion of the number of ROH with large length (>5Mb) is 2% in HNC, and 0.7% in LFC

and LQC. The total length of the large ROH (>5Mb) was 919Mb, and 556Mb, 2,416Mb in

LFC, LQC and HNC, respectively.

We evaluated inbreeding coefficient using three methods including FROH, FHOM and FGRM.

We observed the highest FROH (0.15) in HNC, whereas the minimum (0.10) in LQC. The

FHOM ranged from -0.06 to 0.10, whereas the FGRM ranged from 0.02 to 0.04. Using these

methods, our results showed similar trend for inbreeding level (Fig 3), and HNC had the high-

est inbreeding level. Notably, we found FROH had similar values across 29 chromosomes in

HNC and LFC. However, obvious differences were found on BTA4, BTA8, BTA14 and BTA20

in LQC (Fig 4).

ROH islands distributions across genome

ROH are suited to detect signatures of selection via ROH islands, we next calculated the fre-

quency of ROH and identified ROH islands for each chromosome. The ROH frequencies of

the three populations were presented in Fig 5. We regarded ROH with a frequency larger than
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Fig 2. Total length and number of ROH for three size classes including Small (0.5 to 1 Mb), Medium (1 to 5 Mb) and Large (>5 Mb). (A) The total

number of ROH for size classes. (B) The total length of ROH for three size classes. LQC: Leiqiong cattle; LFC: Lufeng cattle; HNC: Hainan cattle.

https://doi.org/10.1371/journal.pone.0271718.g002

Fig 1. The distributions of ROH statistics per individual for indigenous cattle populations in southern China. (A) Violin plot of the

total length of ROH events per individual. (B) Violin plot the total number of ROH events per individual. LQC: Leiqiong cattle; LFC:

Lufeng cattle; HNC: Hainan cattle.

https://doi.org/10.1371/journal.pone.0271718.g001

PLOS ONE Genomic inbreeding and runs of homozygosity analysis on indigenous cattle populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0271718 August 25, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0271718.g002
https://doi.org/10.1371/journal.pone.0271718.g001
https://doi.org/10.1371/journal.pone.0271718


0.5 as ROH islands and searched for candidate genes overlapping with those ROH islands. In

total, we identified 7, 11, and 16 ROH islands in LQC, LFC, and HNC, respectively. Notably,

we found the shared ROH islands with the highest frequency located at BTA7 in LQC, LFC,

and HNC.

Gene functional annotation

Under the frequency threshold of 0.3, we identified 349 genes based on these ROH islands,

and then we performed gene annotation using DAVIDv6.8, we found ten genes (OMD,

ITGB8, ADAM2, PCDHGA8, PCDHGC3, ITGB3, CTNNA1, PCDHB11, PCDHGA2 and

PCDHGB4) that were associated to cell adhesion in HNC. Moreover, as for LFC, we found

three genes (ALCAM, BSG and SEMA3B) associated to immunoglobulin domain. However,

no significant GO term and KEGG pathway were found in LQC. Under the frequency thresh-

old of 0.5, 45 genes were identified based on ROH islands. We observed similar result as to 0.3,

and six genes (PCDHGA8, PCDHGC3, CTNNA1, PCDHB11, PCDHGA2 and PCDHGB4) asso-

ciated to cell adhesion in HNC. However, no significant GO term and KEGG pathway were

found in LQC and HNC.

Breed-specific ROH genes

We identified 19, 17 and 41 genes based on the frequency threshold of 0.5 in LQC, LFC, and

HNC, respectively. We found 19 common genes contained at least in two populations, and 26

breed-specific genes (Fig 6). Among them, we identified several common genes related to

immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) in three populations.

Moreover, three common genes were related to immunity (UGP2), development (PURA) and

Fig 3. The distributions of inbreeding coefficient. (A) The distributions of FHOM across populations. (B) The distributions of FROH across populations. (C)The

distributions of FGRM across populations. FHOM: inbreeding coefficient based on the proportion of homozygous SNP, FROH: inbreeding coefficient based on the

proportion of the genome covered by runs of homozygosity, FGRM: inbreeding coefficient based on the genomic relationship matrix.

https://doi.org/10.1371/journal.pone.0271718.g003
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fecundity (VPS54) in HNC and LQC. Notably, we identified several breed-specific genes

related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immu-

nity (CDC23 and NME5) and development (WNT87) in LFC. Detailed information about high

frequency ROH and their related genes were presented in S1 Table.

Discussion

In this study, we explored the ROH pattern and assessed the inbreeding level in three indige-

nous Chinese cattle populations using Illumina BovineHD array. Moreover, we identified

many breed-specific ROH islands across genome and mapped several candidate genes for

important traits.

The distributions of total length and number of ROH implied the genetic differences

among populations [50]. Consistent with a previous study [38], we found that the total number

and length of ROH were large in indigenous cattle from southern China. Indigenous cattle

populations showed a trend that the length and number of ROH increased from north to

south [38]. In our study, we found the largest proportion of number and length of large ROH

(>5Mb) were identified in HNC (Fig 1). Notably, several individuals with extreme ROH

lengths (>800 Mb) were identified among the HNC. As previously reported, the large ROH

(>10Mb) was generated during the recent inbreeding (up to five generation ago), whereas

short ROH (<1Mb) indicates distant ancestral effect (up to 50 generation ago) [9, 33]. Also,

large ROH are likely to be interrupted because of recombination. This finding was consistent

with the selection history of HNC [35]. HNC is raised in Hainan province, and the limited

genetic introgression occurs from other cattle populations. Thus, the unique environment

condition and strict selection prompted the breed formation of HNC. In contrast, LQC had

the least number of large ROH (>5Mb), which may be related to genetic introgression from

Fig 4. Line plot of inbreeding coefficient for each chromosome among the three populations.

https://doi.org/10.1371/journal.pone.0271718.g004
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Fig 5. The distribution of ROH across autosomes in the three populations. The x-axis represents the genomic coordinate, and the y-axis displays the

frequency of overlapping ROH among individuals. (A) LFC; (B) HNC; (C) LQC.

https://doi.org/10.1371/journal.pone.0271718.g005
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other populations [35]. The mating or cross between outbred individuals or populations may

contribute to the disruption of long ROH in the genome [40].

The detection of inbreeding level based on SNP data depends on the actual variation in

inbreeding in a population, the effective population size, and the sample size [9]. Mehrnush

et al. compared the inbreeding coefficient based on FPED, FGRM, FROH and FTRUE (true

inbreeding coefficient) in the North American Holstein dairy cattle population and they found

that FROH was closest to the true inbreeding coefficient [51]. We found that HNC had the high-

est inbreeding level by comparing the inbreeding level of three cattle populations (LFC, LQC

and HNC) based on FPED, FGRM and FHOM. This was agree with previous analysis, and the

effective population size of HNC is smaller than that of LQC and LFC [35]. In addition, the

inbreeding level of three cattle populations (LFC, LQC and HNC) were higher than that of

commercial breeds, whereas similar pattern was observed among them [39, 52–54]. Simulta-

neously, the high inbreeding coefficient of southern Chinese cattle populations also indicated

it is urgent to design feasible mating strategies to control the level of inbreeding and maintain

the effective population size for these populations. Moreover, we estimated FROH for each

chromosome in the three populations. HNC and LFC have similar trend on 29 chromosomes,

whereas LQC was significantly different in BTA8, BTA14 and BTA20. This result can be

explained that different selection pressures and recombination occurred may shape breed-spe-

cific ROH pattern on different chromosomes [55].

The formation of ROH can be influenced by inbreeding, genetic drift, population bottle-

neck, recombination events, as well as natural and artificial selection [12, 56]. However, ROH

peaks were distributed and shared among individuals, which is likely caused by selection

events, demographic history and recombination events [12, 17, 21, 55, 57]. These peaks were

called hotspots or ROH islands and can be considered as the signal of selective sweeps across

genome. We defined ROH regions with the frequency of more than 0.5 as ROH islands. At

last, our analysis identified 34 ROH islands inclusion 45 candidate genes in the three popula-

tions. Consistent with the results from previous study [38], we found that many high-fre-

quency ROH islands occur on BTA7 in Chinese local cattle breeds. Moreover, we found that

29 out of 45 overlapped genes.

Fig 6. Candidate genes identified for the three populations overlapping with ROH islands. (A) The Venn diagram of the

identified genes for three populations when the threshold frequency of ROH islands is set to 0.3. (B) The Venn diagram of

the identified genes for three populations when the threshold frequency of ROH islands is set to 0.5.

https://doi.org/10.1371/journal.pone.0271718.g006
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Among them, we found three genes (TMEM173, MZB1 and SIL1) related to immunity and

one gene (DNAJC18) related to heat stress in all three populations. Transmembrane protein

173 (TMEM173) activates the type I interferon-regulated innate immune response, which

plays crucial role in modulating inflammation [58]. MZB1 plays an important role in the pro-

cess of plasma cell differentiation [59]. Mutations of SIL1 cause Marinesco-Sjögren syndrome

(MSS), which is a neurodegenerative disorder [60]. In a previous study, a member of the heat

shock protein family (DNAJC18) responding to heat stress has been identified in East African

Shorthorn Zebu cattle [61]. These results indicated that the identification of candidate genes

for the indigenous cattle populations in southern China may help to explain the genetic basis

of adaption for the humid and hot environments. We also found three genes including UGP2,

PURA and VPS54 related to immunity, reproduction and development in HNC and LQC.

UGP2 plays an essential role in promoting HCC cell migration and tumor metastasis. Muta-

tions in PURA may alter normal brain development and impair neuronal function, leading to

developmental delay [62]. VPS54 null mutation may cause embryonic lethality [63].

Notably, we found three breed-specific genes (WNT8A, NME5 and CDC23) related to body

weight and immunity in LFC. The WNT8A contains four single-nucleotides polymorphisms

that have an obviously relationship with the height and length of Qinchuan cattle [64].

WNT8A was related to the dwarf size in Chinese southern cattle. NME5 was identified as a

candidate gene for primary ciliary dyskinesia and hydrocephalus cases [65]. CDC23 is a critical

regulator of cell cycle and cell growth, and may involve with thyroid cancer initiation and pro-

gression [66]. Remarkably, we found three genes (TAF7, SPAG6 and BRDT) related to immu-

nity and reproduction in HNC. TAF7 can regulate the expression of heat shock protein genes

and enhance efficient recovery of cells challenged to thermal stress [67]. SPAG6 acts a crucial

role in immuno-regulation, and participate in the occurrence and progression of human can-

cers. SPAG6 was also reported that can regulate tumor cell proliferation, apoptosis, invasion,

and metastasis [68]. BRDT is essential for the normal progression of spermatogenesis, and

mutations in BRDT can cause male sterility [69]. We suspected that the immune-related genes

have been identified among populations, which may reflect the effects of long-term selection

for LFC and HNC in the harsh environments.

Conclusions

In summary, we assessed the ROH pattern, inbreeding level and identified several candidate

genes related to important traits in three indigenous cattle populations in southern China. Our

findings provided important insights into understanding the genetic basis of adaptive traits

and facilitate the protection and breeding management of indigenous cattle population.

Supporting information

S1 Table. The descriptive statistics about the high frequency ROH and candidate genes for

indigenous cattle populations in southern China.

(XLSX)
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