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ABSTRACT Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying ~ KEYWORDS
several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max)  Glycine max
accessions serving as parents in a soybean nested association mapping population for deletions and  soybean
duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing  structural
methods were used as complementary technologies to identify SV in 1528 genes, or approximately variation
2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted ~ CNV

in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for  nested
gene models that have retained paralogs since the last whole genome duplication event, compared with association
genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 mapping

resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV
occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits.

Genome-level diversity arises from a wide spectrum of mutational
events, from chromosome-level events (e.g., aneuploidy) to single nu-
cleotide polymorphisms (SNPs). Recently, there has been a surge of

Copyright © 2014 Anderson et al.

doi: 10.1534/g3.114.011551

Manuscript received April 10, 2014; accepted for publication May 20, 2014;
published Early Online May 22, 2014.

This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.114.011551/-/DC1

Accession numbers: All comparative genomic hybridization data in this study
can be found as accession number GSE56351 in the National Center for
Biotechnology Information Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo). The sequence read data from the 41 NAM parent lines is deposited in
the Sequence Read Archive (SRA) under accession number SRP042221. The
sequence read data from line Wm82-ISU-01 is deposited in the SRA under
accession number SRP042236.

"Corresponding author: University of Minnesota, 1991 Upper Buford Circle, 411
Borlaug Hall, St. Paul, MN 55108-6026. E-mail: rstupar@umn.edu

= G3:Genes | Genomes | Genetics

interest in mid-level types of polymorphism: changes smaller than
chromosomal-level differences but substantially larger than SNPs.
This structural variation (SV), which is often observed as large dele-
tions or duplications, occurs on a scale from single genes to sizeable
multi-genic regions. SV segments are often referred to as copy number
variation (CNV) when there is any difference in copy number across
genotypes, or as presence—absence variation (PAV) when some gen-
otypes contain the segment while other genotypes are entirely devoid
of the chromosomal segment.

Essentially, two types of SV studies have been published in the
plant research community. The first type assesses the global pattern of
SV throughout the genome, using array comparative genomic hybrid-
ization (CGH) or next-generation sequencing (NGS), or a combination
of these platforms. This type of study has become increasingly popular
in model plant and crop species. Genome-wide SV profiles have been
published recently for maize (Zea mays) (Swanson-Wagner et al. 2010;
Chia et al. 2012; Hirsch et al. 2014), Arabidopsis (Santuari et al. 2010;
Cao et al. 2011), soybean (Glycine max) (Lam et al. 2010; McHale et al.
2012), barley (Hordeum vulgare L.) (Mufoz-Amatriain et al. 2013), and
sorghum (Sorghum bicolor L.) (Zheng et al. 2011) in addition to several
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other species (Zmienko et al. 2014). These studies have been successful
at extracting meaningful biology from the global SV patterns but have
not attempted to assess the direct impacts of an individual CNV or
PAV on a particular plant phenotype.

The second type of plant SV study focuses on the association
between specific CNV/PAV within genes that govern a specific trait of
interest. Gene CNVs/PAVs have been associated with numerous traits
of biological and agricultural importance (Zmienko et al. 2014). Im-
portant examples include glyphosate resistance in Palmer amaranth
(Amaranthus palmeri) (Gaines et al. 2010, 2011), boron tolerance and
winter hardiness in barley (Sutton et al. 2007; Knox et al. 2010), seed
coat pigmentation and soybean cyst nematode resistance in soybean
(Todd and Vodkin 1996; Cook et al. 2012), female gamete fitness in
potato (Solanum tuberosum) (Iovene et al. 2013), flavor quality in
strawberry (Fragaria X ananassa) (Chambers et al. 2014), dwarfism
and flowering time in wheat (Triticum spp.) (Pearce et al. 2011; Diaz
et al. 2012; Li et al. 2012), submergence tolerance in rice (Oriza sativa)
(Xu et al. 2006), and aluminum tolerance and glume formation in
maize (Han et al. 2012; Wingen et al. 2012; Maron et al. 2013). In-
terestingly, these studies were often initiated as map-based cloning
efforts, where the mapped interval was coincident with a causative
structural variant. We are not aware of any published studies in which
genome-wide SV profiles have been used to identify or facilitate the
discovery of a candidate SV influencing a polymorphic plant trait.

Soybean is a self-pollinating species that has experienced genetic
bottlenecks during domestication and modern improvement (Hyten
et al. 2006; Li et al. 2013). To assess standing genomic variation in the
germplasm, this study performs SV profiling on 41 soybean accessions
to identify high confidence genic CNVs/PAVs. These accessions were
used as parents to develop a nested association mapping (SoyNAM)
population (previously described by Stupar and Specht 2013). This
panel was strategically selected for SV profiling because the SoyNAM
population is now being evaluated in the Midwestern United States for
several important agricultural traits. Therefore, this study serves two
distinct purposes: to increase understanding of the contribution of SV
to soybean genetic diversity and to report genes impacted by CNV/
PAYV that might be candidate loci contributing to phenotypic variation
in the SoyNAM population.

MATERIALS AND METHODS

Comparative genomic hybridization

“Williams 82_ISU_01” (denoted hereafter as Wm82-ISU-01) is a sub-
line of the reference genome soybean (Glycine max) cultivar “Williams
82” (Bernard and Cremeens 1988; Haun et al. 2011). The stock of
“Williams 82” seed containing Wm82-ISU-01 was originally obtained
from Dr. Randy Shoemaker (USDA, Agricultural Research Service) at
Towa State University. Wm82-ISU-01 is the nearest known match to
the soybean reference genome assembly version 1.0 (Schmutz et al
2010; Haun et al. 2011) and therefore was used as the common
reference for all the experiments in this study. Seeds for the 41 soy-
bean nested association mapping (NAM) parents were obtained from
the University of Nebraska (see Supporting Information, Table S1 for
a list of the NAM parents).

Seeds were planted in 4-inch pots individually containing a 50:50
mix of sterilized soil and Metro Mix. Young trifoliate leaves from
3-week-old plants were harvested and immediately frozen in liquid
nitrogen. Frozen leaf tissue was powdered with a mortar and pestle in
liquid nitrogen. DNA was extracted using the Qiagen Plant DNeasy
Mini Kit according to the manufacturer’s protocol. DNA was quan-
tified on a NanoDrop spectrophotometer.
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An updated comparative genomic hybridization (CGH) micro-
array designed and built by Roche NimbleGen was used that includes
1,404,208 probes. The probes were designed based on the Williams 82
reference sequence assembly version 1.0 (Schmutz et al. 2010). The
probes, which range between 50 and 70 bp, tile the genome at a me-
dian spacing of approximately 500 bp. Labeling, hybridization, and
scanning for the CGH experiments were performed as previously
described (Haun et al. 2011; McHale et al. 2012). Briefly, Wm82-
ISU-01 was used as the Cy5 reference in all hybridizations, whereas
the test genotype was labeled with Cy3. The SegMt algorithm in the
DEVA software was used to generate the raw data and identify seg-
ments. The program parameters were as follows: minimum segment
difference = 0.1, minimum segment length (number of probes) = 2,
acceptance percentile = 0.99, and number of permutations = 10. Spa-
tial correction and gspline normalization were applied.

The log, ratio between the Cy3 and Cy5 dyes (i.e., the NAM parent
genotype compared to the Wm82-ISU-01 reference) was calculated
for each probe. Segments of probes were called significant if the mean
of the log, ratio was above the upper threshold or below the lower
threshold for that given genotype comparison. The lower threshold for
each comparison was set at 3 SDs below the log, ratio mean. The
upper threshold for each comparison was set at 2 SDs above the log,
ratio mean. Thresholds were separately calculated for each genotype
comparison. A custom Perl script was used to process the DEVA
generated segments for each genotype and recognize segments beyond
these thresholds. The determination of thresholds is explained in
greater detail in the File S1 and in Table S2. Significant segments
found below or above their respective thresholds were initially classi-
fied as “DownCNV” and “UpCNV,” respectively. Collectively, these
segments were referred to as “CGH Segment CNV.”

Observations of the initial analysis revealed that while DEVA
segmental clustering was successful at merging and detecting large
CNV regions, it often did not detect smaller (e.g., gene sized) CNV
and had occasionally merged such features into nonsignificant seg-
ments. This motivated a second methodology for calling significant
CNV using individual CGH probes. To do this, the probes within or
overlapping genic space were averaged to get a probe-based log, ratio
score for each gene. Genes that did not overlap with any probes were
assigned the overlapping DEVA segment average or the average score
of the nearest two probes. Genes exhibiting average probe log, values
above or below the significance thresholds (as defined in the previous
paragraph) were classified as “DownCNV” and “UpCNV,” respec-
tively. Collectively, these genes were referred to as “CGH Probe
CNV.” Visual displays of the CGH data were generated using Spotfire
DecisionSite software.

Whole genome sequence data

DNA isolation and whole genome sequencing for each of the 41 NAM
parent lines was conducted at the USDA facility in Beltsville,
Maryland. Approximately 40 freeze-dried seeds of each NAM
genotype were ground to a powder with a steel ball using a Retsch
MM400 Mixer Mill at 30 hz for 2 min. DNA was extracted from the
ground seed tissue using the Qiagen DNEasy Plant DNA isolation kit.
The DNA was fragmentased for 25 min at 37° using the New England
Biolabs Next dsDNA fragmentase (New England Biolabs, Beverly,
MA) and run on an agarose gel for size selection to obtain fragments
in the 400-bp 600-bp range. An “A” overhang was added to the ends
of the fragments. The end repaired DNA libraries were ligated with
the Illumina paired-end sequencing multiplex adapters (Illumina, San
Diego, CA). Illumina paired-end libraries were sequenced for 150 bp
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on an Illumina HiSeq 2000. The reference line Wm82-ISU-01 was
sequenced on an Illumina HiSeq 2000 at the University of Minnesota
using a paired-end library and 100 bp reads. Before aligning to the
reference, the raw reads were cleaned using minimum base quality
score Q30. After this cleaning, the NAM “hub” parent, IA3023 (which
was mated to each of the other 40 NAM parents), was sequenced to
a depth of 31x. Read depth was variable among the remaining 40
NAM parent lines, ranging from approximately 2x to 8x coverage
(Table S1). Wm82-ISU-01 was sequenced to a depth of approximately
13x. The cleaned reads were mapped to the reference genome using
BWA MEM (Li and Durbin 2009). The alignments were then cleaned
by removing reads that failed vendor quality check, that were PCR or
optical duplicates, that are not properly paired, and that mapped to
multiple positions.

The number of sequence reads uniquely mapped between the start
and stop codons of each gene were counted. Genes that had zero reads
across all genotypes (including Wm82-ISU-01) were removed from
further analyses. To control for scaling issues, genes that exhibited
zero reads in Wm82-ISU-01 and more than one read in at least one
NAM parent line were analyzed in parallel. Additionally, genes
exhibiting reads in Wm82-ISU-01 and zero reads in at least one
NAM parent line were flagged as potential DownCNV and also
analyzed separately. RPKM (defined as reads mapped per kilobase per
million mapped reads) was calculated across genes and genotypes to
standardize the variable genotype coverage and gene size. For each
gene, the log, ratio of the NAM parent RPKM divided by the Wm82-
ISU-01 RPKM was calculated. Using the same methods as described
above for CGH analysis, genes with log, ratios 2 SDs above the mean
were considered potential UpCNV and log, ratios below 3 SDs from
the mean were considered potential DownCNV for each genotype.
Collectively, these genes were referred to as “Sequence CNV.”

Cross-validation of CGH and sequence data to find
significant genes

As described above, CGH and re-sequencing analyses provided three
lists of putative structural variants associated with genomic regions:
“CGH Segment CNV,” “CGH Probe CNV,” and “Sequence CNV.” A
subset of genes was identified from these lists for downstream analysis,
including the following: genes found within the “CGH Segment
CNVs” and genes found on both the “CGH Probe CNV” and “Se-
quence CNV” lists (Figure S1). For this subset of genes, the sequence-
based log, RPKM ratio values were plotted against the CGH-based
log, ratios for all 41 NAM parent genotypes. Structural variants were
considered cross-validated among the two platforms when the 41
genotypes clearly split into two or more clusters or collectively clus-
tered beyond stated thresholds. See Figure S2 for a methodological
flow chart from data type to CNV cross-validated calls.

The UpCNV and DownCNV classifications were subdivided into
more specific categories based on the cross-validation analyses.
Estimates of gene copy number per genotype were used as the
criterion for classifying each gene into one of six categories that were
designated as follows: (1) DownCNV/PAV: one copy in Wm82-ISU-
01, zero copies in at least one NAM parent, no more than one copy
among all 41 NAM parents; (2) UpPAV: zero copies in Wm82-ISU-
01, a single group of one or more copies in at least one NAM parent
(Wm82-ISU-01 had few or no reads mapped to these genes while at
least one NAM parent exhibited numerous such reads skewing the
RPKM based estimates); (3) UpPAV and UpCNV: zero copies in
‘Wm82-ISU-01, multiple groups of one or more copies among the NAM
parents; (4) UpCNV and DownCNV: one copy in Wm82-ISU-01,
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zero copies in at least one NAM parent, more than one copy in at
least one NAM parent; (5) UpCNV: one copy in Wm82-ISU-01, more
than one copy in at least one NAM parent; and (6) Multi-Allelic
UpCNV: one copy in Wm82-ISU-01, multiple groups of one or more
copies among the NAM parents.

Enrichment analyses
Individual gene categories were analyzed for enrichment of protein
domains. Protein domains were predicted for the longest open reading
frame of each Glycine max v1.1 gene model (http://www.phytozome.
net/soybean) by Pfam, with gathering thresholds defining prediction
cutoffs (Finn et al. 2010). For simplicity of presentation, significant
results from the 11 PFAM models for leucine-rich repeat domain-
containing proteins were described as a single PEAM clan (PFAM clan
ID: CL00022). Enrichment of predicted protein domains in each gene
list was determined by a hypergeometric distribution with adjustment
for multiple hypotheses testing by resampling methods implemented
with FuncAssociate 2.0 using 10,000 simulations (Berriz et al. 2009).
Paralogs retained from the most recent soybean WGD were
identified using QUOTA-ALIGN (Tang ef al. 2011) using parameters
“—merge-self-min_size=5-quota=1:1” to merge local synteny blocks, in
a genome self-comparison with a minimum block-size of five genes, to
find the paralogs from the most recent duplication. This analysis was
run using the predicted amino acid sequences of the Glycine max v1.1
gene models (Gmax_v1.1_189_peptide.fa; http://www.phytozome.net/
soybean) for cv. Williams 82. Initial anchor points (paralog candidates
for QUOTA-ALIGN) were calculated using blastp from the NCBI blast
+ package. Genes that were called CNV and contained a homeologous
pair were noted and frequency was calculated. Statistical analysis was
conducted using the R Statistical software package (R Core Team 2013).

Simulations

Coalescent simulations (Hudson 2002) were used to compare the site
frequency spectrum (SFS) for CNV to those expected under a neutral
history in a panmictic population. Hudson’s MakeSamples (ms) gen-
erates infinite-sites (Kimura 1969) genetic data under a neutral co-
alescent process, with specified population-scaled per-locus mutation
rates, recombination rates, and migration rates. For CNV, however,
a peer-acceptable mutational model does not exist for estimating the
per-locus mutation rate. There are, however, map-based recombina-
tion rates (Du et al. 2012) and population-scaled mutation rate esti-
mates based on DNA resequencing data (Hyten et al. 2006).

Previously published estimates of the population per-bp mutation
rate (By) (Hyten et al. 2006) were used to estimate the effective pop-
ulation of soybeans. This parameter is related to the effective population
size by the equation 8y =4N, where N is the effective population
size and . is the per-bp mutation rate. We solved this equation for Ne,
using p~7x10"? per bp, as previously estimated (Ossowski et al. 2010),
which yielded an effective population size estimate of 29,642.

A locus was defined as a single CGH segment, which was
experimentally found to be approximately 14 kb on average. The loci
were treated as independent and nonoverlapping in the simulations.
The observed number of CNV events was used to estimate the
mutation rate parameter (theta) for the simulations. An estimate of
the map-based recombination rate (Du et al. 2012) was used for the
recombination rate. The cM/Mb recombination rate estimate was
converted into a per-locus rate, with a locus consisting of one CGH
segment. The per-locus recombination rate was then multiplied by our
estimate of the N, yielding a population-scaled recombination param-
eter of 21.54.
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Site frequency spectra

Development of a reference-based site frequency spectrum (rSFS)
required clustering of adjacent CNV and estimating frequency in the
population. Development of an Up rSFS used all genes in the UpCNV
and Multi-Allelic UpCNV subclasses while the Down rSFS only used
the DownCNV/PAV subclass due to the higher confidence and the
simplification to a biallelic model. Assuming nearby genic CNV were
the result of a single CNV event and using “CGH Segment CNV” calls
as a guide, adjacent cross-validated CNV from the mentioned classes
were collapsed into segments. Frequency estimates for individual seg-
ments required at least one gene in a segment in a genotype to exceed
thresholds for both CGH and resequencing-based SV calls. See Table
S3 and Table S4 for specific gene segmentation.

A neutral reference-based site frequency spectrum was generated
from the simulation output from MS (Hudson 2002). An SFS in the
typical fashion could not be constructed because the CGH data are
heavily ascertained. That is, the CGH data are an all-by-one compar-
ison rather than a pairwise comparison, as MS creates. Therefore, the
first chromosome in the MS output was designated as the “reference”
and differences were counted from the reference chromosome.
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Because “0” denotes the ancestral state (presence) and “1” denotes
the derived state (absence), every site that had a “I1” in the reference
was discarded. The result is that the SFS is built from sites where
Wm82 has the “ancestral” state, and the other genotypes have the
“derived” state. The neutral simulations and empirical CNV distribu-
tion were then compared for only the DownCNV and UpCNV clas-
ses. The CNV distributions were based on segments rather than
individual genes by analyzing only segments with cross-validated
genes within the DownCNV/PAV and UpCNV classes. Segment
CNV distributions for the rSFS more properly reflect the mutational
model in which CNV likely originate as segments and not gene-by-gene.

RESULTS

Genome-wide patterns of structural variation among

the soybean NAM parent lines

The soybean NAM parents, which include a diverse set of individuals
from breeding programs and international introductions, represent
a relatively wide sampling of 41 different accessions within maturity
groups II-V (Table S1). Initial analyses of deletions and duplications
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Figure 1 Genome-wide view of copy number variation found in the soybean NAM parents. Data points are the log, ratio of each genotype vs. the
Williams82-1SU-01 reference for each probe. Colored spots denote probes within segments that exceed threshold: blue for UpCNV and red for

DownCNV.
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among these soybean NAM parent lines were conducted using a 1.4
million feature comparative genomic hybridization (CGH) tiling
microarray platform. Comparative hybridizations were performed be-
tween each of the 41 lines (labeled with Cy3 dye) and the reference
genome genotype “Wm82-ISU-01” (labeled with Cy5 dye, referred to
as “Wm82” henceforth). Figure 1 is an overlay of the 41 CGH com-
parisons across the 20 chromosomes. Values plotted in red denote
genomic segments that are putatively absent in at least one of the 41
NAM parent lines; these were classified as “CGH Down segments.”

A Gene Content Variants

Blue peaks denote genomic segments that either exhibit copy number
gains relative to Wm82 in at least one NAM parent line or are present
as a single copy in at least one NAM parent line but are absent in
Wm82; these were classified as "CGH Up segments." The CGH anal-
ysis identified changes in hybridization intensity contributing to an
average of 282 Down and 34 Up segments per NAM parent line
relative to Wm82.

Resequencing data on the 41 NAM parent lines and Wm82 were
used to cross-validate the CGH segment data and to better estimate

True Copy Number Variants
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Figure 2 Classification system for CNVs that were associated with gene models. (A) Presence-absence and copy number status for a hypothetical
gene in each of the six classes. Genes are found in one of three states: single copy, absent (white gap), or multiple copies (two or more arrows). (B)
Gene representatives for each of the six classes showing allelic clusters. Each gene shows one data point for each of the 41 genotypes. The
estimated copy number from sequence depth and CGH are shown on the X and Y axes, respectively.
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Table 1 The number of gene models identified within six structural variation categories

Gene Models DownCNV/ UpCNV and UpCNV and Multi-Allelic
Evaluated DownPAV  UPPAV UpPAV DownCNV/PAV ~ UPCNV UpCNV
Wm82-I1SU-01 copy 1 1 0 0 1 1 1
number
NAM parent copy — 0 Tor>1 >1and (1 or>>1) >1and 0 >1 >1and >>1
number
Genes with syntenic 32,464 149 4 1 10 71 9
paralog
Genes without syntenic 21,369 951 96 15 79 122 21
paralog
Total genes assessed 53,833 1100 100 16 89 193 30

The first two rows indicate the definition of each category based on the observed presence and copy number differences between Wm82-ISU-01 and at least one of
the 41 NAM parent lines. The next two rows indicate the number of genes exhibiting each category among the subsets of genes that have maintained a syntenic

paralog or have not maintained a syntenic paralog.

the deletion and duplication rates associated with predicted gene
models (gene models were based on annotation version 1.1). RPKM
values were used to estimate gene copy number from resequencing
data. Estimates of gene copy number based on RPKM ratios were
compared to those based on the CGH data. Genes with similar copy
number estimates in both CGH and resequencing across genotypes
were considered “cross-validated” and were included in the down-
stream analyses. The cross-validated gene set included 339 gene mod-
els exclusively associated with Up regions, 1100 gene models
exclusively associated with Down regions, and 89 gene models asso-
ciated with both Up and Down regions among various NAM parents.

Cross-validation between the CGH and resequencing data also
identified regions of presumed heterogeneity within some of the 41
NAM parent lines. DNA from approximately 40 plants was bulk-
isolated from each line for the resequencing platform, whereas a single
individual plant was sampled for the CGH platform. Therefore, some
SV genes that reside in regions of intra-cultivar heterogeneity could be
identified as exhibiting SV on one platform while matching Wm82 on
the other platform. Examples of such heterogeneity are shown in
Figure S3, both for a series of genes linked in a PAV region (Figure
S3A) and genes exhibiting UpCNV (Figure S3B). Heterogeneity
among samples was particularly problematic for lines 4]J105-3-4,
LD02-4485, LG03-3191, and LG04-4717 (the parents to NAM pop-
ulations 03, 12, 25, and 26, respectively).

A database was developed to make all the processed CGH and
RPKM data publicly available (http://stuparlabenv.cfans.umn.
edu:8080/). Data for all loci are reported, along with scatterplots that
compare the CGH and RPKM values.

Subclassification of SV profiles and identification of
potential gain-of-function variants
To better describe the range of structural variation observed across the
NAM parental lines, each of the cross-validated genes were placed into
one of six categories (Figure 2 and Table 1). Down segments, as shown
in Figure 1, are referred to as either Down copy number variants
(DownCNV) or Down present-absent variants (DownPAV). The
simplest interpretation of the CGH data are that many Down struc-
tural variants are DownPAYV, given that the CGH platform was pur-
posefully designed with probes that have one unique match (one
copy) in the “Williams 82” reference genome sequence. Therefore,
significant Down segments were not distinguished into subclasses
and instead were classified as a single “DownCNV/PAV” category.
Cross-validated Up genes were sorted into the five remaining
categories (Figure 2). Any Up genes that were also identified as Down
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in at least one other NAM parent line were placed into a class desig-
nated “UpCNV and DownCNV.” The remaining Up genes were
sorted according to their inferred presence-absence status in
Wm82-ISU-01 and their mode of copy number distribution among
the genotypes (bimodal or polymodal) (Figure 2 and Table 1) (see
Materials and Methods section for additional details on the classifica-
tion criteria). Table S5 gives the full list of gene models that were
placed into each of the six categories.

Approximately 72% of the 1528 cross-validated genes were placed
in the DownCNV/PAV class (Table 1). An additional 205 genes were
placed into other “content variant” classes, which are interpreted as
being present in some genotypes while being absent in others (Figure
2 and Table 1).

There were four categories in our classification system that
included genes that are duplicated in some genotypes but are not
duplicated in Wm82 or other lines. These categories (which all include
“UpCNV” in the name) (Figure 2) encompass a total of 328 genes.
The five genes located within the soybean cyst nematode resistance
QTL Rhgl represent a clear example of this type of variation. The
variants of the resistant Rhgl phenotype have been attributed to the
tandem duplication (up to 10-fold) of a 31-kb interval that includes
these genes on chromosome 18 (Cook et al. 2012, 2014). One copy of
this interval, as found in the reference genome of “Williams 82,” is
associated with the SCN susceptibility locus (rhgl). An allele with
three copies of the 31-kb interval has intermediate resistance (RhgI-
a), whereas an allele with 10 copies confers the highest known level of
resistance (Rhgl-b) (Cook et al. 2012). Our cross-validated analysis
confirmed the presence of at least these three different classes of Rhgl
copy number among the soybean NAM parents (Figure 3).

A small number of gene models exhibited a SV profile similar to
Rhgl, in which multiple (=3) copy number classes were observed
among the NAM parents. One such example is Glymal3g04670
(named Glyma.13g068800 in the annotation version Wm82.a2.v1),
which is embedded within an approximately 10-kb to 15-kb segment
on chromosome 13 that exhibits at least four different copy number
levels (Figure 4). The Glymal3g04670 gene has been uncharacterized
in soybean, but it has been annotated as a Cytochrome P450 with
similarity to Arabidopsis CYP82C4 (Murgia et al. 2011). Sequence
reads that map to the approximate boundaries of the duplicated ap-
proximately 10-kb to 15-kb segment were individually analyzed in
genotypes with either one copy or multiple copies of Glymal3g04670.
Genotypes with multiple copies of Glymal3g04670 showed reads
mapping to chromosome position 4.971 Mb at one end, and then
to position 4.958 Mb at the other end (Figure S4). This indicates that
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the increased copy number of Glymal3g04670 in these genotypes is at
least partially caused by a tandem duplication of ~14-kb interval
spanning from position 4.958 Mb to 4.971 Mb on chromosome 13.

Population analysis and SV enrichment patterns

The lists of genes associated with the six cross-validated structural
variation categories were investigated for enrichment within Pfam-
predicted protein classes (Finn et al. 2010). This analysis indicated an
enrichment in the protein domains characteristically encoded by
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resistance genes (R-genes), including leucine-rich repeat (LRR), nu-
cleotide binding (NB), and Toll-interleukin receptor (TIR) protein
domains (Table 2) (Kruijt et al. 2005; McHale et al. 2006). In contrast,
enrichment of other protein domains in genes unrelated to disease
resistance was not consistently evident among the examined SV cat-
egories (Table 2).

The next set of analyses focused on the duplicated nature of the
soybean genome. Soybean is often referred to as a paleopolyploid, as it
retains remnants of whole-genome duplications (WGDs) that occurred
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approximately 13 million years ago (in the Glycine genus), and approx-
imately 59 million years ago (soon after early diversifications in the
legume family) (Schmutz et al. 2010). An even older genome triplica-
tion is also apparent in comparisons of some regions of the soybean
genome (Severin et al. 2011). Soybean retained a large proportion of
duplicate genes from the most recent WGD—with published estimates
ranging from ~43% to 68% of genes retained (Schmutz et al. 2010;
Severin et al. 2011). In our analysis, approximately 60% (32,464/
53,833) of the soybean gene models from annotation version 1.1 have
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retained a syntenic paralog, the majority of which are presumed to be
derived from the most recent WGD (Table S6). Genes with retained
syntenic paralogs were substantially underrepresented among the gene
content variants list (Table 1). Among all categories, SVs were found in
only 0.75% (244/32,464) of genes with retained syntenic paralogs,
whereas CNVs were found in 6.0% (1284/21,459) of the genes that
have not retained a syntenic paralog. This represented an eightfold
difference between the two groups of genes. However, this difference
was not as severe for the quantitative UpCNV categories (e.g., UpCNV
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was identified in ~0.22% of genes with syntenic paralogs and in
~0.57% of genes without syntenic paralogs) (Table 1).

For genic SV segments, the number of NAM parent lines that
exhibited differences compared to Wm82 was analyzed to look for
evidence of deviations from a neutral evolution null hypothesis. This
analysis included the 117 Up segments (mean of 13,580 bp; median of
3182 bp) and 547 Down segments (mean of 14,958 bp; median of
2775 bp) that overlap with at least one gene identified as CNV/PAV.
The frequency of lines showing significant differences compared to
Wm82 was calculated for each of these segments. Experimental
observations were used as parameters of approximate segment size for
simulation of a neutral model under the coalescent. As shown in
Figure S5, Down segments closely reflected the frequency spectrum of
the simulated neutral model. For Up segments, the frequency spec-
trum is skewed toward an excess of singleton variants, i.e., those
observed only in one NAM parent line (Figure S5).

DISCUSSION

In this study, we identified genic SV events in the genomes of 41
genetically diverse soybean lines. The observed SV data confirmed
major trends previously observed in a smaller analysis of just four
soybean accessions. Those trends included an enrichment of SV genes
arranged in tandemly duplicated blocks and an association of SV
variation with genes contributing to biotic stress responses (McHale
et al. 2012). Moreover, with the larger dataset obtained in this study,
a much more detailed analysis was possible, which provided more
definitive evidence for the broader patterns that influence soybean
genome diversity, particularly regarding duplicated genes and the dis-
tribution of SV frequencies.

Paleopolyploidy is a major defining feature of the soybean genome
that experienced two whole genome duplication events approximately
59 and 13 million years ago (Schmutz et al 2010). A majority of
soybean genes are present in at least two copies, and a large percentage
of these genes have retained duplicates since the most recent genome
doubling event. It has been suggested that this feature makes soybean
a difficult system for use in functional genomics, because gene re-
dundancy will provide a buffer against the effects of mutagenesis on
plant phenotypes. Given the large number of duplicate genes present
in soybean, one might expect that the retained duplicates would fre-
quently acquire SV because the loss or functional alteration of dupli-
cate genes may not have a deleterious outcome due to its “backup”
copy and, of course, could provide new opportunities for phenotypic
plasticity. However, in this study, we found that genes with retained
paralogs from the most recent WGD event are underrepresented for
associations with SV. This trend was most striking in the PAV events.
These findings are likely due in part to enrichment of SV in hyper-
variable regions, where WGD-derived duplicates may be lost (or not
detected) due to local gene cluster expansions and contractions. How-
ever, the low rate of SV in regions with retained WGD-derived paral-
ogs also suggests that retention of these duplicate genes may be
biologically significant, either due to diversification of biological func-
tions (e.g., neofunctionalization or subfunctionalization) (Roulin et al.
2012) or for maintaining proper stoichiometry within regulatory net-
works (in concordance with the gene balance hypothesis) (Birchler
and Veitia 2012). These results coincide with patterns found in mam-
mals and other vertebrates, where preserved WGD-derived paralogs
often exhibit low rates of SV across the populations (Makino et al.
2013). Taken together, the global trend of SV data in soybean suggests
that the “core” set of soybean genes maintained throughout the do-
mesticated germplasm includes a high percentage of ancient homeol-
ogous/duplicate genes that have been retained since the most recent
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polyploidization event. However, experimental biases may also con-
tribute to this observation, because both the CGH platform design and
resequencing data analyses require unique sequence tracts to detect
a specific gene model; such unique sequences are less abundant among
duplicated genes.

A preliminary assessment of SV frequency patterns was conducted
by comparing those patterns with a simulated neutral model site
frequency for Up and Down genomic segments located within genic
regions. The data indicated that UpCNV regions are enriched for rare
variants. This stands in contrast to what has been observed at the Rhgl
locus, where additional copies of a 31-kb segment increases tolerance
to soybean cyst nematode (Cook et al. 2012). Clearly, haplotypes with
increased copies of Rhgl are actively being selected by breeding pro-
grams. However, there is growing evidence that gene copy number
gains may oftentimes be detrimental to fitness (Katju and Bergthors-
son 2013).

This poses an interesting question. Can SV profiles be used to
predict which copy number changes might provide an adaptive
advantage? One could argue that an SV profile of RhgI (Figure 3) may
have facilitated the cloning of this locus, as the striking copy number
increase for these genes may have immediately established them as
candidates located within the genetically mapped interval. Based on
the assumption that an increase in copy number confers phenotypic
novelty due to altered transcription state, it is reasonable to expect that
genes with copy number increases found in multiple genotypes (and
at multiple different copy number levels) may be more likely to confer
adaptive (and selected) traits, as with Rhgl (Cook et al. 2012). One
such gene from the current study is the cytochrome P450 gene Gly-
mal3g04670, which exhibited a full spectrum of copy number states
(up to approximately 10 copies) among the 41 soybean accessions.
This is a particularly interesting candidate because there are several
published examples of P450 genes acting in biotic and abiotic stress
response, as well as herbicide tolerance pathways (Schuler and Werck-
Reichhart 2003; Saika et al. 2014).

The potential adaptive effect of SV remains largely unexplored.
While the association of SV genes in defense gene clusters has long
been known (Michelmore and Meyers 1998), there is mounting evi-
dence that copy number gains in specific genes can have tremendous
effects on abiotic stress tolerance. Previous studies of barley and maize
have specifically identified copy number gains and presence-absence
variants that provide enhanced tolerance to stressed soil conditions,
such as boron and aluminum toxicity (Sutton et al. 2007; Maron et al.
2013). Discovery of such loci will become increasingly relevant for the
soybean community as crop production expands into poorer soils, or
as soils continue to accumulate heavy metals and other chemicals after
years of intensive agriculture. The parental CNV and PAV data
obtained in these 41 NAM parents will be increasingly useful when
the progeny of the NAM parent matings are evaluated for agronomic
phenotypes (to be released in May 2015) and potentially stress-related
phenotypes in the future.
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