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Deep neural networks (DNNs) are proven vulnerable to attack against adversarial

examples. Black-box transfer attacks pose a massive threat to AI applications without

accessing target models. At present, the most effective black-box attack methods

mainly adopt data enhancement methods, such as input transformation. Previous data

enhancement frameworks only work on input transformations that satisfy accuracy or

loss invariance. However, it does not work for other transformations that do not meet

the above conditions, such as the transformation which will lose information. To solve

this problem, we propose a new noise data enhancement framework (NDEF), which only

transforms adversarial perturbation to avoid the above issues effectively. In addition, we

introduce random erasing under this framework to prevent the over-fitting of adversarial

examples. Experimental results show that the black-box attack success rate of our

method Random Erasing Iterative Fast Gradient Sign Method (REI-FGSM) is 4.2% higher

than DI-FGSM in six models on average and 6.6% higher than DI-FGSM in three defense

models. REI-FGSM can combine with other methods to achieve excellent performance.

The attack performance of SI-FGSM can be improved by 22.9% on average when

combined with REI-FGSM. Besides, our combined version with DI-TI-MI-FGSM, i.e.,

DI-TI-MI-REI-FGSM can achieve an average attack success rate of 97.0% against

three ensemble adversarial training models, which is greater than the current gradient

iterative attack method. We also introduce Gaussian blur to prove the compatibility of

our framework.

Keywords: adversarial examples, black-box attack, transfer-based attack, data enhancement, transferability

1. INTRODUCTION

In recent years, the data-driven deep neural network (DNNs) has developed rapidly due to its
excellent performance. It has made outstanding achievements in image classification (He et al.,
2016; Szegedy et al., 2017), target detection (Redmon and Farhadi, 2018; Bochkovskiy et al., 2020),
face recognition (Deng et al., 2019), automatic driving (Bojarski et al., 2016), natural language
processing (Gehring et al., 2017; Vaswani et al., 2017) and so on. Unfortunately, the current deep
learningmodel has been proved to be not robust, and they are vulnerable to adversarial examples. In
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the field of computer vision, adversarial examples are specially
tailored to the target model, which can make the model
misclassified but are visually similar to the original sample.
Subsequently, with the development of adversarial attack and
defense, its attack range is gradually expanded to speech
recognition model (Carlini and Wagner, 2018), reinforcement
learning model (Behzadan and Munir, 2017), graph neural
network (Dai et al., 2018), etc.

The adversarial attack was first proposed by Szeged (Szegedy
et al., 2013), and they use the L-BFGS optimization algorithm
to find adversarial examples. Later, DeepFool (Moosavi-Dezfooli
et al., 2016; Carlini and Wagner, 2017) and other optimization-
based algorithms are proposed, but they focus on meeting
established optimization goals in white-box attacks. However,
these optimization-based methods take too much time and have
poor transferability in black-box attacks. A black-box attack
refers to the attack that attacker cannot know the network
structure, parameters, and other information of the attacked
model. Black-box attacks can be divided into three categories:
scores-based, decision-based, and transfer-based attacks. In this
paper, we discuss the more difficult black-box transfer attacks.
Papernot et al. (2016) find that adversarial examples generated
by one model can attack another model. The transferability of
adversarial examples is similar to the generalization of model
training. The latter is to train a robust model to classify the
samples correctly, and the former is to train a robust sample
so that it can successfully attack various models. Tramér et al.
(2017) show that using the integrated model can train robust
adversarial examples with stronger attack performance. However,
simply adding pre-models requires a lot of storage space and time
cost; hence researchers turn their attention to data enhancement,
such as Dong et al. (2019), Lin et al. (2019), and Xie et al. (2019).
These works essentially make use of the translation invariance,
resize invariance, scaling invariance, and other properties of
convolutional neural network (CNN), but when it exceeds a
certain transformation range, the above properties will not hold,
and the method based on data enhancement will fail. Based on
this problem, we propose a NDEF, which solves the problem
of limited change range. Specifically, we only perform input
transformations against adversarial perturbations instead of the
entire image. This avoids the trouble of misclassification of
the original image in a wide range of changes. In addition,
inspired from Zhong et al. (2020), we introduce a new
data enhancement method in this framework, namely random
erasing, which can effectively avoid the adversarial examples
falling into an over-fitting state. Experiments show that the
average success rate of our method is 4.2% higher than DI-
FGSM and 2.5% higher than SI-FGSM on average, and DI-TI-
MI-FGSM combined with our method can achieve an average
attack success rate of 97.0% against three ensemble adversarial
training models.

Our main contributions are summarized as follows.

• We propose a noise data enhancement framework
(NDEF), which effectively solves the problem that some
transformations, such as random erasing and Gaussian blur,
that do not satisfy accuracy invariance cannot work in the

previous framework. These input transformation methods
can work in our framework.
• We introduce random erasing as an input transform into the

gradient iterative attack for the first time and call it Random
Erasing Iterative Fast Gradient SignMethod (REI-FGSM). The
experimental results show that the attack success rate of our
method is 4.2% higher than DI-FGSM and 2.5% higher than
SI-FGSM on average. Ourmethod can be combined with other
gradient iteration methods. DI-TI-MI-REI-FGSM can achieve
an average attack success rate of 97.0% against three ensemble
adversarial training models, which is greater than the current
gradient iterative attack method.

2. RELATED WORK

2.1. Adversarial Attack
Szegedy et al. first produce adversarial examples using box
constraint algorithm L-BFGS. However, this method requires
huge costs; hence (Goodfellow et al., 2015) propose a FGSM
to generate adversarial examples. This method belongs to the
one-step iterative attack method, aiming to find the direction
of maximizing the loss function. Subsequently, Kurakin et al.
(2016) propose a multistep iterative attack method I-FGSM
based on FGSM, which can ensure that the adversarial examples
can find the direction of the maximum loss function in each
iteration. I-FGSM can achieve excellent performance in white
box attack, but the attack performance of black-box is poor. This
is because I-FGSM is easy to fall into over-fitting on the substitute
model. Therefore, many works begin to study how to improve
the transferability of adversarial examples. At present, black-box
transfer attacks can be divided into four categories, i.e., based on
gradient information mining, based on data enhancement, based
on model enhancement, and intermediate-layers attack.

2.1.1. Gradient Information Mining Methods
Gradient information mining methods refer to various methods
that attackers deal with gradient after gradient back-iteration
to adjust the current gradient, propagation. Dong et al. (2018)
propose MI-FGSM, which uses the momentum in the gradient
iteration process to stabilize the gradient direction and escape
from the local extremum. Similar to MI-FGSM, NI-FGSM (Lin
et al., 2019) escapes local extremum faster by introducing
Nesterov acceleration gradient. Wang and He (2021) propose
variance tuning MI-FGSM, as VMI-FGSM, which uses the
gradient variance of the previous iteration to adjust the current
gradient, stabilize the update direction, and avoid poor local
optimization in the iteration process. Wu et al. (2018) use
Gaussian noise to simulate local fluctuations in substitute models
to improve transferability. Gao et al. (2020) find that increasing
the step size can increase the transferability, but it can lead to
gradient overflow; hence, they propose PI-FGSM, which uses
pre-trained convolution kernels to project the proposed overflow
information to the surrounding area to improve transferability.
Wu et al. (2020a) use the skip structure of the residual network
to improve the transferability. Specifically, the gradient of the
residual network is decomposed, and the attenuation parameter
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is introduced to reduce the gradient from the residual block
and pay more attention to the gradient information flow from
the bottom.

2.1.2. Data Enhancement Methods
Data enhancement methods are methods that an attacker
performs a series of transformations on a sample before entering
a model to enhance transferability. DI-FGSM (Xie et al.,
2019) improves the transferability of adversarial examples by
introducing random resizing and random padding for input
in the gradient iteration process. Using the scale invariance of
CNN, SI-FGSM (Lin et al., 2019) introduces scale transformation
in the gradient iteration process to improve the transferability
of adversarial examples. TI-FGSM (Dong et al., 2019) uses
the translation invariance of CNN and replaces the translation
operation with pre-trained convolution to save substantial time
and space costs. Zou et al. (2020) find that TI-FGSM can be
regarded as a Gaussian blur, and the information of normal
image will be lost by the Gaussian blur, while the vertical
and horizontal stripes can alleviate this phenomenon. They
further find that the larger the scaling ratio of DI-FGSM
will generate more stripes, which will make the mitigation
effect better. Based on this, they propose resized-diverse-inputs
methods, which can effectively improve transferability. Wu et al.
(2021) train an adversarial transformation network to replace
previous transformation algorithms. Specifically, they first train

an adversarial transformation network using the maximum
and minimum, which can effectively correct the adversarial
examples while keeping the original samples unchanged. Then
they combine adversarial transformation networks with the
target model and attack them. The previous work is to perturb a
single image. Wang et al. (2021a) propose Admix Attack Method
(AAM), which integrates some information of other categories of
images into the original category to enhance transferability.

2.1.3. Model Enhancement Methods
Model enhancement methods refer to the methods by which
an attacker improves transferability by model integration or
transformation. Liu et al. (2017) propose a model-ensemble
attackmethod that can effectively attack robust black-boxmodels
for adversarial training. Li et al. (2020) erode the dropout layer
and skip the connection layer of the model to obtain rich network
models at low cost and then improve transferability through
vertical integration.

2.1.4. Intermediate-Layers Attack Methods
Intermediate-layers attack methods launch attacks by using
information from the network middle layer instead of the logit
layer. Inkawhich et al. (2020) use the Euclidean distance to
reduce the discrepancy between the intermediate source and
target features to achieve target attacks, but this pixel-wise
Euclidean distance would impose a spatial-consistency constraint

FIGURE 1 | The first line shows the average classification accuracy (%) and average loss value under normal model and defense model with different area ratios by

random erasing. The second line shows the average classification accuracy (%) and average loss value under normal model and defense model with different kernel

sizes by Gaussian blur. The results are averaged over 1,000 images.
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on them. To solve this problem, Gao et al. (2021) propose
Pair-wise Alignment Attack (PAA) and Global-wise Alignment
Attack (GAA), which use statistic alignment. Specifically, PAA
uses maximum mean discrepancy (MMD) to estimate the
difference between the intermediate source and target features,
while GAA uses mean and variance to achieve this goal.
Inkawhich et al. (2020) propose Feature Distribution Attack
(FDA), which first trains a binary network to extract the
feature distribution of classes and layers. Then they maximize
the probability of specific classes in the auxiliary network
to accomplish target attack. Wu et al. (2020b) find that the
attention regions of different models are almost the same.
Based on this, they propose an Attention-guided Transfer Attack
(ATA) method, and add the attention region loss into the loss
function to make the attention region change more to enhance
transferability. Wang et al. (2021b) propose Feature Importance-
aware Attack (FIA), which uses a random transformation
to destroy the key features that determine the decisions of
different models, and then gradient aggregation is carried out to
improve transferability.

2.2. Adversarial Defense
Adversarial training is currently considered to be the strongest
method defending adversarial examples, which add adversarial
examples during model training. These works (Szegedy et al.,
2013; Goodfellow et al., 2015) first mention adversarial training.

Subsequently, Madry et al. (2019) analyze adversarial training
from the perspective of robust optimization for the first
time, propose a min-max framework, and use the adversarial
examples generated by Project Gradient Descent (PGD) to
achieve the approximate solution of the framework. Input
transformation is another common defense method. Madry et al.
(2019) find that JPEG compression can effectively suppress
small perturbation adversarial examples. Xie et al. (2017)
mitigates the impact of attacks by random resizing and random
padding. In recent years, some works (Raghunathan et al.,
2018; Fischer et al., 2020) has begun to focus on certified
defense methods.

3. METHODS

3.1. Problem Definition
3.1.1. Adversarial Example
Suppose x is a clean sample, ytrue is the corresponding real label.
For a trained DNN F1, it can correctly classify samples x as labels
ytrue. By adding a small perturbation δ to the original sample, the
adversarial examples x + δ can make the DNN F1 misclassified.
The generation of the small perturbation is generally obtained
by maximizing the loss function J(x, ytrue, θ), where θ represents
the network structure parameters, and the loss function generally
selects the cross entropy loss function.

FIGURE 2 | The attack success rate (%) on seven models, the adversarial examples are crafted by REI-FGSM on Inc-v3 model with different area ratios. The attack

success rate (%) on seven models, the adversarial examples are crafted by random erasing and Gaussian blur on Inc-v3 model with different area ratios and kernel

size in the original framework.

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2021 | Volume 15 | Article 784053

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xie et al. NDEF and REI-FGSM

3.1.2. Black-Box Transfer Attack
Assuming DNNs F1 and F2 perform the same task, which both
can correctly classify clean samples x as labels ytrue, we denote θ1
θ2 are the network parameters of F1 and F2 respectively. In the
black-box attack background, only the parameters F1 are known,
and the parameters F2 are unknown. The goal of black-box attack
is that the adversarial examples generated by the existing network
structure information θ1 can make misclassification on F2, i.e.,
F2(x

adv) 6= ytrue.

3.2. Classical Attack Methods
In this section, we will briefly review the classic adversarial
attack algorithms.

Fast Gradient Sign Method: Goodfellow et al. (2015) believe
that the linear nature of the neural network leads to the
generation of adversarial examples, and propose an FGSM for the
first time. The purpose of this method is to find the direction of
the maximum loss function. The formula is as follows :

xadv = x+ ε · sign(∇xL(x, y
true, θ)) (1)

Iterative FGSM (I-FGSM): Kurakin et al. (2016) propose an
iterative version of FGSM, i.e., I-FGSM. Compared with FGSM,
I-FGSM can more accurately maximize the loss function. The
formula is as follows:

x
adv

0 = x (2)

x
adv

t+1 = Clipε
x{x

adv
t + α · sign(∇xL(x

adv
t , ytrue, θ))} (3)

where α represents the gradient iteration step size, and Clipε
x

means that the adversarial examples xadv is limited to the norm
ball l∞ of the original sample.

Momentum I-FGSM (MI-FGSM): Dong et al. (2018)
introduce momentum into the gradient iteration process to
stabilize the gradient update direction and escape from the
local extremum. The formula is as follows:

gt+1 = µ · gt +
∇xJ(x

adv
t , ytrue)

∥

∥

∥
∇xJ(x

adv
t , ytrue)

∥

∥

∥

1

(4)

xadvt+1 = Clipε
x{x

adv
t + α · sign(gt+1)} (5)

where µ represents the attenuation factor.
Diverse Input Iterative FGSM (DI-FGSM): Xie et al.

(2019) improve the transferability of adversarial examples by
introducing input transformation. The method is as follows:

xadvt+1 = Clipε
x{x

adv
t + α · sign(∇xadvt

J(D(xadvt , p), ytrue))} (6)

where D represents the input transformation, and p represents
the transformation probability.

Translation-Invariant Attack Method (TI-FGSM): Dong
et al. use the translation invariance of CNN and replace
translation operations with convolution kernels to improve the
transferability of adversarial examples.

FIGURE 3 | The framework of our methods.
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3.3. Motivation
It is difficult to obtain good transferability by simply maximizing
the loss function, such as the classical algorithm I-FGSM, because
the adversarial examples generated by these methods are very
easy to fall into overfitting on the substitute model in the gradient
iteration process. Studies (Dong et al., 2019; Lin et al., 2019;
Xie et al., 2019) have shown that the input transformation of
the whole image can increase the transferability of adversarial
examples. The precondition of this method is that the input
transformation must satisfy certain precision invariance or loss
invariance (Lin et al., 2019; Liu and Li, 2020). However, for some

data enhancement methods that may lose some information,
too large a transformation scale makes them unable to adapt
to the above framework. We give an intuitive example by
random erasing and Gaussian blur. Specifically, for random
erasing, we randomly generate matrices with different area
ratios from 0.01,0.03,0.05,0.08,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, and
0.9 and set the pixel value in the matrix to 0. For Gaussian
blur, we use different kernel sizes from 3,5,9,15,21,31,41, and
51 to blur the original sample. As shown in Figure 1, the first
line is the classification accuracy and loss value after random
erasing, and the second line is the classification accuracy and

FIGURE 4 | The attack success rate (%) on seven models, the adversarial examples are crafted by Random Erasing Iterative Fast Gradient Sign Method (REI-FGSM)

on Inc-v3 model with different area ratios.
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loss value after Gaussian blur. It can be seen that when the
area ratio is greater than 0.2 and the kernel size is greater than
9, the classification accuracy of CNN decreases significantly.
Then, in the original framework, we test the attack success
rate of random erasing and Gaussian blur under different
transformation scales. As shown in Figure 2, the experimental
results show that when the area ratio is greater than 0.05,
the black-box attack success rate decreases. When the area
rate is greater than 0.4, the black-box attack success rate
decreases significantly. For Gaussian blur, when the Gaussian
kernel is greater than 9, the black box attack rate decreases
cliff-like. The experimental results show that the previous
framework does not apply to some data enhancement methods
with too large transformation scale. Based on this problem,
we propose a noise data enhancement framework. Since our
framework only transforms against perturbation, the structure
information of the original sample will not be destroyed,

which can maintain the accuracy invariance. In addition,
the transformation of adversarial perturbation can hinder the
generation of adversarial examples and prevent over-fitting.
Our framework is a supplement to the previous framework,
which can mine the potential of some transformation methods
without accuracy invariance in transfer attack methods. In this
paper, we mainly introduce random erasing. As far as we know,
it is the first time that random erasing has been introduced
into a transfer attack as an input transformation. Random
erasing is an effective data enhancement method. Specifically,
the rectangular region of the image is randomly selected, and
the pixels are erased or replaced by other values. The generation
of adversarial examples with occlusion levels will reduce the
risk of overfitting and make the adversarial examples robust to
occlusion. In addition, in order to verify that our framework
can also be compatible with other methods, we briefly introduce
Gaussian blur.

TABLE 1 | The attack success rate (%) of seven models, the leftmost column represents the number of erased matrices whose erased area ratio is 0.1, adversarial

examples crafted by REI-FGSM on Inc-v3 model (“*” indicate the white box attack).

Area_number Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

1 100.0* 51.8 34.1 46.5 14.4 13.7 7.8

3 100.0* 62.2 43.7 56.3 17.2 17.2 9.0

5 100.0* 67.2 48.9 60.7 22.2 17.5 9.6

8 100.0* 69.2 51.7 65.4 23.0 21.1 10.8

10 100.0* 67.9 52.3 65.7 22.5 21.5 10.3

15 100.0* 66.4 50.3 62.7 23.9 22.5 10.9

20 99.9* 64.5 48.6 59.8 21.9 21.9 10.8

The bold value represents the highest success rate for different attack methods under the same experimental conditions.

FIGURE 5 | Comparison of multi-matrix erasing (top) and single-matrix erasing (bottom).
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Algorithm 1: REI-FGSM

Input : An original image x, normalized to [−1, 1] and
corresponding true labels ytrue; maximum
perturbation value ε; iteration rounds T;
adversarial perturbation δt , input image sizeW,
H; lower bound θL, upper bound θH of mask
matrix area ratio; number of matrices K.

Output: An adversarial example xadv.
1 a = ε

T ;

2 Initialize xadv0 = x;
3 Random initialization adversarial perturbation δ0;
4 for t← 0 to T − 1 do
5 Replicate adversarial perturbation δt and get

adversarial perturbationδt
∗;

6 Get the area ratio of random masking matrix
θe = Rand(θL, θH);

7 Get the area of random masking matrix
Se =W ∗ H ∗ θe;

8 for i← 0 to K − 1 do
9 if random(1) > 0.5 then
10 Get the aspect ratio of the jthmatrix

ϕe = Rand(θe, 1);
11 else:
12 Get the aspect ratio of the jthmatrix

ϕe = Rand(1, 1
θe
);

13 Get the jthmatrix length Hj = Floor(
√

Se
ϕj
);

14 Get the jthmatrix widthWj = Floor(
√

Se ∗ ϕj);

15 Get the horizontal ordinate of starting pixels of jth
matrix Xj = Rand(0, (H −Hj));

16 Get the ordinate of starting pixels of jthmatrix
Yj = Rand(0, (W −Wj));

17 Set 0 for region [Xj +Hj,Yj +Wj] in δt
∗;

18 end

19 Calculate gradient ∇δt J((x+ δ∗t ), y
true);

20 Update adversarial perturbation
δt=δt+α · sign(∇δt J((x+ δ∗t ), y

true));
21 Clip the adversarial perturbation δt = Clip(δt ,−ε, ε);

22 Get adversarial examples xadvt = x+ δt ;
23 Clip the adversarial examples

xadvt = Clip(xadvt ,−1, 1);

24 Get adversarial perturbation δt = xadvt − x;

25 end

26 Return xadvt = x+ δt ;

3.4. Framework
As far as we know, the current data-enhanced attack methods
generally have to satisfy the invariance property as follows:

argmax((FLogit(x)) = argmax(FLogit(T(x))) (7)

Meanwhile, input transformation destroys the structure of the
adversarial example to remove or weaken its attack performance,
which can effectively enhance the diversity of model output. This

Algorithm 2: GBI-FGSM

Input : An original image x, normalized to [−1, 1] and
corresponding true labels ytrue; maximum
perturbation value ε; iteration rounds T;
adversarial perturbation δt ; the kernel size k;
Output: An adversarial example xadv.

Output: An adversarial example xadv.
1 a = ε

T ;

2 Initialize xadv0 = x;
3 Random initialization adversarial perturbation δ0;
4 for t← 0 to T − 1 do
5 Replicate adversarial perturbation δt and get

adversarial perturbation δt
∗;

6 Gaussian blur for adversarial perturbation and

update δ∗t = Gaussianblur
(

δ∗t , k
)

;
7 Calculate gradient ∇δt J((x+ δ∗t ), y

true);
8 Update adversarial perturbation

δt=δt+α · sign(∇δt J((x+ δ∗t ), y
true));

9 Clip the adversarial perturbation δt = Clip(δt ,−ε, ε);

10 Get adversarial examples xadvt = x+ δt ;
11 Clip the adversarial examples

xadvt = Clip(xadvt ,−1, 1);

12 Get adversarial perturbation δt = xadvt − x;

13 end

14 Return xadvt = x+ δt ;

can be described as the following formula:

FLogit(x
adv) 6= FLogit(T(x

adv)) (8)

where T(·) represents a certain transformation and FLogit
represents the logit output of the model. Lin et al. (2019)
and Liu and Li (2020) interpret that model augmentation can
be achieved by loss-preserving transformation and accuracy-
maintained transformation. However, some transformations that
do not meet the CNN invariant characteristics will fail in
this framework. In order to make these transformations also
play their performance, in this paper, we propose a new data
enhancement framework, only aimed at adversarial perturbation,
and we replace FLogit(T(x + δ)) with FLogit(x + T(δ)), so that the
original sample will not be disturbed.

Meanwhile, the input transformation will affect the adversarial
perturbation, thus affecting the logit output of the model. The
formula is shown below.

FLogit(x+ T(δ)) 6= FLogit(x+ δ) (9)

We use M to represent the model space for the same task; F
is a model in this space. Since the adversarial perturbation is
interfered by the input transformation, the logit output of F
changes. We can find another model F∗ in this space to make
its logit output approximate to the logit output of F. The formula
is shown below.

F∗Logit(x+ δ) ≈ FLogit(x+ T(δ)) (10)
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TABLE 2 | The success rate(%) of non-targeted attacks of seven models.

Model Attacks Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

I-FGSM 100.0* 29.6 19.4 20.3 11.7 12.1 5.5

DI-FGSM 99.8* 54.2 32.1 43.6 15.0 16.2 7.1

SI-FGSM 100.0* 50.5 38.0 44.9 21.6 21.7 10.0

REI-FGSM 99.7* 56.5 39.6 48.8 23.8 21.4 11.3

Inc-v4

I-FGSM 43.3 100.0* 25.5 25.3 11.8 13.0 6.6

DI-FGSM 66.6 100.0* 39.8 50.4 14.7 17.7 8.4

SI-FGSM 69.9 100.0* 48.1 55.3 26.9 26.5 14.9

REI-FGSM 72.1 99.8* 46.7 56.2 23.8 23.5 14.0

Res-152

I-FGSM 30.7 24.7 99.5* 16.9 13.0 13.3 6.7

DI-FGSM 60.0 56.5 99.2* 49.3 21.6 21.1 12.9

SI-FGSM 43.0 36.3 99.7* 30.6 20.5 19.2 11.6

REI-FGSM 49.7 45.2 99.0* 40.1 25.9 25.0 16.3

IncRes-v2

I-FGSM 48.2 38.3 25.5 100.0* 13.7 13.3 8.2

DI-FGSM 70.2 66.1 47.9 99.2* 19.3 20.2 12.7

SI-FGSM 71.5 58.4 49.8 100.0* 30.6 28.8 22.5

REI-FGSM 72.9 66.8 51.1 99.2* 30.3 28.3 22.5

The top row models are substitute models, and we use them to generate adversarial examples by I-FGSM, DI-FGSM, SI-FGSM, and REI-FGSM (“*” indicates the white-box attack).

The bold value represents the highest success rate for different attack methods under the same experimental conditions.

In other words, we use the above framework to change the
logit output of the substitute model during each iteration to
achieve model augmentation. Our frame diagram is shown in
Figure 3. Specifically, we copy the adversarial perturbation, one
for storing the previous adversarial perturbation information,
and one for data enhancement. Here, we introduce random
erasing.We study single matrix erasing andmulti-matrix erasing,
respectively. Specifically, we select randomly the area ratio within
a finite interval in each iteration, then select randomly the aspect
ratio within the interval confirmed by the area ratio, finally,
initialize the starting point of the matrix randomly. The pixels of
the matrix can be set to 0, or other values. In this paper, we set the
pixel of the erased matrix to 0. The specific algorithm is shown in
Algorithm 1. In addition, our framework can also be combined
with previous methods for the whole image enhancement.

To further verify that our framework can be combined
with other algorithms, we introduce Gaussian blur (Gedraite
and Hadad, 2011) and call it the Gaussian Blur Iterative
FGSM (GBI-FGSM). We prove that using Gaussian blur on
the previous framework is not very good, while Gaussian
blur in our framework can get relatively good performance,
especially on defense models. This is because Gaussian blur
in the original framework will lose a large number of original
sample information, but our framework can effectively prevent
this. We call the operation of Gaussian blurGaussianblur (·). Our
algorithm is shown in Algorithm 2.

4. EXPERIMENT

Dataset: Following previous works (Dong et al., 2018; Lin et al.,
2019; Xie et al., 2019), we select the NIPS2017 competition

dataset. This dataset extracted 1,000 natural images from the
ImageNet dataset and adjusted their size to 299× 299× 3.

Network: We selected seven models as our experimental
models, including four models under natural training, i.e.,
Inception-v3 (Inc-v3) (Szegedy et al., 2016), Inception-v4 (Inc-
v4) InceptionResnet-v2 (IncRes-v2) (Szegedy et al., 2017),
Resnet-v2- 152 (Res-152) (He et al., 2016), and three ensemble
adversarial training model (Tramér et al., 2017), i.e., ens3-adv-
Inception-v3 (Inc-v3ens3), ens4-adv-Inception-v3 (Inc-v3ens4),
and ens-adv-Inception-ResNet-v2 (IncRes-v2ens).

Experimental details: In our experiment, we compare I-
FGSM, DI-FGSM, MI-FGSM, SI-FGSM, TI-FGSM, PI-FGSM,
and their combined versions, i.e., DI-TI-MI-FGSM, REI-TI-MI-
FGSM, andDI-TI-MI-REI-FGSM in the scenario of non-targeted
attacks. In our experiment, we set the number of gradient
iterations T to 10, the step size α to 1.6, and max perturbation
ε to 16. For MI-FGSM, we set the delay factor µ = 1.0; for
TI-BIM, we set the kernel size k = 15; for DI-FGSM, we set
the conversion probability p = 0.7; for SI-FGSM, the number
of the scale copies m is set to 5; and for PI-FGSM, we set the
amplification factor β = 10.

4.1. The Number and Area of Erasing
Matrix
In this section, we discuss the attack performance of the number
and area of erasing matrices. Specifically, we choose Inc-v3 as a
substitute model to generate adversarial examples and test the
results under the other six models with the variable-controlled
methods. According to the work by Xie et al. (2021), we set
T = 50, a = 1.6, and ε = 16.
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TABLE 3 | The success rate(%) of non-targeted attacks of seven models.

Model Attacks Inc-v3 Inc-v4 Res-152 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

MI-FGSM 100.0* 55.5 45.3 51.8 22.4 21.0 10.8

MI-REI-FSGM 99.9 64.1 51.9 60.5 26.0 24.7 13.0

PI-FGSM 100.0* 58.6 46.9 50.3 31.4 31.8 20.1

PI-REI-FGSM 100.0* 64.4 51.5 57.5 34.3 32.4 21.7

SI-FGSM 100.0* 50.5 38.0 44.9 21.6 21.7 10.0

SI-REI-FGSM 99.4* 78.0 65.0 74.8 44.8 45.1 26.4

Inc-v4

MI-FGSM 71.0 100.0* 51.5 58.4 24.1 23.1 14.0

MI-REI-FSGM 78.0 100.0* 57.7 65.2 28.8 27.6 16.9

PI-FGSM 71.6 100.0* 50.2 54.4 35.4 35.2 25.0

PI-REI-FGSM 76.0 99.9* 54.9 63.4 37.3 37.9 26.3

SI-FGSM 69.9 100.0* 48.1 55.3 26.9 26.5 14.9

SI-REI-FGSM 86.6 98.9* 73.2 78.5 54.0 50.5 36.1

Res-152

MI-FGSM 57.5 51.2 99.2* 47.0 27.1 24.8 15.6

MI-REI-FSGM 60.3 55.9 99.2* 52.6 30.9 30.0 18.8

PI-FGSM 63.6 54.5 99.7* 50.8 37.5 36.9 26.7

PI-REI-FGSM 66.1 59.4 99.3* 54.8 41.0 40.4 29.4

SI-FGSM 43.0 36.3 99.7* 30.6 20.5 19.2 11.6

SI-REI-FGSM 61.8 58.1 97.9* 54.4 40.5 38.1 27.8

IncRes-v2

MI-FGSM 77.7 67.0 58 100.0* 31.6 28.1 20.7

MI-REI-FSGM 81.6 74.9 64.3 99.7* 38.4 33.9 24.3

PI-FGSM 76.3 69.4 59.0 100.0* 40.8 39.1 32.0

PI-REI-FGSM 80.6 73.9 66.1 99.8* 45.4 43.5 36.1

SI-FGSM 71.5 58.4 49.8 100.0* 30.6 28.8 22.5

SI-REI-FGSM 84.8 80.7 76.3 98.6* 61.5 54.9 48.2

The top row models are substitute models, and we use them to generate adversarial examples by MI-FGSM, PI-FGSM, SI-FGSM, and thier combination with REI-FGSM, (“*” indicates

the white box attack). The bold value represents the highest success rate for different attack methods under the same experimental conditions.

4.1.1. Area of Erasing Matrix
Here, we discuss the attack performance under the erasing of
a single matrix with different erasing area ratios. As shown in
Figure 4, with the increase of erasing area, the black-box attack
success rate of the three normal models first increases and then
remains basically unchanged or slightly decreases, while the
attack success rate of the three defense models basically continues
to rise. When the erasure area ratio is 0.9, our method can still
maintain a high attack success rate, while the attack success rate
of the previous framework will decrease very low, indicating the
effectiveness of our method. In the normal training model, the
attack performance is the best when the erasing area ratio is of
0.5, and in the ensemble adversarial training model, the attack
performance is the best when the erasing area ratio is 0.8.

4.1.2. Numer of Erasing Matrix
In this subsection, we discuss the attack performance under
different number of erasing matrices with erasing area ratio 0.1.
As shown in Table 1, with the increase of the number of matrices,
the success rate of black-box attack begins to increase. When

TABLE 4 | The success rate(%) of non-targeted attacks of three ensemble

adversarial training models.

Model Attacks Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Ensemble

DI-TI-MI-FGSM 94.8 94.5 88.5

REI-TI-MI-FGSM 94.8 94.5 89.9

DI-TI-MI-REI-FGSM 97.6 97.3 96.2

The adversarial examples are crafted by DI-TI-MI-FGSM, REI-TI-MI-FGSM, and DI-TI-MI-

REI-FGSM on four normal models. The bold value represents the highest success rate for

different attack methods under the same experimental conditions.

the number of matrices is 8, the attack on the normal model is
the best, and when the number of matrices is 15, the attack on
the ensemble adversarial training model is the best. Even if the
total erasing area ratio has exceeded 1.0, it can still maintain a
high attack success rate, because the initial point of the matrix is
randomly selected, and some matrices will overlap so that it does
not cover all regions. As shown in Figure 5, multiple matrices
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FIGURE 6 | Comparison of GBI-FGSM-F (left) and GBI-FGSM (right).

erasing can transform more shapes than single matrix erasing.
We find that when the total area is certain, using more small
matrices can achieve better attack results. When the total matrix
area is 0.8, the attack success rate of multi-matrix is 2.3% higher
than that of a single matrix, and the best attack of multi-matrix is
4.8% higher than that of a single matrix.

4.2. Attack Single Model
In this section, we compare our algorithm with the I-FGSM
and data enhancement methods, such as DI-FGSM, SI-FGSM.
We also test the experimental results of REI-FGSM combined
with MI-FGSM, PI-FGSM and SI-FGSM. The experimental
parameters follow the original paper. For REI-FGSM, we set the
θL = θH = 0.1 and the number of matrices K = 8. When
combining with PI-FGSM and SI-FGSM, we set θL = θH = 0.3
and K = 3 for REI-FGSM. When combining with MI-FGSM,
we set θL = θH = 0.1 and K = 8 for REI-FGSM. As shown in
Table 2, the experimental results show that the attack success rate
of our method is 17.3% higher than the I-FGSM on average, 4.2%
higher than theDI-FGSM and 2.5% than SI-FGSM. In the defense
model, our method is 6.6% higher than DI-FGSM. As shown in
Table 3, the attack performance of MI-FGSM can be improved
by 5.2% on average when combined with REI-FGSM, the attack
performance of SI-FGSM can be improved by 22.9% on average
when combined with REI-FGSM, and the attack performance of
PI-FGSM can be improved by 4.0% on average when combined
with REI-FGSM. To sum up, we can find that our method can
combine with the above classical methods to achieve greater

performance, especially with SI-FGSM, which can increase by an
average of 22.9%.

4.3. Attack Ensemble Model
In this section, we use DI-TI-MI-FGSM, REI-TI-MI-FGSM, and
DI-TI-MI-REI-FGSM to attack four normal models, and test the
success rate of the black-box attack on three ensemble adversarial
training models. Following the work (Xie et al., 2021), we set
T = 50, a = 3.2 and ε = 16. For REI-FGSM, we set the
θL = θH = 0.01 and the number of matrices K = 30. As shown
in Table 4, REI-TI-MI-FGSM achieves an average attack success
rate of 93.1% on three defense models, which is 0.5% higher
thanDI-TI-MI-FGSM. The average attack performance of DI-TI-
MI-REI-FGSM can reach 97.0%, which is 4.4% higher than that
of DI-TI-MI-FGSM. As far as we know, DI-TI-MI-REI-FGSM
achieves the best performance of the current attackmethod based
on gradient iteration.

4.4. Compatibility of the Attack Framework
In order to verify the compatibility of our framework, Gaussian
blur (Gedraite and Hadad, 2011) is introduced into our
framework. We make use of Gaussian blur attack inc-v3 model
in the original framework and our framework, respectively,
called GBI-FGSM-F and GBI-FGSM. We take the kernel size
as 3,5,9,15,21,31,41, and 51 and compare it with the baseline I-
FGSM. As shown in Figure 6, with the increase of kernel size,
the attack success rate of GBI-FGSM-F decreases significantly,
but GBI-FGSM can still maintain a high attack success rate.
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Although the attack success rate of GBI-FGSM on the normal
model will decrease, the attack success rate on the ensemble
adversarial training will increase. We believe that a large degree
of disruption for adversarial perturbation during the gradient
iteration may result in more robust adversarial examples against
defense models. When the kernel size is 51, the attack success rate
of GBI-FGSM on the three defense models can reach an average
of 25.0%.

5. CONCLUSION

Previous data enhancement frameworks only work on input
transformations that satisfy accuracy or loss invariance. However,
it does not work for other transformations that do not
meet the above conditions, such as the transformation which
will lose information. In this paper, we propose a data
enhancement framework only for adversarial perturbation,
which can effectively solve the above problems. In addition, we
introduce random erasing as an input transformation into the
generation of adversarial examples for the first time. Compared
with the methods based on data enhancement, such as DI-
FGSM and SI-FGSM, the attack success rate of REI-FGSM
can be improved by 4.2% and 2.5% on average, respectively.

DI-TI-MI-REI-FGSM can achieve an average attack success rate
of 97.0% on the ensemble adversarial training models, which
is better than the current gradient-based iterative method. In
addition, we also briefly introduce Gaussian blur to illustrate the
compatibility of our framework.
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