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Abstract

Protein secretion has a pivotal role in many biological processes and is particularly important for intercellular communication,
from the cytoplasm to the host or external environment. Gram-positive bacteria can secrete proteins through multiple secretion
pathways. The non-classical secretion pathway has recently received increasing attention among these secretion pathways, but its
exact mechanism remains unclear. Non-classical secreted proteins (NCSPs) are a class of secreted proteins lacking signal peptides
and motifs. Several NCSP predictors have been proposed to identify NCSPs and most of them employed the whole amino acid
sequence of NCSPs to construct the model. However, the sequence length of different proteins varies greatly. In addition, not all
regions of the protein are equally important and some local regions are not relevant to the secretion. The functional regions of the
protein, particularly in the N- and C-terminal regions, contain important determinants for secretion. In this study, we propose a new
hybrid deep learning-based framework, referred to as ASPIRER, which improves the prediction of NCSPs from amino acid sequences.
More specifically, it combines a whole sequence-based XGBoost model and an N-terminal sequence-based convolutional neural
network model; 5-fold cross-validation and independent tests demonstrate that ASPIRER achieves superior performance than existing
state-of-the-art approaches. The source code and curated datasets of ASPIRER are publicly available at https://github.com/yanwu20/
ASPIRER/. ASPIRER is anticipated to be a useful tool for improved prediction of novel putative NCSPs from sequences information and
prioritization of candidate proteins for follow-up experimental validation.
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Introduction
Bacteria can be classified as Gram-positive or Gram-
negative according to the properties of the peptidoglycan
layer using the Gram staining [1], which is a common
technique for phenotypic characterization of bacteria.
Generally, the peptidoglycan layer of Gram-positive bac-
teria is thicker than that of Gram-negative bacteria, while
the outer membrane is absent compared with Gram-
negative bacteria [2]. Because of fast growth rate and

genetic modifiability, bacteria are commonly used as a
cell factory to produce heterogeneous proteins based on
secretion systems [3]. Due to the lack of the outer mem-
brane, Gram-positive bacteria are considered as desirable
microbial hosts in industrial biotechnology [4].

Previous studies have shown that bacteria can
export proteins via two major secretion pathways,
namely the general secretion (Sec) pathway [5] and
the twin-arginine translocation (Tat) pathway [6]. The
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Sec-dependent pathway catalyzes the transformation of
the unfolded protein, which folds in the trans-side of
the membrane. In contrast, the Tat-dependent pathway
is responsible for exporting the folded proteins across
the cytoplasmic membrane. A commonality of these
proteins is that they both have signal peptides consisting
of n-region, h-region and c-region [7]. The proteins
secreted by the known secretion pathways with signal
peptides or secreted motifs are termed classical secreted
proteins (CSPs). In contrast, cytoplasmic proteins are
identified in supernatant without any signal peptide and
secretion motif and as termed non-CSP (NCSPs). Several
previous studies have shown that the secretion of these
cytoplasmic proteins is not simply attributed to cell lysis
[3, 8, 9]. Furthermore, a number of hypotheses have been
proposed for the secretory pathway and the recognition
of non-classical proteins [3]; however, different from
the classical secretion pathway, to date, the mechanism
of the non-classical secretion pathway remains largely
unknown.

The first NCSP, namely bacterial glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), was discovered by
Pancholi and Fischetti in 1992 [10]. Antelmann et al. [11]
experimentally identified 17 cytoplasmic proteins, which
had no signal peptides in Bacillus subtilis. More recently,
Wang et al. [12] summarized 45 common NCSPs identified
from three different bacterial species. Due to the increas-
ing demand for high-level secretion of recombinant
proteins, bacteria have been extensively used to produce
such proteins as an effective tool. The secretion strategy
dependent on signal peptide is not straightforward, with
each step of the classical secretion pathway relying on
dozens of translocation components, resulting in low
yields of the protein [13]. Due to the bottleneck in the Sec-
and Tat-dependent recombination protein expression
systems, researchers are shifting their priorities to use
non-classical secretion system to assist the secretion of
the proteins of interest. Compared with time-consuming,
expensive and sophisticated experimental approaches,
computational methods require less processing time
and lower cost, and as such, can enable genome-wide
identification of NCSPs in a high-throughput and cost-
effective manner.

Bendtsen et al. [14] proposed the first computational
method, termed SecretomeP, to identify mammalian
secretory proteins using sequenced-based features.
The training dataset of SecretomeP was curated based
on the subcellular localization annotation as only a
limited number of NCSPs were characterized at that
time, and the corresponding signal peptide parts of
those mammalian extracellular proteins were removed.
SecretP [15] is a support vector machine (SVM)-based
approach developed to distinguish the NCSPs, CSPs
and non-secreted proteins by taking into account both
sequence and structural properties. A brief summary
of the existing computational methods for the NCSPs
is provided in Table 1 with respect to several main
aspects, including the training and test datasets, the

features used for model training, the algorithms and the
webserver and software availability.

Based on SecretomeP, Bendtsen et al. [16] developed
SecretomeP 2.0, which expanded the repertoire of the
predicted NCSPs in both Gram-positive and Gram-
negative bacteria. In another study, Montoya et al. [17]
developed a sequence-based classifier, called NClassG+,
which can predict NCSPs in Gram-positive bacteria.
Benefiting from the development of experimental
technologies for characterizing NCSPs, an increasing
number of NCSPs have been recently identified. This
provides an excellent opportunity to develop more
accurate prediction models to accelerate the discovery
of new NCSPs. Moreover, more recent attention has
focused on the NCSPs in bacteria, especially in Gram-
positive bacteria. Based on the study of Wang et al. [12],
Zhang et al. [18] implemented a combined gradient boost
and ensemble learning framework, called PeNGaRoo,
to predict the NCSPs in Gram-positive bacteria. More
recently, another NCSPs predictor termed NonClasGP-
pred [19] has been developed based on the integration of
subset-specific optimal SVM models.

To date, several challenging problems remain to be
addressed. For example, the performance of current
NCSP predictors was relatively low on the independent
test. Another important issue is that most NCSP predic-
tors utilized the whole amino acid sequence to extract
the features and train the models of NCSP prediction.
However, the length of NCSPs can vary substantially from
tens to thousands of amino acid residues, and it is likely
that certain local regions might benefit the secretion of
NCSPs. For instance, previous studies have reported that
the N- and C-terminal residues are crucial for secretion,
while deletion of N- and C-terminal residues results
in the inhibition of secretion [8]. Therefore, features
extracted from terminal sequences may be useful for
improving the prediction of NCSPs.

In the present study, we propose a novel hybrid
deep learning-based predictor, termed ASPIRER, for the
improved prediction of NCSPs. Specifically, ASPIRER
combines a whole amino acid sequence-based Extreme
Gradient Boosting (XGBoost) model with an N-terminal
sequence-based convolutional neural network (CNN)
model. For the XGBoost model, a variety of informative
feature descriptors are extracted from the whole amino
acid sequence to characterize the NCSPs and train
the model. Moreover, feature selection and Synthetic
Minority Over-sampling Technique (SMOTE) [20] algo-
rithms are applied. For the N-terminal sequence-based
CNN model, 60 N-terminal residues of NCSPs are
extracted and used as the input to train the CNN
model. In addition, the random oversampling technique
is implemented for the CNN model. For the XGBoost
model, the handcrafted features are used to represent
the properties of NCSPs based on the whole amino acid
sequence. In contrast, the N-terminal sequence-based
CNN model can recognize specific patterns from the N-
terminal sequence. Benchmarking experiments indicate
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Table 1. A comprehensive list of the predictors for the prediction of NCSPs in the literature

Tool Training set Testing set Features Method Evaluation
strategy

Software
availability

Webserver
availability

Year

SecretomeP [14] 3321 Extracellular
mammalian
proteins and 3654
cytoplasmic/nu-
clear mammalian
proteins

13 Non-classical
human secretory
proteins

Number of atoms,
number of postive
residues,
low-complexity
regions,
transmembrane
helices, protein
sorting, propeptide
cleavage site

Neural
network

Cross-
validation and
independent
test

Commerical Yes 2004

SecretomeP 2.0
[16]

152 Extracellular
proteins and 140
cytoplasmic
proteins from
Firmicutes; 350
extracellular
proteins and 334
cytoplasmic
proteins from
Proteobacteria

35 Non-classical
secretory proteins
in Gram-positive
bacteria and
Gram-negative
bactreria

Gram-positive
bacteria: threonine
content,
composition,
transmembrane
helices, grand
average of
hydropathy (Gravy),
protein disorder,
secondary structure
Gram-negative
bacteria: arginine
content,
composition,
instability index,
protein disorder

Artificial
Neural
network

3-Fold cross-
validation and
independent
test

No Yes 2005

SecretP [15] 230 Mammalian
secreted proteins
without signal
peptides and 685
extracellular
proteins with signal
peptides

92 Human secreted
proteins without
signal peptide

Pse-AAC SVM 5-Fold cross-
validation and
independent
test

No Not
available
now

2010

NClassG+ [17] 420 Secreted
proteins and 433
cytoplasmic
proteins of
Gram-positive
bacteria

82 Secreted proteins
without signal
sequence and 263
cytoplasmic
proteins

AAC, dipeptide,
physicochemincal
features and PSSM

SVM Nested k-fold
cross-
validation and
independent
test

No Not
available
now

2011

PeNGaRoo [18] 141 NCSPs and 446
cytoplasmic
proteins of
Gram-positive
bacteria

34 NCSPs and 34
cytoplasmic
proteins of
Gram-positive
bacteria

PAAC, QSO, TPC,
Pse-PSSM, AATP,
CTriad, CTDT

A two-layer
lightGBM
model

10-Fold cross-
validation,
leave-one-out
cross-
validation and
independent
test

No Yes 2020

NonClasGP-
Pred
[19]

Same as PeNGaRoo Same as PeNGaRoo ACC, DPC, CTDC,
CTDD, CTriad, PAAC,
CKSAAP, NMBroto,
QsOrder

SVM 10-Fold cross-
validation and
independent
test

No Yes 2020

that this hybrid deep learning-based model outperforms
existing state-of-the-art models and commonly used
sequence alignment methods.

Materials and methods
An overall framework of the ASPIRER methodology is
illustrated in Figure 1. As can be seen, ASPIRER comprises
two sub-models —a whole sequence-based XGBoost
model and an N-terminal local sequence-based CNN

model. The two sub-models, respectively, take the whole
sequence and N-terminal sequence as the input. The
final output is generated by integrating the outputs of
the two sub-models.

Data collection and processing
In this study, the dataset was collected from the study
of Zhang et al. [18]. All NCSPs in the dataset were
initially collected from the UniProt database (UniProt,
2015), identified in at least three bacterial species
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Figure 1. An overall framework of ASPIRER.

and three research groups [12]. The negative samples
were obtained from Bendtsen et al. [16] (cytoplasmic
proteins in Firmicutes). After removing the sequence
redundancy in the resulting dataset using the CD-
HIT program [21], 157 positive and 446 negative non-
redundant samples were obtained. Among these, 141
validated NCSPs and 446 cytoplasmic proteins were used
as the training dataset, similar to the previous work [18].
In addition, the positive samples of independent test
dataset were constructed by randomly selecting one-
tenth of the NCSPs and experimentally validated NCSPs
from previous studies and Zhang et al.’s work. In contrast,
the negative samples were collected from UniProt,
which were annotated as ‘cytoplasm’ or ‘cytoplasmic’
but not annotated as ‘secreted’. The independent test
dataset was the same as Zhang et al.’s work [18]. The
sequence lengths of the positive and negative samples
had similar distributions to avoid potential bias. The
corresponding protein IDs and amino acid sequences
can be downloaded from GitHub at https://github.com/
yanwu20/ASPIRER/.

Feature engineering
We used two different feature extraction strategies
to encode the protein sequences, including the hand-
crafted features for training the XGBoost model and
sequence-to-vector encoding for training the CNN model.
The handcrafted features used in the XGBoost model
included 13 types of features which could be categorized
into five major groups—amino acid composition (AAC),
physicochemical property, evolution-based, grouped AAC
and autocorrelation features. AAC, physicochemical
property and evolution-based features have been widely
used in previous studies and demonstrated their utility
for NCSP prediction [17–19]. Since some amino acid
residues have similar physicochemical properties, the
change between amino acid residues of the same group

might have less impact on their functions. Therefore,
the grouped AAC features can reflect the protein’s
properties better in some situations. The autocorrelation
feature descriptors describe the difference of amino acid
sequences based on their physicochemical properties
and specific structure. They have been applied in
numerous previous studies, such as predicting specific
protein family, oligomeric states of proteins [22, 23] and
protein–protein interactions [24].

AAC features reflect the frequency of amino acid types
and pairs. In this study, we calculated the AAC, the
Composition of K-Spaced Amino Acid Pairs (CKSAAP),
Di-Peptide Composition (DPC), Tri-Peptide composition
(TPC) and Dipeptide Deviation from Expected Mean.
For the physicochemical property features, the Compo-
sition (CTDC), Transition (CTDT), Distribution (CTDD)
and Conjoint Triad (CTriad) were selected, and these
features can represent the distribution patterns and
physicochemical properties of the amino acids. The
evolution-based feature is Pseudo Position-Specific Score
Matrix (Pse-PSSM) [25], which describes the evolution and
sequence-order information. Similar to AAC features, the
group AAC features are frequencies of amino acid types.
The amino acids are categorized into several groups
based on their physicochemical properties. The Grouped
Di-Peptide Composition belongs to the group AAC. The
fifth feature group is autocorrelation, and, in this group,
the Moran correlation descriptor is adopted, which is
based on the distribution of amino acid properties. The
majority of the feature descriptors used in this study
can be calculated using feature engineering/machine
learning tools iFeature [26], iLearn [27] and iLearnPlus
[28], with the only exception of the Pse-PSSM features,
which were extracted using the POSSUM software
package [29]. A detailed description of each of the feature
descriptors used is provided in the Supplementary
Material.

https://github.com/yanwu20/ASPIRER/
https://github.com/yanwu20/ASPIRER/
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The handcrafted features are not commonly used for
training the N-terminal sequence-based CNN model,
especially when the curated dataset is limited. In this
case, the automatically learned feature by the deep
learning model might be better than the handcrafted fea-
tures. Thus, the amino acids were directly transformed
into 21 vectors corresponding to 20 kinds of amino acids
plus one ambiguous amino acid and then fed into the
CNN model.

The architecture of the ASPIRER
The hybrid framework of ASPIRER comprises two
parts, including the whole amino acid sequence-based
XGBoost model and an N-terminal sequence-based CNN-
based model. The outputs of these two sub-models
are combined using the averaging scheme. The benefit
of this approach is that both important properties
of the whole amino acid sequence and determinants
in the N-terminal region of the protein are taken
into consideration for NCSPs prediction. The two sub-
models are briefly introduced in the following two
sections, while performance assessment is detailed in
the Supplementary material.

XGBoost-based whole amino acid sequence
model
Extreme gradient boosting (XGBoost) is a gradient
boosted tree algorithm that has been widely used
for solving classification problems [30, 31]. As high-
dimensional input variables can increase the computa-
tional cost and affect the model performance, a feature
selection strategy was applied to reduce the dimension of
the input variables and remove the redundant features.
For this XGBoost model, the chi-square (Chi2) test [32]
was adopted for feature selection, and the number of
selected features was determined by the cross-validated
grid search. The Chi2 feature selection method calculates
the dependence between the features and the label and
is formulated as follows:

χ2 =
n∑

i=1

(
obsi − expi

)2

expi
,

where obsi denotes the observed frequency of the sample
i, expi is the expected frequency of the sample i and n is
the number of the samples. The features were ranked by
the dependence score, and the top k features with the
highest values were selected.

The SMOTE strategy was further adopted to balance
the dataset to address the data imbalance problem by
oversampling the positive samples. Grid search was per-
formed to optimize the hyperparameters based on the
5-fold cross-validation, and in this process, the AUROC
was employed as the primary measure to determine the
optimal hyperparameters, which included the maximum
depth of each tree, subsampling, rate and minimum child
weight.

N-terminal sequence-based CNN model
As a powerful deep learning technique, CNN has been
widely applied in computer vision and has also been
successfully employed to address sequence-based bioin-
formatics problems, such as the protein/DNA/RNA func-
tional site prediction [33–35], protein binding sites pre-
diction [34, 36], protein structure prediction [37, 38] and
promoter identification [39].

For the N-terminal sequence-based CNN model, we
applied the random oversampling method to balance the
dataset. We generated the new positive samples based on
the random sampling from the positive set to ensure that
the same numbers of positive and negative samples were
obtained. As we were interested in extracting the specific
pattern of the N-terminal sequence, the oversampling
method should not change the pattern of the sequence.
From this perspective, the random oversampling method
is more suitable than the SMOTE strategy, which can
potentially alter the sequence pattern of the N-terminal
sequence.

For the CNN-based N-terminal sequence model, the
first layer is an embedding layer that aims to transform
the input into dense vectors of fixed size (i.e. 64 dimen-
sions). After that, the architecture consists of two one-
dimensional convolutional layers (Conv1D), two max-
pooling layers and a fully connected layer. We used the
rectified linear units (ReLU) as the active function for the
two Conv1D layers. The kernel size of the Conv1D layer is
16; there were 10 and 5 filters for the two Conv1D layers,
respectively. The Adam algorithm was adopted for the
hyperparameter optimization [34, 35, 40]. The hyperpa-
rameter tuning was performed based on the 5-fold cross-
validation. The optimal learning rate was 0.001, and the
batch size was 32. The early stop strategy was imple-
mented if the validation loss stopped decreasing in two
consecutive epochs. The CNN model was implemented
based on the Keras library in Python [41].

Results and discussion
In this section, we elaborate on the design rationale of
ASPIRER and discuss the results for the identification of
NCSPs.

Performance of the XGBoost-based whole
sequence model
Several effective feature encodings were applied to
extract informative features from the protein sequences
to construct a reliable model. Suppplementary Table S2
(see Supplementary Data available online at http://bib.
oxfordjournals.org/) shows the performance of the mod-
els trained using single types of feature descriptors and
the whole amino acid sequence-based model on 5-fold
cross-validation. The XGBoost model with all features
but without feature selection is also included. As shown
in Suppplementary Table S2 (see Supplementary Data
available online at http://bib.oxfordjournals.org/), all
the single descriptor-based models achieved a relatively

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
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Figure 2. Comparison of the feature descriptors in terms of feature impor-
tance, performance of single descriptor model and feature dimension.

good performance. The AUROC was higher than 0.8,
which indicates that these descriptors could extract
useful information to identify NCSPs. The XGBoost
model trained using all features achieved a better
performance than models trained using single feature
descriptors with an AUROC of 0.937. To further evaluate
the contribution of each feature type, we compared
the AUROC results of 5-fold cross-validation, descriptor
importance and feature dimensions. We quantified the
descriptor importance by eliminating this descriptor
from the XGBoost model with all descriptors and
calculating the difference of the AUROC values. From
Figure 2, we can see that all descriptor importance is
positive, which means that all descriptors can improve
the model performance. Therefore, we retained all the
feature descriptors to train the final XGBoost model.

We adopted different feature selection methods to
improve the model performance, including Chi-square
(Chi2), L1-based feature selection and Tree-based feature
selection. The Chi2 feature selection is a univariate
feature selection that selects the top k highest values
based on Chi-square statistics. The L1-based feature
selection method eliminates the feature with zero
coefficient based on the Liner model penalized with
the L1 normalization. The tree-based feature selection
can calculate impurity-based importance and discard
irrelevant features. The feature selection methods were
implemented based on the Scikit-learn package. The
results on the 5-fold cross-validation are illustrated in
Figure 3A. As can be seen, the model trained using the
selected features by the Chi2 feature selection method
achieved the best performance in terms of the Matthew’s
correlation coefficient (MCC), AUROC and AUPRC. In
addition, it also achieved the best performance in terms
of AUROC on the independent test (Suppplementary

Table S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/), indicating that the Chi2
feature selection is the best feature selection method in
this study.

We further assessed the performance of the XGBoost
model by combining all handcrafted features and the
XGBoost model by integrating the features selected
based on the Chi2 feature selection strategy (Suppple-
mentary Table S5, see Supplementary Data available
online at http://bib.oxfordjournals.org/). As a result,
we found that the model trained using the selected
features with the feature selection method achieved
a slightly improved performance, with an AUROC of
0.939. To enhance the performance XGBoost model,
the SMOTE algorithm was also adopted to balance
the dataset. The performance results on the 5-fold
cross-validation and independent tests are provided in
Supplementary Tables S5 and S6 (see Supplementary
Data available online at http://bib.oxfordjournals.org/),
respectively. To summarize, the results show that the
model based on feature selection and SMOTE algorithm
achieved the best performance in terms of AUROC
on the cross-validation and independent tests. To
evaluate the importance of feature selection and SMOTE
algorithm, we compared the performance of these
two models with the final model. The performance
comparison results are provided in Suppplementary
Table S7 (see Supplementary Data available online
at http://bib.oxfordjournals.org/). We can see that the
model with feature selection and SMOTE (‘FS + SMOTE’)
achieved the best performance compared with the
other two models except for specificity and precision.
Supplementary Figure S1 (see Supplementary Data
available online at http://bib.oxfordjournals.org/) shows
the feature distributions after the feature selection and
SMOTE algorithm based on the t-distributed stochastic
neighbour embedding (T-SNE) algorithm [42]. The
results also show that the feature selection and SMOTE
algorithm contributed to the prediction of NCSPs.

Performance evaluation of different machine
learning methods
Previous works have shown that machine learning algo-
rithms with handcrafted features achieved good perfor-
mance for predicting the NCSPs from the entire sequence
[18, 19]. Herein, we also constructed the whole amino
acid sequence-based model and examined the impact
of the properties at the whole-sequence level on the
prediction of NCSPs.

We implemented several popular machine learning
models using the same dataset and data processing
strategy to ascertain the best-performing machine
learning algorithm at the whole amino acid sequence
level. Specifically, the XGBoost model was compared
with the other two machine learning models trained
using Random Forest (RF) and SVM. The RF algorithm
proposed by Breiman et al. [43] is an ensemble classi-
fier that constructs multiple decision trees using the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
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Figure 3. (A) Performance comparison of different feature selection strategies based on XGBoost on 5-fold cross-validation; (B) performance comparison
of the final hybrid model with different whole sequence models on 5-fold cross-validation; (C) performance comparison of the CNN models based
on different N- and C-terminal sequences and filter sizes on 5-fold cross-validation and (D) performance comparison of such models on the
independent test.

bagging strategy. It has been widely used in protein
sequence analysis, such as protein–protein interaction
prediction [44, 45], disease protein identification [46–
48], antimicrobial peptide and protein post-translational
modification prediction [49–51]. SVM is a supervised
learning algorithm that aims to find the optimal
hyperplane to separate the positive and negative data
points [52]. The parameters of all these compared
machine learning models were optimized based on the 5-
fold cross-validated grid search. The SMOTE and feature
selection methods were also applied to the RF and SVM
models. To better compare the performance of these
different algorithms, we also included the CNN model
trained using the whole amino acid sequence.

The performance results of different whole sequence-
based models trained using different machine learn-
ing algorithms on 5-fold cross-validation and inde-
pendent test are shown in Supplementary Tables S8
and S9 (see Supplementary Data available online at
http://bib.oxfordjournals.org/), respectively. There was
not much performance difference among the CNN,
XGB and SVM models on 5-fold cross-validation. Thus,
to better evaluate the influence of machine learning

algorithms on the performance of the whole sequence
model, we further compared the performance of the final
hybrid model with different whole sequence models on 5-
fold cross-validation. The results are shown in Figure 3B
and Suppplementary Table S10 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
The final hybrid model with the XGBoost-based whole
sequence model exhibited a stable and superior perfor-
mance compared with the other models. The XGBoost
model also outperformed the other three models on
the independent test, with an AUROC of 0.9066, recall
of 0.6471 in, MCC of 0.6155, accuracy of 0.7941, F1-
score of 0.7586 and AUPRC of 0.9157, respectively
(Suppplementary Table S6, see Supplementary Data
available online at http://bib.oxfordjournals.org/). These
results indicate that the XGBoost model can provide
more robust performance for predicting NCSPs at the
whole sequence level.

Performance of the N-terminal sequence-based
CNN model
Considering that the N-terminal residues are essential,
we developed an N-terminal sequence-based CNN

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
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Figure 4. (A) Performance comparison of different N-terminal model on 5-fold cross-validation and (B) performance comparison of different ensemble
strategies on 5- and 10-fold cross-validation.

model. The length of the N-terminal sequence and size
of the convolution filter are two critical parameters
that influence the CNN model performance. The
performance results of CNN models with different
sequence lengths and filter sizes on the 5-fold cross-
validation and independent tests are illustrated in
Figure 3C and D, respectively. The results show that the
models based on 40 and 60 N-terminal residues led to
superior performance than the other settings. As shown
in Suppplementary Table S11 (see Supplementary Data
available online at http://bib.oxfordjournals.org/), when
using the filter size of 16, the models based on 40 and
60 N-terminal residues achieved a similar performance;
however, the performance of the model based on 60 N-
terminal residues appeared to be slightly better than that
of the model based on 40 N-terminal residues in terms
of AUROC (Supplementary Figure S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Therefore, we used the window size of 60 to construct the
final N-terminal sequence-based CNN model. Together,
the results indicate that the 60 N-terminal residues can
indeed provide useful information for the prediction of
NCSPs. In addition, the results also suggest that the N-
terminal sequence-based model is more suitable for the
NCSP prediction than the C-terminal sequence-based
model. This is also consistent with the sequence logo
result (Supplementary Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

To investigate whether the performance of CNN model
could be further improved using the oversampling
method, we compared the performance of the N-
terminal sequence-based models with and without the
random oversampling method. The results are provided
in Suppplementary Table S12 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). We
can see that the N-terminal sequence-based model with
random oversampling achieved the best performance in
terms of Recall, AUROC and AUPRC. For the final hybrid
model, random oversampling also improved the perfor-
mance, which achieved a superior performance than the
model without random oversampling (Suppplementary
Table S13, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

To further examine the effectiveness of the CNN
model for improving the performance of the N-terminal
sequence model, we also trained machine learning
models with handcrafted features extracted from the
60 N-terminal residues (Figure 4A). The results show
that the CNN model achieved superior performance in
terms of MCC, F1-score and AUPRC on the 5-fold cross-
validation. Moreover, the CNN model trained using the
60 N-terminal residues clearly outperformed all other
models in terms of six different performance metrics on
the independent test with a Recall of 0.6176, Accuracy of
0.7941, MCC of 0.6287, F1-score of 0.75, AUROC of 0.8910
and AUPRC of 0.9077, respectively (Suppplementary
Table S15, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Performance comparison with different
ensemble methods
In this section, we further investigated strategies for
integrating the whole sequence model and N-terminal
sequence model based on different machine learning
techniques, such as mean, logistic regression (LR), k-
nearest neighbours (KNN) and SVM. The mean strategy
takes the average of the predicted probability of each
sub-model as the final result. The LR, KNN and SVM
were trained based on the outputs of the sub-models in
the training dataset and used as the second level model
to generate the final prediction result. The performance
results of these different ensemble strategies on 5- and
10-fold cross-validation tests are shown in Figure 4B. We
can see that the mean and LR strategies achieved similar
AUROC and AUPRC values and outperformed the KNN
and SVM strategies. There are several aspects that we
need to consider to select the optimal strategy: first, the
MCC and F1-score of the mean strategy were much better
than that of the LR strategy. On the other hand, the mean
strategy had a much lower computational cost than the
LR strategy. Second, the LR strategy requires the training
process based on the outputs of the sub-models at the
second level, which might lead to potential overfitting.
In contrast, the mean strategy does not require such
a training process. Accordingly, we finally selected the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac031#supplementary-data
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Figure 5. (A) ROC curves of the final model on 5-fold cross-validation; (B) ROC curves and (C) precision-recall curves of ASPIRER and state-of-the-art
methods on the independent test.

Table 2. Performance of the final model and two sub-models on 5-fold cross-validation

Model Recall Specificity Precision Accuracy MCC F1-score AUROC AUPRC

XGB 0.723 ± (0.067) 0.935 ± (0.015) 0.780 ± (0.038) 0.884 ± (0.016) 0.676 ± (0.050) 0.748 ± (0.042) 0.934 ± (0.013) 0.630 ± (0.048)
CNN 0.646 ± (0.066) 0.928 ± (0.014) 0.737 ± (0.040) 0.860 ± (0.026) 0.601 ± (0.062) 0.688 ± (0.050) 0.909 ± (0.020) 0.784 ± (0.036)
Final model 0.710 ± (0.114) 0.955 ± (0.025) 0.846 ± (0.085) 0.896 ± (0.019) 0.708 ± (0.055) 0.761 ± (0.062) 0.952 ± (0.014) 0.877 ± (0.039)

∗The performance is expressed as mean ± standard deviation and the bold values indicate the best performance.

mean strategy to integrate the models based on the above
considerations.

To assess the performance of the final hybrid model,
we performed the 5-fold cross-validation and plotted
the receiver-operating characteristic curves in Figure 5A.
In addition, we compared the performance of the final
model with that of the whole sequence-based XGBoost
model and N-terminal-based CNN model in Table 2. As
can be seen, the final hybrid model outperformed the two
sub-models in terms of multiple performance metrics,
with the only exception of Recall. The final model had
a slightly lower Recall than the whole sequence-based
XGBoost model, presumably because different input fea-
tures and sampling methods were used by the XGBoost
and CNN models. The final model was developed based
on the integration of two sub-models, and as such, the
Recall of the final model might therefore be affected by
the N-terminal sequence-based model. Herein, we are
more interested in the AUROC and AUPRC values as
these two metrics are reasonable measures of the over-
all model performance and can reflect the comprehen-
sive performance of different models at varying cutoff
thresholds. The results indicate that the combination of
the sub-models via the mean ensemble strategy indeed
helped improve the performance. In addition, the results
also suggest that integrating informative features from
the whole amino acid sequence with those extracted
from the N-terminal sequence is crucial for identifying
NCSPs.

Performance comparison with state-of-the-art
approaches on the independent test
We compared the performance of ASPIRER with five
state-of-the-art approaches by performing the

independent test. The compared methods included
two machine learning-based methods, PeNGaRoo and
NonClasGP-Pred, two popular sequence alignment-based
approaches (e.g. PSI-BLAST [53] and HMMER [54]), as
well as one remote-homology detection tool (e.g. ProDec-
BLSTM [55]). As a result, HMMER was only able to match
and identify 23 out of 68 proteins in the independent test
dataset. The parameters of the PSI-BLAST and HMMER
were set as the default. Table 3 provides the performance
results of APSIPER and the five different methods. We
can see that ASPIRER achieved the best AUROC and
AUPRC; NonClasGP-Pred achieved the best Accuracy,
MCC and F1-score, while ProDec-BLSTM achieved the
best Precision and Specificity.

In this study, we used AUROC and AUPRC as the
primary performance metrics to evaluate the model
performance. As shown in Table 3, ASPIRER achieved
an AUROC of 0.9533 and AUPRC of 0.9444, respec-
tively, clearly outperforming the other methods on
the independent test. In particular, the AUROC and
AUPRC of ASPIRER were 6 and 3% higher than that of
NonClasGP-Pred, respectively, and 12 and 4% higher
than those of PeNGaRoo. ProDec-BLSTM achieved the
best Specificity and Precision, and the false positive was
zero, which indicates those all the predicted positive
samples are true positives. The reason is that ProDec-
BLSTM can accurately identify homologous NCSPs.
However, its other performance metrics were much
lower than those of ASPIRER, especially AUROC, AUPRC
and Recall. Although HMMER achieved higher accuracy
for the matched sequences (i.e. identified homologous
sequences in the training dataset), a large portion of
the sequences did not have the matched ones, leading
to worse performance of HMMER. A possible reason is
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Table 3. Performance comparison of ASPIRER, baseline models and other existing methods on the independent test

Method Recall Specificity Precision Accuracy MCC F1-score AUC AUPRC

BLAST 0.6471 0.7059 0.6875 0.6765 0.3536 0.6667 0.6765 0.6213
HMMER 0.6471 0.4118 0.5238 0.5294 0.0605 0.5789 0.5294 0.5154
ProDec-BLSTM 0.2941 1.0000 1.0000 0.6471 0.4152 0.4545 0.8400 0.8796
PeNGaRoo 0.8235 0.7353 0.7568 0.7794 0.5610 0.7887 0.8521 0.9042
NonClasGP-Pred 0.8676 0.8529 0.8571 0.8676 0.7356 0.8696 0.9019 0.9177
ASPIRER 0.6471 0.9701 0.9565 0.8088 0.6528 0.7719 0.9533 0.9444

∗The bold values indicate the best performance.

that HMMER could not efficiently learn from the limited
dataset, thereby having a limited predictive capability in
identifying such unmatched sequences.

Next, we compared the performance of ASPIRER with
NonClasGP-Pred and PeNGaRoo based on the fixed
Specificity or Recall values and provided the comparison
results in Supplementary Tables S18–S21 (see Supple-
mentary Data available online at http://bib.oxfordjourna
ls.org/). For NonClasGP-Pred, we fixed the same Speci-
ficity and similar Recall values (as we could not find
the exact same values) as NonClasGP-Pred’s to make
the performance comparison, while for PeNGaRoo,
we used the same Specificity and Recall values as
PeNGaRoo’s. The results show that ASPIRER performed
better than NonClasGP-Pred and PeNGaRoo in terms of
all performance metrics.

The ROC curves of the state-of-the-art methods,
sequence alignment approaches and the remote-homology
detection tool are illustrated in Figure 5B. The precision-
recall curves of all compared methods and the average
precision are shown in Figure 5C. We can see that
ASPIRER achieved the overall best performance com-
pared with other methods. In addition, to meet the
different requirements, we provide multiple flexible
thresholds in the local stand-alone tool of ASPIRER,
by which users can adjust the threshold to make the
prediction at the preferred precision or recall.

Conclusions
In this study, we have developed a novel hybrid deep
learning-based NCSP predictor, termed ASPIRER, which
is based on the integration of a whole sequence-
based XGBoost model and an N-terminal sequence-
based CNN-based model. More specifically, the two sub-
models, respectively, take the whole amino acid sequence
and 60 N-terminal residues of NCSPs as the input.
Benchmarking experiments on 5-fold cross-validation
and independent tests demonstrated that ASPIRER
performed better than the existing state-of-the-art
approaches and other popular machine learning models.
In addition, the results indicate that the N-terminal
sequence can provide more informative features than
the C-terminal residues for NCSP prediction. It might
be that the N-terminal region contains some signals or
determinants informative for the secretion of NCSPs. Two
critical factors can be attributed to the performance of

ASPIRER: (i) it considers both properties from the whole
sequence and features from the N-terminal sequences to
improve the prediction of NCSPs. (ii) It is developed based
on effective integration of two different sub-models. We
anticipate that the developed ASPIRER approach can
be explored as a valuable tool by the broader research
community to accelerate the data-driven discovery of
novel putative NCSPs in the future.

Key Points

• We propose a hybrid deep learning-based approach,
termed ASPIRER, to enable improved prediction of non-
classical secreted proteins.

• ASPIRER is developed by integrating an XGBoost model
trained with the whole sequence and a CNN model
trained with the N-terminal sequence.

• ASPIRER achieves a better performance compared with
five state-of-the-art approaches and other popular
machine learning algorithms.

• The source code of ASPIRER and the curated datasets
are publicly available at https://github.com/yanwu20/
ASPIRER/.

Code and Data Availability
The code and datasets are publicly available at https://
github.com/yanwu20/ASPIRER/.
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