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Abstract

The EBNA1 protein of Epstein-Barr virus (EBV) plays essential roles in enabling the replication and persistence of EBV
genomes in latently infected cells and activating EBV latent gene expression, in all cases by binding to specific recognition
sites in the latent origin of replication, oriP. Here we show that EBNA1 binding to its recognition sites in vitro is greatly
stimulated by binding to the cellular deubiquitylating enzyme, USP7, and that USP7 can form a ternary complex with DNA-
bound EBNA1. Consistent with the in vitro effects, the assembly of EBNA1 on oriP elements in human cells was decreased by
USP7 silencing, whereas assembly of an EBNA1 mutant defective in USP7 binding was unaffected. USP7 affinity column
profiling identified a complex between USP7 and human GMP synthetase (GMPS), which was shown to stimulate the ability
of USP7 to cleave monoubiquitin from histone H2B in vitro. Accordingly, silencing of USP7 in human cells resulted in a
consistent increase in the level of monoubquitylated H2B. The USP7-GMPS complex formed a quaternary complex with
DNA-bound EBNA1 in vitro and, in EBV infected cells, was preferentially detected at the oriP functional element, FR, along
with EBNA1. Down-regulation of USP7 reduced the level of GMPS at the FR, increased the level of monoubiquitylated H2B in
this region of the origin and decreased the ability of EBNA1, but not an EBNA1 USP7-binding mutant, to activate
transcription from the FR. The results indicate that USP7 can stimulate EBNA1-DNA interactions and that EBNA1 can alter
histone modification at oriP through recruitment of USP7.
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Introduction

Epstein-Barr virus (EBV) is a gamma herpesvirus that infects

over ninety percent of people worldwide. As part of its latent life

cycle, EBV efficiently immortalizes the host cell and predisposes it

to a number of malignancies, including Burkitt’s lymphoma,

nasopharyngeal carcinoma, gastric carcinoma, Hodgkin’s disease

and a variety of lymphomas in immunosuppressed patients [1]. In

latently infected cells, replication and maintenance of the viral

genome require the latent origin of replication, oriP and the

EBNA1 protein. OriP is comprised of two functional elements, the

dyad symmetry (DS) and the family of repeats (FR), which contain

four and twenty copies of an 18 bp palindromic EBNA1 binding

site respectively [2,3]. Replication of oriP-containing plasmids

requires EBNA1 binding to the DS [4]. EBNA1 binding to the FR

is required for the mitotic segregation of the oriP-containing

plasmids and transactivation of several latency genes [5,6].

EBNA1 binds DNA through residues 459–607, which form the

DNA binding and dimerization domain (EBNA1-DBD) [7–9].

High resolution structures of the EBNA1-DBD, alone and in

complex with its DNA binding site, have revealed details of the

interaction of EBNA1 with DNA [10–12]. EBNA1-DBD com-

prises two subdomains: residues 504–604, referred to as the core-

domain, and residues 461–503, referred to as the flanking domain.

The core domain is a b-barrel structure that forms the

dimerization interface and makes transient sequence-specific

contacts with the DNA through an a-helix [10,13]. The flanking

domain consists of an a-helix (residues 477–489) oriented

perpendicular to the axis of the DNA, which contacts the major

groove through Lys 477, and an extended chain (amino acids 461–

469) that runs along the base of the minor groove of the DNA,

making sequence-specific contacts through Lys-461, Gly-463 and

Arg-469 [11].

In addition to binding specific DNA sequences, EBNA1 is also

known to interact with several host-cell proteins, which in some

cases have been shown to mediate EBNA1 functions at oriP

[14–18]. EBNA1 can also affect cellular processes through

sequestration of cellular proteins, as best exemplified by the

EBNA1 interaction with the ubiquitin specific protease USP7, also

referred to as Herpesvirus Associated Ubiquitin Specific Protease

(HAUSP). USP7 was originally identified as a binding partner of

the ICP0 protein of herpes simplex virus (HSV) [19] and, since

then, several cellular targets of USP7 have been identified

including the p53 tumour suppressor protein [20–24]. In response

to genotoxic stress, USP7 binds and deubiquitylates p53 thereby

protecting it from proteasome-mediated degradation. In addition

to cleaving polyubiquitin chains, USP7 has been reported to

reverse monoubiquitylation in some proteins (eg. p53 and
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FOXO4), thereby affecting their subcellular localization [25,26].

Similarly, the Drosophila homologue of USP7 was found to

contribute to epigenetic silencing by reversing monoubiquitylation

of histone H2B, and this activity required USP7 to be in complex

with guanosine 59 monophosphate synthetase (GMPS) [27].

Our studies on the EBNA1-USP7 interaction have shown that

EBNA1 binds the N-terminal domain of USP7 (USP7-NTD),

which is distinct from the catalytic domain, and is the the same

domain that is bound by p53 [28]. EBNA1 and p53 bind the same

pocket in this domain but EBNA1 does so with an affinity that is

approximately 10-fold higher than that of p53 [28,29]. As a result,

EBNA1 interferes with the binding and stabilization of p53 by

USP7 and with p53-mediated apoptosis in response to DNA

damage [29,30]. In addition, we recently found that EBNA1

disrupts promyelocytic leukemia (PML) nuclear bodies (also called

ND10s) in nasopharyngeal carcinoma cells by inducing the

degradation of the PML proteins [30]. This activity required

USP7 and the EBNA1-USP7 interaction, indicating that this

interaction can modulate cellular events in addition to p53 levels.

EBNA1 deletion analysis showed that the USP7 binding

sequence in EBNA1 was just N-terminal to the flanking DNA

binding domain and subsequent peptide binding assays identified

EBNA1 residues 436–450 as sufficient for this interaction [28,29]. A

crystal structure of an EBNA1 peptide bound to the USP7-NTD

revealed multiple interactions of EBNA1 residues 442–448 with

amino acids in a shallow groove of the TRAF domain formed by the

USP7-NTD [29]. In particular interactions mediated by Ser447 in

EBNA1 were shown to be critical for USP7 binding. Given the large

size of USP7 (135 kDa) and the proximity of its binding site to the

EBNA1-DBD residues that are inserted in the DNA minor groove

(amino acids 461–469), we wondered whether the USP7 interaction

interfered with EBNA1 binding to DNA. Here we report that,

contrary to our expectations, USP7 had a large stimulatory effect on

the DNA-binding activity of EBNA1 in vitro and can form a ternary

complex with DNA-bound EBNA1. Furthermore, USP7 was found

to bind GMPS, forming a complex active in histone H2B

deubiquitylation, and this complex was recruited to oriP in EBV-

infected cells resulting in decreased H2B ubiquitylation.

Results

Effect of USP7 on DNA binding by EBNA1 in vitro
We initially assessed the effect of USP7 on the DNA binding

activity of EBNA1 using electrophoretic mobility shift assays

(EMSAs) with a version of EBNA1 that has a shortened Gly-Ala

repeat but has wildtype activity for all known EBNA1 functions

(referred to as EBNA1; Figure 1A). Purified EBNA1 was incubated

with radiolabelled DNA containing a single EBNA1 recognition site

(site 1 from the DS element) in presence and absence of excess

purified full length USP7. We consistently observed that USP7

stimulated the DNA binding activity of EBNA1 as shown in the

representative experiment in Figure 1B (left panel), while no obvious

effects on EBNA1-DNA interactions were seen with nonspecific

proteins such as BSA (Figure 1B, right panel). Results from multiple

experiments showed a 20-fold increase in the DNA binding affinity

of EBNA1 in the presence of USP7, resulting in a shift in the

dissociation constant (Kd) from 8567nM for EBNA1 alone to

4.360.4 nM for EBNA1 in presence of USP7. This increase in

DNA binding affinity was largely dependant on the ability of

EBNA1 to bind USP7, as the DNA binding ability of a truncation

mutant of EBNA1 (EBNA1452–641) containing the DNA-binding

and dimerization region but lacking the USP7 binding site was

much less affected by USP7 (on average showing a 4-fold increase in

DNA binding in the presence of USP7; Figure 1C).

EBNA1 dimers bound to DNA are known to interact with each

other resulting in the crosslinking of multiple DNA fragments

through large EBNA1 complexes (referred to as looping or linking

interactions) [31–33]. These complexes are retained in the wells of

the gel in EMSAs as shown in Figure 1B, precluding analysis of the

effect of USP7 on the migration of the DNA complexes. The linking

interactions of EBNA1 are mediated largely by amino acids 325–

376 and to a lesser degree by EBNA1 N-terminal residues [32,34].

To further evaluate the effect of USP7 on the DNA binding ability

of EBNA1 without the confounding effects of DNA linking, we

repeated the EMSAs with the EBNA1 truncation mutant 395–641

(Figure 1A), which contains the USP7 binding site and the DNA-

binding region but lacks sequences that cause DNA linking. When

the DNA binding affinity of EBNA1395–641 was measured in the

presence and absence of excess USP7, USP7 was consistently found

to stimulate DNA binding by EBNA1395–641 (Figure 2A, left panel),

resulting in a 50-fold decrease in the calculated Kd from

233676 nM for EBNA1395–641 alone to 461.8 nM for

EBNA1395–641 in presence of USP7. This experiment also showed

that the bound DNA migrated more slowly in the presence of

EBNA1395–641 and USP7 than with EBNA1395–641 alone, suggest-

ing that USP7 formed a ternary complex with EBNA1395–641 and

DNA.

Since EBNA1 is known to bind to the N-terminal TRAF

domain of USP7 (USP7-NTD) [28,29], we examined whether this

domain was sufficient to stimulate EBNA1395–641 binding to DNA.

When EBNA1395–641 titrations were performed in the presence of

excess USP7-NTD, the DNA binding activity was increased 8 to

16-fold in multiple experiments, (Figure 2A, right panel) indicating

that the USP7-NTD was partially, but not completely, responsible

for the stimulatory effect of USP7 on EBNA1 DNA binding

activity. Consistent with the USP7 result, the USP-NTD was

found to decrease the migration of the EBNA1-bound DNA

suggesting that it can bind the EBNA1-DNA complex.

We also examined the stimulatory effect of USP7 on DNA

binding by EBNA1395–641 by incubating a fixed amount of

EBNA1395–641 (sufficient to bind a small fraction of the DNA

probe on its own) with increasing amounts of USP7 prior to the

addition of the DNA binding site Figure 2B, left panel). EMSAs

performed in this way showed that USP7 had a dose-dependent

effect on the DNA binding activity of EBNA1395–641. The

possibility that USP7 itself had some ability to bind the DNA

probe was tested by titrating USP7 with the DNA in the absence of

any EBNA1, but USP7 alone did not shift the DNA probe even at

very high concentrations of USP7 (Figure 2B, right panel lanes 8–

12). Similarly, the USP7-NTD on its own did not bind the DNA-

probe (Figure 2B, right panel lanes 1–7).

Author Summary

Epstein-Barr virus (EBV) infections persist for the lifetime of
the host largely due to the actions of the EBNA1 viral
protein. EBNA1 enables the replication and stable persis-
tence of EBV genomes and activates the expression of
other EBV genes by binding to specific DNA sequences in
the EBV genome. We have shown that the cellular protein
USP7 stimulates EBNA1 binding to its DNA sequences and
that EBNA1 recruits USP7 to the EBV genome, which in
turn recruits another cellular protein GMP synthetase. The
complex of USP7 and GMP synthetase then functions to
alter the chromatin structure at a region of the EBV
genome that controls EBV persistence. These changes to
the EBV genome are likely important for enabling the
persistence of EBV genomes in infected cells.

EBNA1 Recruits a H2B Deubiquitylase
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The experiments in Figure 2A indicated that USP7 can bind

the EBNA1-DNA complex resulting in a supershift while the

titration performed with lesser amounts of USP7 in Figure 2B did

not show a supershift. To investigate this discrepancy, we

preformed EBNA1-DNA complexes (using EBNA1395–641 as

above) then added increasing amount of USP7 (Figure 2C).

EMSAs confirmed that USP7 was able to supershift the

EBNA1395–641-DNA complex but only at higher concentrations

of USP7 (compare lanes 6 and 7 to lanes 2–5). To confirm that the

supershifted band contained EBNA1, complexes formed as in

lanes 2 and 7 were incubated with an EBNA1-specfic antibody

prior to electrophoresis. In both cases the antibody supershifted

the bands to the gel wells, whereas no effect of the antibody was

seen on the migration of the DNA probe in the absence of EBNA1

(Figure 2C, lanes 8–10). The results indicate that USP7 can form

a ternary complex with DNA-bound EBNA1 under some

conditions.

Effects of USP7 silencing on EBNA1-DNA interactions in vivo
During initial EBV infection, EBNA1 assembles on its

recognition sites in oriP and remains stably bound to these sites

in all types of latently infected cell lines. Therefore it was not

possible to determine the effects of USP7 on EBNA1 assembly on

oriP using latently infected cells. Instead, we assessed the effect of

USP7 on the initial association of EBNA1 with oriP by treating

EBV-negative nasopharyngeal carcinoma cells (CNE2Z) with

siRNA against USP7 or GFP (negative control) and then

transfecting these cells with an oriP plasmid expressing EBNA1

or an EBNA1 mutant (D395–450; see Figure 1A) that we

previously showed was specifically defective in binding USP7

[14] and a plasmid lacking EBNA1 binding sites (pLacZ) as control

for nonspecific DNA binding. Chromatin immunoprecipitation

(ChIP) assays were then performed using EBNA1-specific

antibodies to assess the degree of EBNA1 association with the

the oriP FR and DS elements and lacZ (negative control) as

Figure 1. EBNA1 binding to DNA is stimulated by USP7. A. Schematic representation of EBNA1 and the EBNA1 mutants used in this study.
Shown are the Gly-Ala repeat (GA), the large Gly-Arg repeat (GR), the USP7 binding site (USP7) and the flanking and core DNA binding domains. B
and C. EMSAs showing titrations of EBNA1 (B) or EBNA1452–641 (C) with a fixed amount of DNA recognition site in the presence or absence of
10 pmols of USP7 or in the presence or absence of 10 pmols BSA as a negative control (B, right panel).
doi:10.1371/journal.ppat.1000624.g001
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Figure 2. Analyses of the USP7 effect on DNA interactions of EBNA395–641. A. EMSAs showing titrations of EBNA395–641 with a fixed amount
of DNA recognition site in the presence or absence of 10 pmols of USP7 (left panel) or USP7-NTD (right panel). B. EMSAs performed with a fixed
amount of EBNA395–641 and DNA and the indicated amounts of USP7 (left panel). Titrations of USP7 and the USP7-NTD with DNA in the absence of
EBNA1 are shown in the right panel. C. Complexes of EBNA395–641 and DNA were preformed then incubated with the indicated increasing amounts of
USP7. Complexes formed as in lanes 1,2 and 7 were then incubated with anti-EBNA1 antibody (R4) prior to polyacrylamide gel electrophoresis.
doi:10.1371/journal.ppat.1000624.g002

EBNA1 Recruits a H2B Deubiquitylase
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compared to nonspecific rabbit IgG. EBNA1 was readily detected

on both the DS and FR elements after siGFP treatment but the

association with both elements was greatly decreased by USP7

silencing (Figure 3A, middle panels). As expected, there was little

association of EBNA1 with lacZ and this was unaffected by USP7

silencing (right panel). Consistent with the in vitro results, D395–

450 bound less efficiently to both the DS and FR elements than

did wildtype EBNA1, despite being expressed at equivalent levels

as EBNA1 (see Figure 3A, left panel). Moreover, unlike wildtype

EBNA1, the interaction of D395–450 with the FR and DS

elements was not affected by USP7 silencing. Therefore we

conclude that USP7 can stimulate the assembly of EBNA1 on oriP

elements in vivo.

In addition to binding the oriP elements, EBNA1 can interact in

a more transient manner with a third region of the EBV genome

(referred to as region III), consisting of two lower affinity EBNA1

recognition sites within the BamHI-Q fragment, and this

interaction can negatively regulate the Qp promoter used for

EBNA1 expression in some types of EBV latency [3,35,36]. Due to

the transient nature of the EBNA1 interaction with region III, we

asked whether USP7 might promote the EBNA1-region III

interaction in latently infected cells. D98/Raji cells were used

for these experiments since these EBV-infected cells are more

transfectable than the Raji cells from which they were derived.

D98/Raji cells were transfected with siRNA against USP7 or GFP

then ChIP experiments were performed using EBNA1-specific

antibody and primer sets for region III. While we did not achieve

complete silencing of USP7 in these experiments (Figure 3B, left

panel), its down-regulation was consistently found to decrease the

association of EBNA1 with region III (Figure 3B, right panel),

indicating that USP7 can also modulate EBNA1-DNA interac-

tions in the context of an EBV infection.

USP7 is recruited to EBV oriP
The above in vitro analyses raised the possibility that EBNA1 may

recruit USP7 to oriP in EBV-infected cells. To test this possibility we

conducted ChIP experiments in EBV-positive B-lymphocytes (Raji

cells). Antibodies against EBNA1 or USP7 were used to immuno-

precipitate these proteins from sheared Raji DNA and compared to

non-specific rabbit IgG as a negative control. Immunoprecipitates

were analyzed by quantitative real-time PCR using primers specific

for the DS and FR regions in oriP and for the promoter region of the

BZLF gene, located 40 kb away from oriP. EBNA1 is known to be

constitutively bound to the FR and DS elements [37,38] and,

consistent with this, was readily detected on both the FR and DS

DNA fragments (with better recovery of the DS element as has been

previously observed;[16,39,40]) but was not detected on the BZLF1

fragment (Figure 4A). The USP7 antibody consistently isolated more

FR DNA fragment than either the DS or BZLF1 fragments

(Figure 4A). Recovery of the FR region (but not the DS region)

was significantly higher than that of the BZLF1 region with a p-value

of 0.0004. The results indicate that USP7 is preferentially recruited to

FR and is consistent with the higher enrichment of EBNA1 at the FR.

USP7 forms a complex with GMP synthetase that
deubiquitylates histone H2B

USP7 is known to regulate p53 levels but this would not seem to

explain why it is recruited to oriP. To gain insight into other

potential functions of USP7, we used a proteomics approach to

identify cellular protein partners of USP7. To this end, increasing

Figure 3. Effects of USP7 silencing on EBNA1-DNA interactions in vivo. A. CNE2Z cells were treated with siRNA against USP7 or GFP then co-
transfected with pLacZ and with an oriP plasmid expressing EBNA1 or D395–450 as indicated or empty oriP plasmid (oriP). Equal amounts of cell
lysates were analysed for protein expression by Western blotting (left panel) and ChIP assays were performed with EBNA1 and nonspecific antibodies
for the DS and FR elements of oriP and for the lacZ gene. Results are shown after normalization to nonspecific IgG and input DNA. B. D98/Raji cells
were transfected with siRNA against USP7 or GFP then ChIP assays were performed with EBNA1 antibodies and nonspecific antibodies (IgG) and a
primer set near region III. Changes with P values less than 0.01 (**) and less than 0.05 (*) relative to siGFP samples are indicated.
doi:10.1371/journal.ppat.1000624.g003
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amounts of purified USP7 was coupled to resin to generate a series

of USP7 affinity columns and a constant amount of human cell

extract was passed through each column. Proteins retained on the

columns were eluted with 1 M NaCl, followed by 1% SDS, and

the recovered proteins were analysed by SDS-PAGE and silver

staining (Figure 5A). Only 1 band (at approximately 70 Kda) was

observed to be specifically retained on the USP7 column, showing

a titratable interaction with USP7 as expected for a specific protein

interaction, and this was identified by MALDI-ToF mass

spectrometry as GMP synthetase (GMPS).

The interaction between USP7 and GMPS was further

examined by glycerol gradient sedimentation analysis of the

purified proteins. For these experiments, GMPS, like USP7, was

generated using a baculovirus and extensively purified. Analysis of

the individual proteins by glycerol gradient sedimentation showed

that USP7 migrates close to its calculated molecular mass of

130 Kd indicating that it is monomeric (Figure 5B, top panel).

This is consistent with previous analytical centrifugation analyses

[28]. GMPS was found to migrate at a similar position as USP7

despite its smaller molecular mass of 77 Kda suggesting that it

forms dimers (Figure 5B, middle panel), as occurs for E.coli GMPS

[41]. When USP7 and GMPS were combined, their positions in

the gradient shifted to a higher molecular weight form, confirming

that the two proteins directly interact (Figure 5B, bottom panel).

The size of this complex (approximately 200 Kda) suggested that it

consisted of one USP7 and one GMPS molecule.

A previous study reported that Drosophila USP7 formed a

complex with GMPS in Drosophila embryos and that this complex

deubiquitylated histone H2B thereby contributing to polycomb-

mediated silencing [27]. This prompted us to investigate whether

the human USP7-GMPS complex also functioned to deubiquity-

late histone H2B. To this end, we purified total histones from

Figure 4. Chromatin IP assays for USP7, GMPS and Ub-H2B in EBV genomes. A. ChIP experiments were performed in Raji cells using
antibodies against EBNA1 (left panel), USP7 (middle panel), GMPS (right panel) and nonspecific rabbit IgG as a negative control. Recovered DNA
fragments were quantified by real-time PCR using primer sets for the oriP DS and FR regions or the BZLF1 promoter region. B. D98/Raji cells were
treated with siRNA against USP7 or GFP (negative control), then ChIP experiments were performed as in A using antibodies against GMPS (right
panel). Down-regulation of USP7 by siUSP7 treatment was confirmed by Western blotting, while GMPS levels were unaffected by this treatment (left
panel). C. D98/Raji cells were treated with siRNA against USP7 or GFP and ChIP assays were performed using antibodies against histone H2B and
monoubiquitylated histone H2B (Ub-H2B) and primer sets for the indicated region of the EBV genome (LMP = LMP1 promoter region). Relative ratios
of Ub-H2B to total H2B were determined for each treatment and the average fold increase in Ub-H2B after siUSP7 treatment (as compared to siGFP
treatment) from multiple experiments is shown.
doi:10.1371/journal.ppat.1000624.g004
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HeLa cells by the acid extraction method and incubated them with

purified USP7 (at a MW ratio of USP7:histones of 1:1000) for

various times prior to Western blot analysis. Histone H2B and its

monoubiquitylated form (Ub-H2B) were initially detected using an

antibody specific to histone H2B, and USP7 was found to have

some ability to deubiquitylate H2B on its own (Figure 6A, left

panel). Histone H2A and its monoubiquitylated form were

detected in the same assay with antibody specific to H2A,

however, in contrast to the H2B results, USP7 was not observed to

deubiquitylate H2A (Figure 6A, right panel).

To determine if GMPS affected the ability of USP7 to

deubiquitylate H2B, we repeated the experiments including different

amounts of GMPS (Figure 6B). The Ub-H2B was more readily

detected using an anti-ubiquitin antibody, providing a more robust

signal to follow and this band is shown in Figure 6B. We found that

the addition of GMPS at amounts stoichiometric to USP7 increased

the cleavage of Ub-H2B by USP7 at each time point examined

(compare ‘‘1:1’’ samples to ‘‘USP7’’ samples within each panel).

Increasing the amount of GMPS 10-fold had no further stimulatory

effect (compare ‘‘1:10’’ samples to ‘‘1:1’’ samples in the left panel),

while decreasing the amount of GMPS 10-fold abrogated the

stimulatory effect (compare ‘‘10:1’’ samples to ‘‘1:1’’ samples in the

right panel). These results are consistent with GMPS stimulating

deubiquitylation of H2B by USP7 by forming a stoichiometric

complex with USP7 and are inconsistent with GMPS acting

catalytically. We also asked whether the stimulatory activity of

GMPS was specific to H2B deubiquitylation or also occurred for

other USP7 targets. To this end, we incubated USP7, with or without

equal amounts of GMPS, with p53 that had been polyubiquitylated in

vitro and we followed the p53 forms by Western blotting with a p53

antibody (Figure 6C). In this case, we saw no obvious difference in the

kinetics of cleavage of the ubiquitylated forms by USP7 with or

without GMPS, indicating that GMPS does not affect all USP7

targets equally and rather has specificity for Ub-H2B.

To assess whether USP7 regulates histones in human cells, we

down-regulated USP7 in HeLa cells with siRNA treatment then

prepared total histones as for the in vitro assays. The ratio of

monoubiquitylated to nonmodified forms of H2A and H2B were

then determined by Western blotting using antibodies against H2A

and H2B. An example of the results obtained is shown in the gel

images in Figure 6D as compared to results with the same cells treated

with siGFP as a negative control. We consistently observed an

increase in the ratio of Ub-H2B to total H2B after USP7 silencing, as

compared to GFP silencing (negative control), but we did not see a

reproducible effect on the H2A monubiquitylated form. Results from

three independent experiments are shown in histogram in Figure 6D.

Therefore the in vivo studies support the conclusions of the in vitro

results, that USP7 can regulate H2B monoubiquitylation.

Formation of a DNA-EBNA1-USP7-GMPS quaternary
complex

We next investigated the relevance of the USP7-GMPS

interaction for EBNA1, in particular whether GMPS could form

part of the USP7-EBNA1-DNA complex. We examined this in

two ways: First, we tested possible interactions between DNA-

bound EBNA1395–641 with GMPS with and without USP7 by

EMSAs (Figure 7). The binding of EBNA1395–641 to the DNA

probe was assessed on its own or after incubation of the same

amount of EBNA1 with USP7 or GMPS and the migration of the

DNA complexes was assessed. As observed above, USP7 shifted

the EBNA1-DNA complex to a slower migrating form indicative

of a ternary complex (Figure 7, compare lanes 2 and 3). On the

other hand, the same amount of GMPS did not alter the mobility

of the EBNA1-DNA complexes (Figure 7, compare lanes 2 and 4).

Figure 5. USP7 forms a complex with GMPS. A. Purified USP7 was
coupled to a fixed amount of resin at the indicated concentrations to
generate a series of affinity columns. A constant amount of HeLa whole
cell lysate was applied to each, followed by washing then elution of the
bound proteins with 1 M NaCl then with 1% SDS. A silver-stained gel is
shown in which the band marked by the arrow was excised and
identified as GMPS by MALDI-ToF mass spectrometry. The band at
120 kDa in the 1% SDS elution is USP7 itself. B. Purified USP7 and GMPS
were analysed by glycerol gradient sedimentation individually (top and
middle panels) and after mixing the two proteins (bottom panel). Equal
volume fractions were collected from the top of each gradient and
analysed by SDS-PAGE and colloidal Coomassie staining. The positions
of 158 kDa (aldolase) and 232 kDa (catalase) molecular weight markers
are indicated at the top of the gels.
doi:10.1371/journal.ppat.1000624.g005
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This was expected since there is no evidence of a direct interaction

between EBNA1 and GMPS. However, when USP7, GMPS and

EBNA1 were combined (the same amounts as when tested

individually), and then added to the DNA, these complexes shifted

to a position higher than that of the USP7-EBNA-DNA ternary

complex as shown in lanes 5 and 6 of Figure 7 (compare to lane 3).

However neither GMPS, USP7 nor GMPS+USP7 interacted with

the DNA in the absence of EBNA1 (Figure 7, lanes 8–10). The

results suggest that USP7 mediates an interaction between GMPS

and the EBNA1-DNA complex resulting in the formation of a

quaternary complex.

We also examined the possible association between USP7-

GMPS complexes and EBNA1 in vivo, by determining if GMPS

localized with EBNA1 and USP7 on EBV chromatin. ChIP

experiments performed on Raji cells, showed that, like USP7,

GMPS was preferentially detected at the FR element of oriP over

the DS element or the BZLF1 region (Figure 4A, right panel). This

is consistent with the recruitment of the USP7-GMPS complex to

the FR through EBNA1.

We next investigated whether recruitment of GMPS to the FR

was dependent on USP7, as suggested by the EMSA experiments.

These experiments required down-regulation of USP7 by siRNA

treatment and could not be performed in Raji cells due to their low

transfection efficiency. Instead, the more readily transfectable

D98/Raji fusion cells were used, which retain the EBV genomes

from Raji cells [42]. USP7 was confirmed to be down-regulated in

these cells following treatment with siRNA against USP7 but not

siRNA against GFP (negative control), while GMPS levels were

Figure 6. GMPS stimulates histone H2B deubiquitylation by
USP7. A. Total histones isolated from HeLa cells were incubated with
USP7 (1:1000 ratio of USP7:histones) for 0, 1, 5 or 30 minutes then
analysed by Western blotting using antibodies against histones H2B
(left panel) or H2A (right panel). The positions of the unmodified (H2B/
H2A) and monoubiquitylated (mUb) histones are indicated. B. Total
histones were incubated with USP7 as in A for the indicated number of
minutes, with (USP7+GMPS) or without (USP7) GMPS, at a ratio of 1:1,
1:10 or 10:1 USP7:GMPS as indicated. Western blot analysis was then
performed using anti-ubiquitin antibody and the band corresponding
to monoubiquitylated H2B in part A is shown. C. Polyubiquitylated p53
was incubated with USP7 for the indicated number of minutes with
(USP7+GMPS) or without (USP7) a 10-fold excess of GMPS. Samples
were analysed by Western blotting using p53 antibody. The positions of
unmodified (p53) and ubiquitylated p53 (Ub-p53) are indicated. D.
HeLa cells were transfected with siRNA against GFP or USP7 and USP7
silencing was confirmed by Western blotting of whole cell extracts as
compared to an actin loading control (top two gel panels). Total
histones were prepared from the siRNA treated cells and Western blots
were performed using antibodies against histones H2B or H2A (bottom
two gel panels). The ratio of the monoubiquitylated to unmodified
forms was determined for H2A and H2B and the results from multiple
experiments are shown in the histogram, in relationship to the ratio
observed with siGFP treatment (set to 1).
doi:10.1371/journal.ppat.1000624.g006

Figure 7. GMPS can form a quaternary complex with USP7,
EBNA1 and DNA. The indicated combinations of EBNA1395–641 , USP7
and GMPS were preincubated then combined with the DNA containing
the EBNA1 recognition site and EMSAs were performed as in Figure 2C.
Excess amounts of USP7 alone or USP7 and GMPS were used relative to
EBNA1395–641. In lane 6, the USP7-EBNA complex was preformed prior to
the addition of GMPS then DNA. The positions of complexes formed by
EBNA1 alone, EBNA1+USP7 and EBNA1+USP7+GMPS are indicated by
arrowheads 1, 2 and 3 respectively. DNA incubated with the same
amounts of GMPS, USP7 or GMPS+USP7 but in the absence of EBNA1
are also shown (lanes 8–10).
doi:10.1371/journal.ppat.1000624.g007
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not affected (Figure 4B, left panel). ChIP analysis of GMPS from

these cells showed that, as in Raji cells, GMPS was preferentially

localized to the FR region, and that down-regulation of USP7

resulted in decreased levels of GMPS at the FR (P value 0.01

relative to FR-siGFP samples; Figure 4B, right panel).

If the USP7-GMPS complex functions to deubiquitylate histone

H2B, then the loss of this complex from the FR would be expected

to increase the level of Ub-H2B in this region. We investigated this

possibility by performing ChIP experiments with and without

USP7 silencing, using an antibody that recognizes only the

ubiquitylated form of H2B [43]. To control for possible differences

in the number of histones at each region we performed the same

experiment with antibody against total histone H2B and expressed

the Ub-H2B as a ratio of this value. In Figure 4C (left panel) the

change in the fraction of Ub-H2B after USP7 silencing is shown

from multiple experiments (in relation to siGFP treatment). While

we saw considerable variability on the level of Ub-H2B at the

BZLF1 region, we consistently observed that USP7 silencing

resulted in increased levels of Ub-H2B at the FR and had little

effect on Ub-H2B levels at the DS. The results support the model

that USP7 is needed for recruitment of GMPS to the FR and

subsequent deubiquitylation of histone H2B.

Since EBNA1 binding to the FR is known to activate

transcription from the LMP1 and Cp promoters [44,45], we

examined the possibility that the recruitment of the USP7-GMPS

complex to the FR might also affect H2B ubiquitylation at these

promoters. To this end, ChIP was performed on D98/Raji cells

before and after silencing USP7, using antibodies against Ub-H2B

and total H2B. The recovery of the LMP1 and Cp promoter

regions was quantified for each treatment and the change in the

fraction of Ub-H2B after USP7 silencing was determined.

Silencing of USP7 consistently resulted in increased Ub-H2B at

both the LMP1 and Cp promoters, with the strongest effect on the

Cp promoter, whereas H2B ubiquitylation at the oriLyt region of

EBV (negative control) was not affected by USP7 silencing

(Figure 4C, right panel). The results suggest that the USP7-GMPS

complex not only affects H2B ubiquitylation at the FR but also at

promoters controlled by the FR.

USP7 contributes to transcriptional activation by EBNA1
The above observations suggest that EBNA1-mediated recruit-

ment of the GMPS-USP7 complex to the FR may contribute to

transcriptional activation by this element through alteration of Ub-

H2B at the FR and/or promoters under FR control. To test this

possibility, we treated EBV-negative CNE2Z cells with siRNA

against USP7 or GFP then co-transfected them with a reporter

plasmid in which expression of chloramphenical acetyl transferase

(CAT) is under FR control and with a plasmid expressing either

EBNA1, the EBNA1 D395–450 mutant that is unable to bind USP7

or no EBNA1 (oriP plasmid). CAT assays were then performed on

each sample to assess degree of transcriptional activation (Figure 8).

As expected strong transcriptional activation was seen after siGFP

treatment in the presence of EBNA1 but not in its absence and, as

previously reported [14], D395–450 had slightly reduced transcrip-

tional activity. USP7 silencing caused a significant decrease in

transcriptional activation by EBNA1 (P value 0.004) but did not

significantly affect transactivation by D395–450. These results

support the model that recruitment of the USP7-GMPS complex by

EBNA1 contributes to EBNA1-mediated transcriptional activation.

Discussion

EBNA1 forms a stable complex with host cell USP7 and this

interaction can promote cell survival, at least in part through

interfering with p53 stabilization by USP7 and through disrupting

PML nuclear bodies [14,28–30]. Here we provide the first

evidence that the EBNA1-USP7 interaction also contributes to

EBNA1 functions at EBV oriP. This study stemmed from the

unexpected observation that USP7 greatly stimulated the DNA

binding activity of EBNA1 in vitro and could form a ternary

complex with DNA-bound EBNA1. EBNA1 appears to be

constitutively bound to oriP elements in latent EBV infections in

proliferating cells [37,38] and, in these cases, the functional

relevance of these observations for oriP-related functions most

likely lies in the ability of USP7 to form a ternary complex with

DNA-bound EBNA1, as verified at the FR element in EBV-

infected cells. In keeping with this hypothesis, we found that USP7

within this complex can mediate an interaction with GMPS which

promotes deubiquitylation of histone H2B and that USP7

contributes to EBNA1-mediated transcriptional activation. How-

ever we have also shown that USP7 can stimulate the assembly of

EBNA1 on oriP elements in transfected plasmids suggesting that

USP7 might play a role in the initial association of EBNA1 with

these elements upon initial EBV infection, and/or during the

switch from the EBV latency form in nonproliferating cells, in

which EBNA1 is not expressed (referred to as the latency program

[46]), to latency forms in proliferating cells in which EBNA1 is

expressed and bound to oriP. In addition, we have shown that

USP7 can stimulate EBNA1 binding to region III in the EBV

genome which, under some circumstances, negatively regulates

EBNA1 expression [35,36], raising the possibility of a role for

USP7 in EBNA1 autoregulation from the Qp promoter.

We have previously shown that EBNA1 residues 441–450 bind

to the USP7-NTD [28,29]. The ternary complex formed between

USP7 and DNA-bound EBNA1 also appears to require the

interaction of the USP7-NTD with the EBNA1 441–450 region

Figure 8. Effect of USP7 silencing on EBNA1-mediated
transcriptional activation. CNE2Z cells were treated with siRNA
against USP7 or GFP then were co-transfected with an FR-CAT reporter
plasmid and an oriP plasmid expressing EBNA1, D395–450 or no EBNA1
(oriP). CAT assays were then performed on equal amounts of cell lysates
and the percent of acetylated substrate was determined as a measure
of transcriptional activation. Changes with P values less than 0.01 (**)
and less than 0.05 (*) relative to siGFP samples are indicated.
doi:10.1371/journal.ppat.1000624.g008
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for the following two reasons. First, the USP7-NTD was sufficient

to supershift the EBNA1-DNA complex. Second, USP7 did not

supershift the complex formed by DNA and EBNA1452–641, which

lacks the USP7 binding site but retains full DNA binding activity.

However, it is curious that we observed partial but not complete

stimulation of EBNA1 DNA binding by the USP7-NTD. We had

previously assessed the ability of all USP7 stable domains to bind

EBNA1 by examining the retention of partially proteolysed USP7

on an EBNA1 affinity column and only the USP7-NTD was found

to bind EBNA1 [28]. However, this does not eliminate the

possibility that other regions of USP7 might have weak affinities

for EBNA1. Our in vitro data are consistent with a model in which

the USP7-NTD binds EBNA1 residues 441–450 to bring USP7 to

EBNA1, enabling subsequent weaker or less specific interactions of

other regions of USP7 with the EBNA1 DNA binding or C-

terminal regions (452–641). This might explain why the DNA

binding activity of EBNA1452–641 was weakly stimulated by USP7.

Another possible interpretation of the in vitro data is that the

interaction of the USP7-NTD with EBNA1 is stabilized by the rest

of USP7 due to effects on the structure of the USP7-NTD.

However we do not think this is likely because the USP7-NTD is a

TRAF domain that is stably folded in the absence of the rest of

USP7 [29,47].

While stoichiometric amounts of USP7 were sufficient to

stimulate the DNA binding activity of EBNA1, only at higher

USP7 concentrations was USP7 observed to be stably associated

with the EBNA1-DNA complex in vitro. This indicates that the

affinity of USP7 for free EBNA1 is higher than for DNA-bound

EBNA1 and that a higher effective concentration of EBNA1 or

USP7 may be necessary to drive the interaction of these proteins

on DNA. This conclusion is also supported by the observation that

USP7 is preferentially associated with EBNA1 on the FR element

over EBNA1 on the DS element of oriP. The FR element is bound

by 20 EBNA1 dimers as compared to 4 EBNA1 dimers at the DS

element and, in both cases, the dimers within the element interact

with each other to form a larger EBNA1 complex [31,32]. As a

result the effective concentration of EBNA1 at the FR is higher

than at the DS and this may drive recruitment of USP7.

An increasing number of human cellular protein binding targets

of USP7 have been identified including p53, Mdm2, FOXO,

March 7 and PTEN, all of which can be deubiquitylated by USP7

[20–24,26]. Our proteomic profiling of USP7 protein interactions

identified GMPS as another USP7 binding partner. We expect

that other USP7 binding partners were not identified by this

method due to their low abundance or transient nature of the

interaction in response to particular stimuli (such as occurs with

the USP7-p53 and USP7-FOXO interactions). The interaction of

USP7 with GMPS is unique in that it appears to affect the activity

of USP7 for specific substrates, as opposed to being a substrate

itself. This is supported by the fact that GMPS levels are not

altered when USP7 is silenced (as shown in Figure 4B).

The finding that human USP7 forms a stable complex with

GMPS fits well with the observations of van der Knaap et al [27],

where Drosophila USP7 was found to co-purify with GMPS. Our

glycerol gradient sedimentation analyses indicated that human

USP7 and GMPS form a 1:1 complex and in vitro assays show that

GMPS stimulates the ability of USP7 to deubiquitylate H2B (but

not H2A), as observed for the Drosophila GMPS-USP7 complex.

Van der Knapp et al [27] also showed that the stimulation of

Drosophila USP7 activity by GMPS did not require the catalytic

activity of GMPS. Our in vitro results are consistent with this

conclusion because stimulation of USP7 deubiquitylation activity

for H2B required stoichiometric amounts of GMPS (indicative of

formation of a USP7-GMPS complex) and did not occur with

substoichiometric amounts of GMPS (as would be expected for an

enzymatic activity). Although our results are largely in agreement

with those of van der Knaap et al [27], there are subtle differences

in the findings of the two studies. First, Drosophila USP7 was not

found to deubiquitylate H2B in vitro in the absence of GMPS while

we found that human USP7 was able to cleave Ub-H2B in vitro but

that this activity was stimulated by GMPS. Second, In Drosophila,

GMPS was found to stimulate deubiquitylation of p53 by USP7

and we have not observed this effect with human USP7. It is

presently unclear whether these discrepancies are the result of the

different in vitro reaction conditions and protein concentrations or

reflect genuine differences in the Drosophila and human USP7.

ChIP assays consistently showed higher recruitment of USP7

and GMPS to the oriP FR over the DS and the BZLF1 promoter

region, however some degree of interaction of USP7 and GMPS

was also detected at the DS and BZLF1 regions as compared to

the IgG negative control. This may indicate that these proteins are

wide spread on chromatin where they could regulate multiple

processes that are affected by H2B ubiquitylation [48]. H2B

monoubiquitylation has been reported to be associated with

increased transcription through effects on both initiation and

elongation [43,49–51], however in some instances H2B mono-

ubiquitylation appears to inhibit transcription [52–55]. Therefore

the contribution of H2B monoubiquitylation to gene expression is

complicated and possible contributions to other DNA processes

such as DNA replication are largely unexplored. We have

observed that USP7 silencing increases H2B ubiquitylation at

the FR as well as at LMP1 and Cp promoters and decreases

transcriptional activation from the FR element, suggesting that

H2B ubiquitylation is inhibitory to transcription controlled by the

FR. This is consistent with our previous observation that the

EBNA1 mutant that fails to bind USP7 has decreased transcrip-

tional activation function [14].

The increased detection of USP7 and GMPS at the FR element

and their effect on Ub-H2B levels in this region, suggests that

EBNA1 can employ the USP7-GMPS complex for its own

purposes, at least in part by decreasing the level of Ub-H2B. In

addition to functioning in transcriptional activation, the EBNA1-

bound FR element mediates the segregation of the EBV episomes

in mitosis [5,6,16,56], may enhance DNA replication from the DS

[2,57] and causes an impediment to replication fork progression

[4,58,59]. It is conceivable that any of these processes could be

affected by the state of H2B ubiquitylation, since EBV genomes in

latent infection are known to exist as nucleosomal arrays [60]. We

have previously shown that EBNA1D395–450 that does not bind

USP7 has increased DNA replication activity [14], suggesting that

H2B monobiquitylation could promote DNA replication but other

interpretations are also possible.

Histone modifications at oriP are just beginning to be examined

and so far these studies have been focused on histone H3

acetylation and methylation of the oriP DS region. Acetylated

histone H3 is generally enriched at the DS but a decrease was

observed at late G1 that appears to account for the delayed

replication of EBV genomes [61,62]. Histone H3 dimethyl K4 was

also enriched at the DS region while H3 methyl K9 was decreased

at this region [61,63]. Our findings indicate that monoubiquityla-

tion of H2B is another histone modification that is modulated at

oriP and that this modification is affected by EBNA1. We had

previously shown that EBNA1 binding to USP7 serves to alter

cellular processes in order to facilitate cell survival [29,30]. We

now present evidence that the USP7 interaction is not limited to

soluble EBNA1 but also occurs with EBNA1 bound to EBV

episomes where it could regulate the plasmid maintenance and

transcriptional functions of EBNA1 in EBV latent infection.
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Materials and Methods

EBNA1 purification
EBNA1395–641 was expressed fused to a hexahistidine tag at the

N-terminus in Escherichia coli from plasmid pET15b. This construct

was generated by PCR amplification of EBNA1 sequences

encoding amino acids 395–641 from pc3oriPEBNA1 and ligation

between the Nde1 and BamH1 sites of pET15b. BL21 pLysS cells

containing pET15b- EBNA1395–641 were grown to OD600nm of

0.5 then induced for 3 hrs at 37uC by the addition of IPTG

(0.1 mM final concentration). Cells were lysed in 50 mM

NaH2PO4 pH 8.0, 300 mM NaCl, 10 mM imidazole, 20 mM

b-mercaptoethanol, 0.5 mM PMSF, 1 mM benzamidine and

EBNA1395–641 was purified on Ni-NTA Agarose resin (Qiagen)

then dialyzed against 50 mM Tris pH 7.5, 300 mM NaCl,

20 mM b-mercaptoethanol, 1 mM PMSF. EBNA1452–641 was

purified from E.coli as previously described [64]. EBNA1 (lacking

most of the Gly-Ala repeat) was purified from insect cells as

described previously [14].

Purification of USP7 and GMPS
Full length USP7 and USP7-NTD containing amino acids 56–

205 were purified as according to Holowaty et al [14]. GMPS was

expressed in insect cells from a baculovirus. The GMPS

baculovirus was constructed by PCR amplification of full-length

GMPS cDNA in pOTB7 (ATCC number 7515509) using the

primers: GCAGGATCCCATATGGCTCTGTGCAACGGAG-

AC (N-terminus) and GCACTCGAGTTACTCCCACTCAG-

TAGTTCC (C-terminus). The amplification product was digested

with BamHI and XhoI and cloned between the same sites of

pFastBac HT B (invitrogen). Bacmids were obtained by transfor-

mation of competent DH10Bac E. coli (invitrogen) with GMPS

pFastBac HT B, then Spodoptera frugiperda (SF9) insect cells

were transfected with the bacmids to generate the baculovirus

according to manufacturer’s specifications. Culture media con-

taining the baculovirus was harvested 5 days post-transfection and

amplified twice. To generate GMPS for purification, ten 15 cm

plates of High Five cells at 80% confluency were infected with the

GMPS baculovirus. Cells were harvested 50 hrs post-infection,

washed with PBS and lysed in 10 mls of 20 mM Tris-HCl pH 8,

0.5 mM DTT, 0.5 mM EDTA, 10% glycerol and complete

protease inhibitor cocktail (Roche). The lysate was sonicated,

incubated 30 min on ice, then clarified by centrifugation at

64,0006g for 15 min at 4uC. The clarified lysate was incubated

with 250 ml of a nickel resin (Sigma) for 1 h (with rotation) then

transfered to a column. The resin was washed 3 times with 4

column volumes of column buffer (50 mM NaH2PO4, 300 mM

NaCl and 10 mM imidazole) and the His-tagged GMPS was

eluted from the column with column buffer containing 250 mM

imidazole. EDTA and DTT were added to the elutions to a final

concentration of 10 mM and the eluted protein was dialyzed

overnight against 50 mM HEPES pH 7.9, 50 mM NaCl, 10%

glycerol, 0.1 mM EDTA and 0.1 mM DTT then stored in

aliquots at 280uC.

Electrophoretic mobility shift assays (EMSAs)
DNA probes for EBNA1 EMSAs were generated by end-

labeling a 20-mer oligonucleotide corresponding to site 1 of the

DS element (59-CGGGAAGCATATGCTACCCG-39) with c-32P

-ATP and annealing it to its complementary sequence. In assays

containing EBNA1 and either USP7 or GMPS, EBNA1 was

preincubated with USP7 or GMPS at room temperature (RT) for

10 minutes prior to adding the labeled DNA, except in Figure 2C,

where EBNA1 was incubated with labeled DNA for 10 minutes at

RT first, followed by addition of increasing amounts of USP7 and

further incubation at RT for 10 minutes. In Figures 1 and 2A,

10 pmols of USP7 was used along with the indicated amounts of

EBNA1. For samples containing EBNA1 and both USP7 and

GMPS, USP7 and GMPS were preincubated together at 4uC for

5 minutes before the addition of EBNA1 and further incubation at

RT for 10 minutes. The EMSAs in Figure 7 used 2 pmol EBNA1

dimer and 64 pmols of USP7 and GMPS. Protein mixtures were

incubated with 10 fmoles of labeled DNA at RT for 10 minutes in

the presence of 1 mg salmon sperm DNA in 20 ml binding buffer

(20 mM Tris pH 7.5, 200 mM NaCl). 4 ml of 66 DNA Loading

Dye (10 mM Tris-HCl pH 7.6, 0.03% bromophenol blue, 0.03%

xylene cyanol FF, 60% glycerol, 60 mM EDTA; MBI Fermentas,

R0611) was then added to the reactions prior to electrophoresis

on a 10% polyacrylamide gel. Bands were visualized by

autoradiography.

USP7 affinity column
Purified USP7 was covalently coupled to Affi-Gel 10 (Bio-Rad)

at concentrations of 0, 0.5, 1 or 2 mgs per ml of resin in 50 mM

HEPES pH 7.5, 50 mM NaCl, 1 mM DTT, 5% glycerol. The

resin was then blocked in ethanolamine, equilibrated in column

buffer (50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM DTT,

0.1 mM EDTA, 10% glycerol) and used to generate 40 ml

microcolumns as previously described [14,65]. Whole HeLa cell

lysates were generated as in Holowaty et al [14] and equal

amounts were applied to each microcolumn. The columns were

washed in column buffer then sequentially eluted in column buffer

containing 1 M NaCl then the same buffer containing 1% SDS.

Column eluates were analysed by SDS-PAGE and silver staining.

The band running at 70 kDa was excised and prepared for

MALDI-ToF mass spectrometry analysis as previously described

[14]. Recovered peptides were analysed on a Voyager DE-STR

instrument (Applied Biosystems) and the protein was identified by

mass fingerprinting using ProFound software.

Glycerol gradient analysis
50 mg of purified USP7 was incubated with 25 mg of purified

GMPS in a total volume of 25 ml of 50 mM HEPES pH 7.9,

50 mM NaCl, 10% glycerol, 0.1 mM EDTA, 0.1 mM DTT for

1 hour at room temperature. Control samples were also generated

in which USP7 or GMPS were incubated individually. The

mixtures were then diluted to 500 ml in 50 mM HEPES pH 7.9,

5% glycerol, 200 mM NaCl and 0.5 mM EDTA and loaded onto

11.5 ml 10%–20% glycerol gradients formed in the same buffer.

Gradients were subjected to centrifugation in a SW41 rotor at

34,000 rpm for 18 hours at 4uC. Fractions of 500 ml were

collected from the top of each gradient and 30 ml of each fraction

was analyzed on an 8% SDS-polyacrylamide gel. Proteins were

visualized by colloidal blue staining. Aldolase and catalase were

analyzed on identical gradients as size markers.

In vitro histone deubiquitylation assays
Histones for in vitro assays were prepared by acid extraction as

described by Kao and Osley [66]. Briefly, HeLa cells at 70%

confluence were lysed in 10 mM HEPES pH 7.9, 1.5 mM MgCl,

10 mM KCl, 0.5 mM DTT, 1.5 mM PMSF and 1 mM NEM,

then hydrochloric acid was added to a final concentration of

0.2 M. The lysate was incubated on ice for 30 min, then

subjected to centrifugation at 10,0006g for 10 min at 4uC. The

supernatant fraction, containing the histones, was dialyzed

against 0.1 M acetic acid, then against distilled water and store

at 270uC. Prior to use, the histones were diluted to 1 mg/ml and

adjusted to a final concentration of 50 mM HEPES pH 7.9,
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100 mM NaCl and 1 mM DTT. 200 mg of histones were

incubated at 37uC with 0.2 mg USP7, with or without 0.1 mg

GMPS (1:1 USP7:GMPS), 0.01 mg GMPS (10:1 USP7:GMPS) or

10 mg GMPS (1:10 USP7:GMPS) as indicated in a 200 ml

reaction. Samples were collected at the indicated times and mixed

with SDS-PAGE loading buffer to stop the reactions. Samples

were analysed by electrophoresis on 15% SDS-polyacrylamide

gels and the levels of ubiquitinated H2B and H2A were visualized

by Western blotting using antibodies against H2B (Upstate

Biochemicals), H2A (Upstate Biochemicals) and ubiquitin

(Sigma).

In vitro p53 deubiquitylation assay
Ubiquitylated p53 was generated by in vitro reactions with

Mdm2. To this end human p53 and Mdm2 were cloned into

pET15b (Novagen), expressed in E.coli and purified by virtue of

the hexahistidine tag using standard metal affinity purification

procedures. P53 was ubiquitylated in vitro as previously described

[67]. Briefly, 5 mg p53 and 5 mg Mdm2 were incubated for 90 min

at 30uC with 500 ng E1 (Calbiochem), 1 mg UbE2D2 (Boston

Biochem), 50 mg ubiquitin (Boston Biochem) in a 200 ml reaction

mixture containing 50 mM Tris pH 7.6, 5 mM MgCl2, 2 mM

ATP, 2 mM DTT. Ubiquitylation was confirmed by Western blot

analysis of a 10 ml sample using p53 monoclonal antibody

PAb1801 [68] and the remaining mixture was stored at 280uC.

For deubiquitylation assays, 5 mg (10 ml), poly-ubiquitylated p53

was incubated with 0.5 mg USP7 with or without 5 mg of GMPS in

an 10 ml reaction. The samples were collected at the indicated

time points, mixed with SDS-PAGE loading buffer and subjected

to 10% SDS-PAGE. p53 was detected by Western blotting using

p53 antibody PAb1801.

Measurement of ubiquitylated histone levels in vivo
HeLa cells were transfected 3 times during a seven day period

with USP7 siRNA (100 pmols, 200 pmols and 200 pmols,

respectively) or with negative control siRNA against GFP [30]

using Lipofectamine 2000 (Invitrogen). USP7 siRNA sequence

was CCCAAATTATTCCGCGGCAAA as described in Tang et

al 2006 [69]. Cells were then harvested and split into two equal

samples. One sample was used to verify USP7 silencing by

Western blotting using rabbit serum against USP7 [30] and anti-

actin antibody (Calbiochem) as a loading control. The other

sample was used to isolate the histones by acid extraction as

described above and to quantify the levels of ubiquitylated histones

H2B and H2A by Western blotting for these histones as described

above. In each case, the amount of ubiquitylated histone was

determined by normalizing the intensity of this band to that of the

unmodified histone band (set to 1).

Chromatin immunoprecipitation (ChIP) assays performed
on EBV genomes

ChIP assays were performed for GMPS and USP7 in the EBV-

positive, Raji Burkitt’s lymphoma cells as previously described [16]

using anti-USP7 rabbit antibody (Bethyl Laboratories.Inc) or

rabbit antiserum raised against full length recombinant GMPS

purified from insect cells. Rabbit IgG (Santa Cruz) and anti-

EBNA1 R4 rabbit antibody [14] were also used as negative and

positive controls, respectively. Quantitative real-time PCR was

performed with a Platinum SYBR Green qPCR superMix-UDG

(Invitrogen) in a Rotorgene qPCR System (Corbett Research),

using 1/50th of the ChIP samples or 1/2500th of DNA samples

prior to immunoprecipitation (input) and the previously described

primer sets for the DS and FR elements and the BZLF1 promoter

region [16]. Values obtained for ChIP samples were normalized to

input samples with the same primer sets. For ChIP assays

involving USP7 depletion, D98/Raji cells [42] were subjected to

three rounds of transfection (every 24 hours) with siRNA against

USP7 or with siRNA against GFP as described above. Samples

were prepared as for the ChIP experiments in Raji cells except

that antibodies against EBNA1, histone H2B (Upstate Biochem-

icals) and mono-ubiquitylated histone H2B (MediMabs Inc,

Montreal) were used. Primer sets used to assess recovery of the

LMP1 promoter region were CAATCAGAAGGGGGAGTGCG

and ACAGCCTTGCCTCACCTGAAC, of Cp promoter region

were AACCTTGTTGGCGGGAGAAG and GGCGAATTAA-

CTGAGCTTGCG, and of oriLyt region were CGTCTTAC-

TGCCCAGCCTACT and AGTGGGAGGGCAGGAAAT. Ex-

periments examining EBNA1 binding to region III used the

primer sets GACCACTGAGGGAGTGTTCCACAG and ACA-

CCGTGCGAAAAGAAGCAC described in Yoshioka et al [36].

EBNA1 ChIP assays performed on transfected plasmids
CNE2Z cells [70] were plated in 6 cm dishes and transfected

with 50 pmols of siRNA against GFP or siRNA against USP7.

siRNA transfections were repeated twice at 24 hour intervals for a

total of 3 rounds of siRNA transfection over 72 hours. Cells were

then moved to 10 cm dishes and transfected with 5 mg of pc3OriP,

pc3OriPEBNA1 or pc3OriPD395–450 and 250 ng pLacZ plasmid

containing LacZ cDNA. 24 hours post-transfection, cells were

fixed with 1% formaldehyde, lysed in RIPA buffer (20 mM Tris

pH 8.0, 150 mM NaCl, 1% NP40, 0.1% Sodium Deoxycholate,

1 mM PMSF) containing protease inhibitor cocktail (Sigma,

P8340) and sonicated briefly to shear the DNA. Clarified lysates

were precleared with Protein A/G beads (Santa Cruz, SC-2003)

prior to immunoprecipitation with EBNA1 R4 antibody and

normal rabbit IgG (Santa Cruz, SC-2345). Protein cross links were

reversed in the immunoprecipitated DNA by incubating at 65uC
for 16 hrs. DNA was purified using QIAquick Gel Extraction Kit

(Qiagen, 28704) and analyzed by quantitative RT-PCR using

LightyCycler 480 DNA SYBR Green I Master (Roche,

04707516001) and a Rotorgene Q-PCR system (Corbett Re-

search). Primers used for DS are as described above. Primers used

for FR and lacZ quantification were CCCGGATACAGATTAG-

GATAGC and TGTTGCCATGGGTAGCATA for FR and

ATATTGAAACCCACGGCATGGTGC and TTTGATGGAC-

CATTTCGGCACAGC for lacZ.

Transcription activation assay
EBNA1 transactivation assays were performed as described

previously [71] with the following modifications. CNE2Z cells

were transfected with siRNA against GFP or USP7 as described

above, then were moved to 10 cm dishes 24 hour prior to

transfection with 2 mg of pFRTKCAT reporter construct (kindly

provided by Bill Sugden) and 180 ng of pc3OriP or pc3Orip

containing expression cassettes for EBNA1 [15] or EBNA1D395–

450. 48 hrs later, cells were harvested and lysed using three rounds

of freezing and thawing. 15 mg of total protein from each sample

was assayed for chloramphenicol acetyltransferase activity using

several reaction times and results from a point in the linear range

was reported.
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