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Electroencephalogram (EEG) plays an important role in brain disease diagnosis and
research of brain-computer interface (BCI). However, the measurements of EEG are
often exposed to strong interference of power line artifact (PLA). Digital notch filters
(DNFs) can be applied to remove the PLA effectively, but it also results in severe signal
distortions in the time domain. To address this problem, spectrum correction (SC) based
methods can be utilized. These methods estimate harmonic parameters of the PLA such
that compensation signals are produced to remove the noise. In order to ensure high
accuracy during harmonic parameter estimations, a novel approach is proposed in this
paper. This novel approach is based on the combination of sparse representation (SR)
and SC. It can deeply mine the information of PLA in the frequency domain. Firstly,
a ratio-based spectrum correction (RBSC) using rectangular window is employed to
make rough estimation of the harmonic parameters of PLA. Secondly, the two spectral
line closest to the estimated frequency are calculated. Thirdly, the two spectral lines
with high amplitudes can be utilized as input of RBSC to make finer estimations of the
harmonic parameters. Finally, a compensation signal, based on the extracted harmonic
parameters, is generated to suppress PLA. Numerical simulations and actual EEG
signals with PLA were used to evaluate the effectiveness of the improved approach.
It is verified that this approach can effectively suppress the PLA without distorting the
time-domain waveform of the EEG signal.

Keywords: EEG, brain imaging, sparse representation, noise reduction, salient feature enhancement

INTRODUCTION

In the measurement of Electroencephalogram (EEG), differences in voltages from distinct sites
of the brain are recorded over a period of time (Hernández-Ronquillo et al., 2020; Sun et al.,
2020). The EEG signal contains abundant information related to physiological, psychological and
pathological activities of the brain. Therefore, the analysis of EEG signals is of vital importance in
the clinical diagnosis and treatment of many diseases, such as Alzheimer’s disease (Faiman et al.,
2021), depression (Miao et al., 2021), idiopathic epilepsy and psychogenic non-epileptic seizures
(Sharma G. et al., 2021). On the other hand, EEG also plays an important role in the research
of brain-computer interface (BCI). BCI is referred to as a non-invasive way of human-machine
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interface between the brain and exterior devices (Dagdevir
and Tokmakci, 2021). BCI does not rely on conventional
neurotransmission pathways (Deshpande et al., 2017).
Nowadays, many brain imaging methodologies have been
adopted by the researchers, such as EEG, magnetic resonance
imaging (MRI) and functional MRI (fMRI; Hong et al., 2018).
Among the above mediums, EEG is regarded as the most
convenient one due to its mobility and lower cost.

In medical applications, owing to non-stationary
characteristics of EEG features and differences among individual
measurements, the analysis of EEG signals is comparatively
complicated and difficult (An et al., 2021). The traditional
signal analysis method based on fast Fourier transform (FFT)
cannot meet the requirements of EEG signal analysis. In order
to reduce excessive professional requirements for medical staff
to identify EEG, deep learning (DL) based methods, such as
convolutional neural network (CNN; Cao et al., 2019; Prathaban
and Balasubramanian, 2021), are introduced to ensure intelligent
understanding of EEG signals, especially for large scale datasets.
Aiming at achieving robust recognition ability, researchers
have designed novel DL neural networks with distinguished
types of network architecture, input formulation, and activation
function (Saegh et al., 2021). Li proposed an FFT-based deep
feature learning method for EEG classification (Li and Chen,
2021). Shankar proposed a DL based epileptic seizure detection
algorithm by using 2D recurrence plot images generated from
EEG signals for specific brain rhythms (Shankar et al., 2021). Jana
studied an efficient seizure prediction technique based on the
combination of CNN and a novel technique of channel reduction
(Jana and Mukherjee, 2021). According to the above studies,
researchers also attached significant attentions in deriving special
features from raw EEG signals because it can help improve the
accuracy and efficiency of the DL neural networks.

In spite of the versatility of EEG signal in clinical
applications and brain imaging science, it is reported that the
salient features within the EEG signals are weak in energy.
On the other hand, a variety of artifacts are likely to be
incorporated during acquisitions of EEG signals. To investigate
the essential physiological information corrupted by these noisy
artifacts, pre-processing based on signal processing techniques
is indispensable. Among the many sources of interference, the
power line artifact (PLA), at the frequency of 50 or 60 Hz,
is almost inevitable in “field” or mobile EEG measurements
outside the lab (Leske and Dalal, 2019). The presence of
PLA can significantly affect the analysis and extraction of
essential features from EEG recordings. Although shielding of
the environment has been recognized as an effective way to
reduce PLA in the lab, it is often impractical in scenarios of
natural environments. Therefore, alternative solutions, hardware
based or software based, must be adopted to address this
PLA problem. In comparison, the advantages of software-based
solutions are more prominent because they are more flexible
and easier to be realized. In state-of-the-art researches, signal
processing tools, such as digital notch filters (DNFs; Piskorowski,
2013), short time Fourier transform (STFT; Huang et al.,
2019), wavelet transform (WT; He et al., 2015; Huang et al.,
2021; Sharma S. et al., 2021), and empirical mode decomposition

(EMD; Taran et al., 2018), have been utilized to remove the
PLA. However, according to theoretical investigations, the above
techniques can be interpreted as digital filters with specific
passing band in the frequency domain (Wu and Huang, 2004).
Owing to the problems of energy leakage and picket-fence
effect (PFE) in canonical Fourier transform, such kinds of
digital filters will cause non-ignorable distortions in filtered
results, whereas the same problems also occur in hardware-
based solutions. To overcome this side effect, a feasible way
is to construct a compensation signal with high precision.
According to engineering experiences, PLA can be modeled as
a sinusoidal component consisting of a simple harmonic wave.
While, a sinusoidal component can be uniquely determined
by harmonic parameters of amplitude, frequency and phase.
Therefore, to retrieve the harmonic parameters become the
essential task in PLA removal.

Sparse representation (SR) is a comparatively new
development of signal expansion (Li and Chen, 2008). It
expresses an input signal in terms of linear combinations of
atoms from a dictionary. It has achieved tremendous successes in
various engineering applications (Wang et al., 2016; Yang et al.,
2020; Zhang et al., 2021). Conventional SRs are implemented
using iterative algorithms and may require large computational
resources (Cao et al., 2021; Chen et al., 2021; An et al., 2022). If
the efficiency of SR algorithm can be improved, it will effectively
expand the scope of its use in medical engineering (Yang
et al., 2019; Collazos-Huertas et al., 2020; Cury et al., 2020).
In this paper, to overcome the signal distortion effect in PLA
removal of EEG signals, we propose a novel approach based
on the combination of SR and spectrum correction (SC). SC
methods can identify the harmonic parameters based on the
information in the frequency domain. It will be shown in this
paper that for a sinusoidal component, the SC can be regarded
as a numerical algorithm to realize SR via a non-iterative way.
In ratio-based spectrum correction (RBSC) algorithms, the
performance of harmonic parameter extraction is determined by
signal-to-noise ratios of baseline spectral lines (BSSLs). Taking
this phenomenon into account, a dual-step correcting algorithm
(DSCA) is put forward. Firstly, a RBSC, using the rectangular
window, is employed for preliminary identification of harmonic
parameters. Secondly, two BSSLs with high SNR are calculated.
Thirdly, another RBSC is employed to estimate the harmonic
parameters with higher precision. On the basis of the estimated
harmonic parameters, a compensation signal is reconstructed.
PLA removal by subtracting the compensation signal from the
original EEG signal can avoid the side effect of signal distortion.
Analysis using numerical simulation and measured signal shows
that the proposed method is effective, efficient, and can suppress
waveform distortion.

MATERIALS AND METHODS

Mechanism of Signal Distortion in
Electroencephalogram Pre-processing
To ensure high performance of BCI, noises in EEG signals should
be suppressed using pre-processing based on hardware-based
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or software-based solutions. However, severe signal distortions
may be produced by such pre-processing. The theory of Fourier
transform can be used to explain the reason of this side effect. An
EEG signalx(t), corrupted by the PLA, can be expressed asx(t) =
eeg(t)+ pla(t), where eeg(t) and pla(t) stands for the salient
EEG features and PLA, respectively. In most cases, the PLA
component can be modeled as a sinusoidal component, expressed
aspla(t) = Apla · cos(2πfplat + ϕpla). These harmonic parameters
(Apla,fpla,ϕpla) are crucial to determine the waveform of PLA. In
actual analysis of a dynamic process, the digitization of a physical
quantity requires the signal to have a finite sampling frequency
(fs) and a finite sampling number (N) (Figure 1A). That is to
say, after digitization, x(t) should be expressed as x[n] = x((n−
1) ·1t), where n = 0, 1, . . . ,N − 1 and the spatial interval is
denoted as 1t = 1/fs. The FFT converts an input signal from
the time domain into a counterpart in the frequency domain. In
numerical implementations of FFT, a cluster of sinusoidal waves
are used to decompose the input signals.

X[`] = FFT {x[n]} , (1)

where X[`] (` = 0, 1 . . . ,N − 1) represents the complex-valued
coefficient at the frequency of (`− 1) · fs/N. The FFT spectrum
is also a sampling of actual Fourier spectrum of x(t). If the
frequency fpla does not belong to the set {(`− 1) · fs/N| ` =
0, 1 . . . ,N − 1 }, the problem of energy leakage and PFE occur
(Chen et al., 2019). In such circumstance, the FFT spectrum
of {pla[n]} is dense in frequency domain (Figure 1B). The
energy of the noisy component {pla[n]} leaks across the entire
frequency domain. A simple harmonic wave in time domain
becomes a broad band signal in the frequency domain. Therefore,
the harmonic parameters cannot be estimated using any single
spectral line in the FFT spectrum (Figure 1C).

Wavelet transform and EMD are important developments of
the classical FFT. However, they are essentially digital filters with
specific passing band in the frequency domain (Figure 1D). By
using them, only a part of the PLA spectrum can be suppressed.
The residual contents after digital filtering still leads to side
effect of signal distortion. This phenomenon is similar to Gibbs
phenomenon in Fourier analysis. Therefore, it can also be
summarized as a pseudo-Gibbs phenomenon (PGF) in multi-
scale analysis.

Fundamentals of Sparse Representation
Sparse representation has become a hot research topic in the
field of signal processing during the past two decades. SR aims
at expressing an input signal x as a linear combination of atoms
from an over-complete dictionary 8.

x =8c =
[
ϕ1 ϕ2 · · · ϕM

]


c1
c2
...

cM

 , (2)

where ϕi ∈ 8 (i = 1, 2, . . . ,M) and M is the number of atoms in
8. For EEG signal analysis, the variables x and ϕi are supposed to
be column vectors of dimension K. The dimension of 8 in matrix

form is K ×M. Different from a basis, the condition M × K
should be satisfied for an SR dictionary 8. To satisfy the demand
of sparsity, most coefficients in the set {ci} are approximate
or equal to zero.

To obtain a sparse solution ĉ, we need to solve the following
optimization problem.

ĉ=argmin ‖ c ‖0, s.t. x =8c (3)

where the L0-norm ||c||0 calculates the number of non-zero
terms in ĉ. However, this problem has proven to be NP-hard.
To deal with this problem, the L1-norm ||c||1 =

∑K
i=1 |ci| can be

introduced to derive a feasible solution. Therefore, the problem
in Eq. (3) is formulated as below.

ĉ=argmin ‖ c ‖1, s.t. x =8c (4)

In practical applications, owing to the existence of measurement
noises, the constraint condition x =8c is usually too strict
that may results in no solution. A relaxed L2-norm constraint,
allowing a maximum error of ε, is more convenient.

ĉ=argmin ‖ c ‖1, s.t. ‖ x−8c ‖2≤ ε (5)

To solve the above optimization problem, iterative algorithms,
such as matching pursuit and basis pursuit, can be utilized.
From the above argument, the solution of ĉ depends on the
choosing of a proper dictionary 8. Therefore, a critical problem
of SR in engineering applications lies in the selection a proper
over-complete dictionary.

Spectrum Correction for Sinusoidal
Component
Fast Fourier transform is extensively applied to investigate the
component of x(t) = Ac · cos(2πfct + ϕc), which appears as a
simple harmonic wave in a dynamic process. According to the
fundamentals of digital signal processing, if the condition fs/fc ∈
N+ is satisfied, the information of the PLA noise can be uniquely
revealed by one spectral line, whose frequency is exactlyfc, in the
FFT spectrum. However, this condition is difficult to meet in most
cases because the value of fc can be a complicated decimal. In such
circumstances, SCs, based on the information in FFT spectra,
should be adopted. In this section, we take the rectangular
window function as an example to illustrate the SC algorithm.

In FFT analysis, the spectral resolution is defined as 1f =
1/(N ·1t). Spectral lines are uniformly spaced by one single
spectral resolution in the frequency axis. According to the
algorithm of RBSC, a pair of spectral lines whose frequencies
differ by one spectral resolution are utilized to estimate the
harmonic parameters. For ease of argument, we name the two
spectral lines as BSSLs. The frequencies of BSSL are denoted by
fl and fr , and they are belonging to the spectral grid set {(`− 1) ·
fs/N| ` = 0, 1 . . . ,N − 1 }. To estimate harmonic parameters of
a sinusoidal component at the frequency of fc, the following
relationship is satisfied.

fc − 0.5 ≤ fl < fc < fr ≤ fc + 0.5 (6)

The concept of normalized index of spectral line is used to
indicate the frequency of a spectral line in FFT spectrum. Let
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FIGURE 1 | (A) Digitization of dynamic processes with finite sampling frequency and a finite sampling number; (B) FFT spectrum of a sinusoidal component; (C) the
energy leakage problem; (D) the picket-fence effect (PFE) and the filtering characteristics of a digital filters from Daubechies wavelet basis (Mallat, 1989; Chen et al.,
2012).

Yk be the complex number associated with the spectral line
whose frequency is (k− 1) ·1f , yk and arg(Yk) can be used to
represent amplitude and argument of the Yk. Figure 2A shows
the amplitudes (yl and yr) of BSSLs in RBSC. The normalized
frequency shift is calculated by 1k = (fc − fl)/1f . In RBSC, the
ratio between yl and yr can be used to calculate 1k conveniently,
which is implemented based on the information fusion of BSSLs.
An indicator of characteristic ratio for the SC can be defined as
R = y_l/yr . Using the characteristic ratio, the normalized error
1k can be calculated as below.

1k = −
1

1+ R
= −

yk
yk + yk+1

(7)

Then the estimated harmonic parameters (Ãc, f̃c, and ϕ̃c) of the
investigated sinusoidal component can be derived as below.

Ãc =
π·1k·yk

sin(π·1k)
f̃c = (k+1k) ·1f
ϕ̃c = arg(Yk)− π ·1k

(8)

The sinusoidal component is supposed to be produced using
the estimated harmonic information. In summary, the RBSC
produces a harmonic atom that is very similar to the original
PLA. This harmonic atom can be treated as a special dictionary
with M = 1<< K. This is the relationship between SC and SR
for sinusoidal component analysis.
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FIGURE 2 | (A) Mathematical model for the RBSC; (B) RBSC for small normalized frequency error; (C) RBS for normalized frequency error 1k = 1/2; and (D) the
flowchart of the DBSC.

The Proposed Method
The RBSC is an effective method to estimate harmonic
parameters of a sinusoidal component. It utilizes information of
BSSLs in FFT spectrum to estimate the harmonic parameters. In
actual dynamic measurements, the information of BSSLs is also
affected by noises. Therefore, high SNR are important to ensure
estimations of high precision. As the value of 1k approaches
zero, the SNR of yr reduces significantly if measurement noise
exists (Figure 2B). As a result, significant estimation errors can
be produced for the harmonic parameters. As a compromise, we
expect 1k to be approximately 1/2 such that both of yl and yr are
of high amplitudes to resist the measurement noises (Figure 2C).
To address this problem, a DSCA is proposed. The key idea of
DSCA is the numerical implementation of spectral correction
using BSSLs of high amplitudes. The flowchart of the DBSC is
shown in Figure 2D.

Step 1. Apply FFT for the input signal x(t) = Ac · cos(2πfct +
φc).

x(t) FFT
−→ X(k) (9)

Step 2. First round estimation of harmonic parameter in x(t)
using RBSC.

X(k) RBSC
−→ A(1)

c , f (1)
c , ϕ(1)

c (10)

Step 3. Calculate BSSLs at frequencies of f (1)
c − 0.5 ·1f and

f (1)
c + 0.5 ·1f based on f (1)

c and the FFT spectrum.{
f (1)
c
X(k)

−→

{
f (1)
c − 0.5 ·1f
f (1)
c + 0.5 ·1f

(11)

Step 4. Second round estimation of the harmonic parameters
(Ãc, f̃c, ϕ̃c) using RBSC.{

f (1)
c − 0.5 ·1f
f (1)
c + 0.5 ·1f

RBSC
−→ A(2)

c , f (2)
c , ϕ(2)

c (12)

Step 5. The harmonic parameters are corrected as below.
Ãc = A(1)

c

f̃c = f (2)
c

φ̃c = ϕ
(2)
c

(13)

Step 6. A compensation signal can be produced using the
corrected harmonic information.

x̃(t) = Ã(1)
c · cos(2πf̃ (2)

c t + ϕ̃(2)
c ) (14)

According to the above algorithm, no iteration is employed.
The original sinusoidal component is retrieved with errors
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FIGURE 3 | (A) Waveform of the simulated PLA; (B) FFT spectrum of the simulated PLA; (C) the simulated PLA with noises (SNR = 0dB); and (D) FFT spectrum of
the simulated PLA with noises.

‖ x(t)− x̃(t) ‖> 0. Only one atom, learned by the spectral
corrections, is used to reconstruct x(t). This can be seen as a
special form of SR for sinusoidal component.

RESULTS

Numerical Simulations
To verify the enhancement of the proposed DSCA, numerical
simulations are employed in this sub-section. A signal, consisting
of PLA (pla(t), Figure 3A) and noises (n(t)), is simulated.
Without loss of generality, the harmonic parameters are set
as Apla = 1, fpla = 250.05Hz, and ϕpla = 0. A white Gaussian
noise n(t) is added to the simulated signal, and the SNR is
set as 0dB (Figure 3C). Both of the sampling frequency and
the sampling number are set as 1,000. The spectral resolution
of the signal in spectral domain is calculated as 1f = 1
(Figures 3B,D). In FFT spectrum of pla(t), the frequencies
of BSSLs are 250 and 251 Hz. Their amplitudes are yl =
0.996 and yr = 0.052. The normalized frequency shift is 1k =
0.05, which is very closed to zero. The harmonic parameters
are corrected as Apla = 1, fpla = 250.05Hz, and φpla = 0. The
estimation accuracy is perfect when there is no noise. While in
the spectrum of s(t), yl = 0.947 and yr = 0.068. The harmonic
parameters are corrected as Apla = 0.9539, fpla = 250.067Hz,
and φpla = −0.010. It can be seen significant estimation errors
occur due to noises.

For the proposed DSCA, the first-round estimation of the
frequency is f (1)

c = 250.067. The frequencies of BSSLs are
fl = 249.567 and fr = 255.067. The harmonic parameters are
corrected as Apla = 1.073, fpla = 250.040Hz, and ϕpla = −0.006.
It can be seen that the estimation errors of the frequency and
the phase are reduced significantly, while estimation error of the
phase increases. The same rule of error has also been verified in
other independent repeated experiments. That is the reason why

we use the estimated harmonic parameters in different rounds of
estimations.

s(t) = pla(t)+ n(t) (15)

Case Study of Noisy
Electroencephalogram Signals
In this sub-section, actual measurements of EEG signals are
employed to further verify the performance of the proposed
DSCA. The EEG datasets, we used in this paper, were made
available to the public by Neurology & Sleep Centre, Hauz Khas,
New Delhi. The employed datasets contain EEG records from
clinical studies concerning epilepsy. A record of EEG time series
is selected from the datasets (Figure 4A). The sampling frequency
is 200 Hz, and the sampling number is 1,000. In acquisition of the
EEG time series, a band-pass digital filter with the passing band
of [0.5, 70]Hz was applied. To simulate the PLA, an additive
noisy component is synthesized with the parameters Apla = 50,
fpla = 250.05Hz, and ϕpla = 0(Figure 4B). The FFT spectra of
the two components are shown in Figure 4C. A noisy EEG signal
is formed by directly superimposing the two components. The
SNR of the investigated signal is 3.430 dB.

The proposed DSCA is applied to remove the PLA.
The harmonic parameters are corrected as Apla = 50.006,
fpla = 250.050Hz, and ϕpla = −0.023. Using these estimated
parameters, the compensation signal can be reconstructed and
subtracted from the synthesized signal. The denoised signal
is plotted in Figure 4D. From the appearances of the two
waveforms, they are very similar. The correlation coefficient
of the two signals are computed as 1.00, indicating that
the filtering result is satisfactory. The FFT spectra of the
denoised signal and the original noisy EEG signal are shown in
Figure 4E. The difference only exists in a very narrow frequency
band around 50 Hz.

As comparison, a DNF based method is also used to process
the noisy signal (Chen et al., 2012). The denoised signal is shown
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FIGURE 4 | (A) Time domain waveform of the EEG signal; (B) the simulated PLA noise; (C) FFT spectra of the EEG signal and the PLA noise; (D) the denoised
signal based on the proposed DSCA; (E) FFT spectra of the EEG signal and the filtered signal using DSCA; (F) the denoised signal based on DNF method; and
(G) FFT spectra of the EEG signal and the filtered signal using DNF method.

in Figure 4F. In the time domain waveform, there is a severe
distortion on the left side of the filtered signal. The correlation
coefficient of the two signals are computed as 0.997. While,
from the frequency domain (Figure 4G), differences between
the two signals increase significantly near 50 Hz. The above
comparisons show that the proposed DSCA algorithm in this
paper outperforms DNF in PLA removal.

DISCUSSION

The problems of energy leakage and PFE are inevitable for
harmonic components whose digital samplings do not satisfy the

full period sampling condition (Mewett et al., 2001). There is
a view that these two side effects can be prevented by actively
adjusting the sampling parameters. Because a variation of± 2 Hz
is likely to occur in actual power systems (Singhal et al., 2020), the
parameter fpla is an unknown variable. It is not practical to design
DNFs perfectly suitable for all possible PLA noises. On the other
hand, increasing the sampling length of EEG signal can improve
the accuracy of harmonic parameter estimation. However, the
process of brain electrical activity corresponding to the collected
signals cannot be repeated, so we can only analyze and process
the signals of limited length.

Wavelet transform and EMD outperform FFT by providing
time-frequency representation of EEG signal. However, in either
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case, the above side effect is still unavoidable. Because no matter
how they decompose the signal, they can only suppress part
of the PLA, and the rest will still cause signal distortion. In
principle, RBSC uses local spectral information to estimate the
overall harmonic composition, so it can avoid the side effect.

The method proposed in this paper is an improvement of
the classical RBSC. It not only improves the robustness of
the algorithm in parameter correction, but also considers the
efficiency of the algorithm. The complexity of the algorithm
has only a small increase compared with the classical method.
The method proposed in this paper is especially suitable for
the case that the value of 1k is very small. When the value
of this parameter is close to half the frequency resolution, the
performance of the two methods is close. In general, the method
proposed in this paper can be better applied to the complex
measurement environment. However, in any case, the method
in this paper has no less accuracy than the original RBSC in
statistics. So we recommend that DSCA can completely replace
the original RBSC.

Ratio-based spectrum correction only utilize two BSSLs to
estimate harmonic parameters, and it can balance the efficiency
and accuracy of the algorithm. In the literature, there have been
some methods for harmonic parameter estimation using multiple
BSSLs. These studies also show that their harmonic parameter
estimation accuracy is indeed better than that of RBSC in the
absence of noise. But this is not achievable in clinical applications.
Therefore, the DSCA is proposed based on the RBSC. The
calculation time of RBSC mainly includes the FFT transform
of the signal and several complex arithmetic operations. The
DSCA proposed in this paper mainly includes two RBSCs, so the
efficiency is also very high.

For analysis of a simple harmonic component, the spectral
correction is very similar with the spare representation theory

in mathematical principle. A remarkable advantage is that it
does not require a predetermined dictionary. The algorithm
can generate a skinny dictionary containing only one atom
to represent the actual sinusoidal component. Because the
dictionary is not redundant, no iterative algorithms is needed. We
can call the spectral correction as implicit sparse representation
(ISR) for simple harmonic component analysis. The current
research shows that the results obtained by using SR based on
iterative numerical algorithm are very similar to those based on
spectral correction method. Therefore, in the case of harmonic
analysis, a method based on SC may be preferentially employed.
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