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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is able to
give an insight into the gene–gene associations
or transcriptional networks among cell populations
based on the sequencing of a large number of cells.
However, traditional network methods are limited to
the grouped cells instead of each single cell, and
thus the heterogeneity of single cells will be erased.
We present a new method to construct a cell-specific
network (CSN) for each single cell from scRNA-seq
data (i.e. one network for one cell), which transforms
the data from ‘unstable’ gene expression form to ‘sta-
ble’ gene association form on a single-cell basis. In
particular, it is for the first time that we can identify
the gene associations/network at a single-cell reso-
lution level. By CSN method, scRNA-seq data can be
analyzed for clustering and pseudo-trajectory from
network perspective by any existing method, which
opens a new way to scRNA-seq data analyses. In
addition, CSN is able to find differential gene asso-
ciations for each single cell, and even ‘dark’ genes
that play important roles at the network level but are
generally ignored by traditional differential gene ex-
pression analyses. In addition, CSN can be applied
to construct individual network of each sample bulk
RNA-seq data. Experiments on various scRNA-seq
datasets validated the effectiveness of CSN in terms
of accuracy and robustness.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) provides a high-
throughput method to measure and compare the levels of
gene expression at single cell resolution (1,2). The hetero-
geneity and functional diversity among cell populations
can be revealed and new cell types with distinct functions

may be discovered (3–5). Recent studies provide many ac-
curate and robust computational methods to identify new
cell types by solving the problems of outlier cell popu-
lations, transcript amplification noise and dropout events
in scRNA-seq (6–9). However, most of these methods
mainly focused on the analyses of gene expression levels,
while scRNA-seq may give more information of an in-
sight into the gene–gene associations or transcriptional net-
works based on the sequencing of hundreds to thousands
of cells. Many biological processes such as co-expression,
transcriptional regulation, DNA modification, function of
non-coding RNA involve the problems of gene–gene asso-
ciations, whose understanding and explanation will greatly
help to reveal the mystery of life.

The biological system in a cell is generally a nonlinear
dynamical system. From dynamical viewpoint, gene expres-
sions are variables of such a system and may be different if
measured at different time points or conditions even for the
same cell. In contrast, it is gene associations or transcrip-
tional networks that result in the measured gene expression
patterns, and thus is a stable form against the time and con-
dition. Therefore, the network of a cell can more reliably
characterize the biological system or state of the cell. Tra-
ditional network methods (10,11) are useful to analyze the
gene–gene associations from scRNA-seq data, but the cells
should be clustered or classified in advance, and the net-
work is usually limited to be constructed for the grouped
cells instead of each single cell. Thus as a result, the hetero-
geneity of single cells will be erased. In addition, nonlinear
associations among genes are usually hard to be identified,
in particular for single cell.

In this study, we propose a new computational method
to construct a cell-specific network (CSN) on a single-cell
basis from scRNA-seq data, which means one network for
one cell. The input data of CSN method is just the origi-
nal gene expression matrix (GEM) of all cells, and the out-
put is a series of CSNs in which nodes are genes and edges
are gene–gene associations. CSN method is derived from
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our new theoretical model based on statistical dependency,
which can be viewed as data transformation from the ‘un-
stable’ gene expression data to the ‘stable’ gene association
data. Computationally, we do not need to cluster or clas-
sify the cells at first, and theoretically both linear and non-
linear associations among genes can be identified. By CSN
method, it is for the first time that we can identify the gene–
gene associations or transcriptional networks at a single-
cell level. To facilitate the analysis, a network degree matrix
(NDM) is further constructed from CSNs, in which each
element is not the gene expression level, but the number of
edges connected to each gene in each CSN. NDM embod-
ies the network features and reflects the importance of each
gene in the network, which has the same number of rows
and columns as the original GEM, so that it can be ana-
lyzed for cell clustering and pseudo-trajectory construction
by any existing scRNA-seq method, which opens a new way
to analyze scRNA-seq data from network perspective. Ex-
periments on various scRNA-seq datasets illustrated that
NDM had better performances than original GEM among
most clustering and pseudo-trajectory methods in terms of
accuracy and robustness. In addition, CSN is able to find
key genes or even ‘dark’ genes that have significant differ-
ence between case and control samples not in a gene ex-
pression level but in a network degree level. Generally, our
CSN method provides a new way to analyze the scRNA-
seq data, and in particular extracts richer information of
biological systems at the network level. Moreover, CSN can
be directly applied to construct individual network of each
single sample from bulk RNA-seq data.

MATERIALS AND METHODS

Construction of cell-specific network

In this paper, we propose a new method with a statistical
model which constructs a cell-specific network (CSN) for
each single cell from a scRNA-seq data. If the dataset com-
prises of m genes and n cells, we will construct n CSNs corre-
sponding to the n cells, and in each CSN, there are m nodes
corresponding to the m genes and the edges are gene–gene
associations without direction (Figure 1A). The value of
each edge is 1 or 0, which represents if or not two genes
interact with each other. In this work, we assume that each
single cell is characterized by its gene association network.
In other words, due to the difference of cell types, two genes
may have association in some cells but not in the other cells.

The gene–gene association is determined by the statisti-
cal independency of two genes. In probability theory, if two
variables are independent of each other, the joint density
function is equal to the product of two marginal density
functions, which means

f (x, y) = fX(x) · fY(y) (1)

where fX (x) and fY (y) are marginal density functions of x
and y respectively, and f (x, y) is joint density function.

Equation (1) is a global measurement of statistical inde-
pendency, which is a necessary and sufficient condition. In
this paper, we derive a local measurement from Equation (1)
that is defined as f(xk, yk) – fX(xk) fY(yk), which measures
the independency of genes x and y in cell k. To estimate the

values of fX(xk), fY(yk) and f(xk, yk), we make a scatter di-
agram based on the expression values of genes x and y, in
which each plot represents a cell, and then we draw three
boxes near the plot k to represent the neighborhood of xk,
yk and (xk, yk) respectively (Figure 1B), in which the number
of plots are nx

(k), ny
(k) and nxy

(k). Then, we can substitute
the probability by the frequency numerically.

fX(xk) ≈ nx
(k)

n
, fY(yk) ≈ ny

(k)

n
,

f (xk, yk) ≈ nxy
(k)

n
(2)

where n is the total number of plots/cells.
Then, we design a statistic for genes x, y of cell k as

ρxy
(k) = nxy

(k)

n
− nx

(k)

n
· ny

(k)

n
(3)

nx
(k) and ny

(k) are predetermined integers (< n), and thus
the statistic ρxy

(k) is only changed with nxy
(k). In particular,

we set nx
(k) = ny

(k) = 0.1n in this work, and nx
(k) and ny

(k)

are both proportional to the sample size n. In other words,
we first draw the two boxes near xk and yk based on the
predetermined nx

(k) and ny
(k), and then we can straightfor-

wardly have the third box, which is simply the intersection
of the previous two boxes (Figure 1B). Thus, we can obtain
the value of nxy

(k) by counting the plots in the third box,
thereby testing the criterion of Equation (3).

The range of the statistic is -1 to 1, and it can be proved
(Supplementary Note S1) that if x and y are independent of
each other, the statistic ρxy

(k) approximately follows normal
distribution (Figure 2A) and the mean value and standard
deviation are

μxy
(k) = 0,

σxy
(k) =

√
nx

(k)ny
(k)(n − nx

(k))(n − ny
(k))

n4(n − 1)
(4)

We normalized ρxy
(k) as

ρ̂ (k)
xy = ρxy

(k) − μxy
(k)

σxy
(k)

=
√

n − 1 · (n · nxy
(k) − nx

(k)ny
(k))√

nx
(k)ny

(k)(n − nx
(k))(n − ny

(k))
(5)

If genes x and y are independent of each other, this nor-
malized statistic follows standard normal distribution and
the mean value and variance for the n cells are 0 and 1 re-
spectively.

We conducted the numerical simulation on the statistic
ρxy

(k) for various dependent relations. As shown in Figure
2, clearly if genes x and y are independent of each other,
no matter which distributions the genes follow, the statistic
ρxy

(k) approximates to normal distribution (Figure 2A). On
the other hand, if x and y are dependent in partial cells and
independent in the other cells, no matter if the dependency
relation is positive or negative, linear or nonlinear, simple
or complex, the statistic shows double crest in the density
function, and has larger values than the significant level in
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Figure 1. Schematic illustration of CSN and NDM construction and our statistic model. (A) CSN and NDM construction. (i) Make scatter diagrams for
every two genes, where each point represents a cell, and x- and y-values are the expression values of the two genes in the n cells. Then m genes lead to m
(m – 1)/2 scatter diagrams. (ii) In the scatter diagram of genes x and y, the plot i with red color means there is an edge between genes x and y in the cell
i network based on our statistic model, and if the plot is blue, there is no edge. Then, we can construct n cell-specific networks corresponding to n cells,
respectively. (iii) By counting the number of edges connected to each gene in each CSN, we can get the network degree matrix, which is still comprised of
m rows and n columns, as the same as GEM, and thus it can be analyzed by any existing method. (B) Our statistic model for edge between genes x and
y. Near the plot or cell k, make the light and medium grey boxes to represent the neighborhood of xk and yk respectively. The intersection of two boxes
is the dark grey box, which represents the neighborhood of (xk, yk). The number of plots in the light, medium and dark grey boxes is nx

(k), ny
(k) and

nxy
(k) respectively. Design the statistic as ρxy

(k). If x and y are independent of each other, the statistic follows normal distribution and the mean value and
variance can be calculated. If the statistic ρxy

(k) is larger than a significant level, label plot k with red color, which means there is an edge between x and y
in cell k; otherwise there is no edge.

the cells with the dependent gene pairs (red plots in Figure
2B), and has smaller values in the cells with the independent
gene pairs (blue plots in Figure 2B). If genes x and y are de-
pendent in all cells, no matter which dependency relation
is, the statistic of most cells is much larger than the signifi-
cant level (Figure 2C). As a summary, the statistic ρxy

(k) is a
good measurement to distinguish the cells with dependent

gene pairs and independent gene pairs in a reliable manner.
In other words, we can analyze the gene associations at a
single-cell level just by this statistic. The detailed descrip-
tions for the statistic from both theoretical and computa-
tional viewpoints are also given in Supplementary Note S1.

Thus, to construct a network, by using the statistic with
our statistical model Equation (5), we take the following hy-
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Figure 2. Probability density functions of the statistic ρxy
(k) when (A) genes x and y are independent of each other; (B) genes x and y are dependent in

partial cells; (C) genes x and y are dependent in all cells. Red plots in the scatter diagrams of genes x and y represent that the statistic ρxy
(k) in these plots is

larger than the significant level of 0.01 and edgexy
(k) = 1, which corresponds to the red area in the density function graphs. Blue plots represent that ρxy

(k)

in these plots is smaller than the significant level of 0.01 and edgexy
(k) = 0, which corresponds to the blue lines in the density function graphs. Sample size

n = 500, and nx
(k) = ny

(k) = 0.1n.

pothesis test (one-side test) for the genes association (edge
x–y in the network of cell k):

H 0 (null hypothesis): genes x and y are independent in
cell k.

H 1 (alternative hypothesis): genes x and y are associated
with each other in cell k.

If the normalized statistic of Equation (5) is larger than
a significant level, we will reject the null hypothesis and
edgexy

(k) = 1, otherwise edgexy
(k) = 0. In this work, the sig-

nificant level is set as 0.01. After repeating this process for
all gene pairs and all cells, we can get n CSNs for n cells at

last. As CSNs are only constructed from the gene expres-
sion matrix and we do not need to classify or cluster the
cells at first. Thus, this method is an unsupervised network
construction method.

Note that if point/cell k is an outlier in the scatter dia-
gram of genes x and y, edgexy

(k) is equal to 0 because of the
small value of nxy

(k), which means it is hard to find edges
for outlier samples/cells.

It should be also noted that the zero expression of a gene
is meaningful from a network viewpoint because the zero
expression may come from the inhibition or negative regu-
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lation of another gene. Thus, even if the expression of gene
x in cell k is zero, we may still find an edge between x and
another gene. However, in scRNA-seq data, most zeros may
result from the experimental problems, which are meaning-
less in biology and may produce errors in the data analysis.
Hence, in this work, we treat the zeros in the following way:
(1) If we cannot distinguish whether or not the zeros result
from the zero-expression or the experimental problems, we
just use all genes to construct CSNs, specifically, edgexy

(k)

is set to 0 when xk = 0 or yk = 0 without the consideration
of the statistic. (2) If we know that the zeros result from the
zero-expression, edgexy

(k) is determined by the statistic.

Network analysis of CSN

CSN provides a method to analyze the gene–gene associ-
ations at single-cell level. Based on the normalized statis-
tic of two genes, differential analyses of gene–gene asso-
ciations can be performed among different cell types by
statistical test, and then we may find the two genes are
associated/interacted in some cell types and independent
in the other cell types. In other words, we may find the
marker edges in some cell types. These edges may come from
gene regulation, co-expression, alternative splicing and so
on. Though our method cannot provide more details of the
gene–gene associations, it still provides the biologists many
important clues for further research.

CSN also provides a method to find the key genes from
network perspective. As the key regulatory genes usually in-
fluence the expression of many other genes, there will be
more edges connected to the key regulatory genes in CSNs,
and thus the network degree of these genes will be higher. By
calculating the number of edges connected to each gene (i.e.
network degree) in each CSN, we can select the genes with
the highest degrees in each cell or each cell type, which rep-
resent the key genes from network perspective and instruct
the biologists in gene regulation studies.

Network degree matrix from CSN

CSNs can be used for various biological studies at the net-
work level, but the number of features describing a network
for most scRNA-seq analyses is quite large. If there are m
genes, there will be m*(m-1)/2 gene pairs or features. In this
paper, we further transfer CSNs to a network degree ma-
trix (NDM) to embody the network features and reduce the
dimensions simultaneously although we can directly use the
CSNs (or reduce the CSNs in other way) for clustering anal-
ysis. For gene x in the network of cell k

NDMxk =
m∑

y=1,y�=x

edgexy
(k) (6)

Then we can get a matrix NDM with m × n elements.
In this work, we will further normalize the NDM to make
each cell has the same number of network degrees, which
is shown in Equation (S-4) of Supplementary Note S2. The
normalization is able to improve the robustness and helps to
the comparison of the cells from different cell populations
(Supplementary Note S2).

NDM has the same number of rows and columns as the
original gene expression matrix (GEM) but reflects the im-
portance of each gene in the network instead of the gene
expression levels. This matrix can be analyzed by any tradi-
tional scRNA-seq algorithm for cell clustering, dimension-
reduction and pseudo trajectory analysis by simply replac-
ing the original GEM with our NDM, and thus our CSN
method opens a new way to analyze scRNA-seq data at the
network level. The input, output and application fields of
our CSN method are listed in Supplementary Note S3.

‘Dark’ genes revealed by NDM

By NDM, we are able to reveal ‘dark’ genes, which have no
significantly differential changes in terms of gene expres-
sion, and thus cannot be found by traditional differential
analyses, but they are hub genes in the network or have sig-
nificantly differential changes in terms of network degree,
thereby may also play an important role in the network reg-
ulation.

Clustering, dimension-reduction and pseudo trajectory anal-
ysis

One significant advantage of our method is that NDM can
be further analyzed for clustering, dimension-reduction and
pseudo-trajectory construction from a network perspective
by any existing scRNA-seq method. In this paper, we select
several existing methods that are widely used in scRNA-seq
analysis to compare the performances of both NDM and
original GEM. It should be noted that we focus not on the
clustering methods themselves, but on the comparison be-
tween the traditional gene expression (GEM) and our net-
work degree (NDM). Hence, in order to make it compa-
rable, the parameters of all methods were set the same for
GEM and NDM, and usually we used the default parame-
ters, which are listed in Supplementary Note S4.

We used hierarchical clustering, k-means, k-medoids,
SNN-Cliq and SIMLR to perform clustering analysis. Hi-
erarchical clustering groups data by creating a cluster tree
with multilevel hierarchy, where clusters at one level are
joined as clusters at the next level. k-means (12) and k-
medoids (13) clustering partition data into k mutually exclu-
sive clusters, which minimize the sum of distances between
an observation and its cluster center. In k-means, the clus-
ter center is the mean of observations in this cluster. In k-
medoids, the cluster center is a member of this cluster, called
a medoid. SNN-Cliq (14) is a graph theory based cluster-
ing method, which utilizes the concept of shared nearest
neighbor (SNN) to define cell similarity. SIMLR (8) is an
analytic framework that learns a similarity measure from
single-cell RNA-seq data based on multi-kernel learning. In
this work, we also used hierarchical and k-means clustering
to the data that is preprocessed by dimension-reduction of
t-SNE (15). In hierarchical clustering, k-means, k-medoids
and SIMLR, the number of clusters was set the same as the
number of cell types, and SNN-Cliq used its internal algo-
rithm to determine the number of clusters.

We used principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) (15)
that represent linear and nonlinear methods to perform
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dimension-reduction analysis and visualization. Both of the
methods have been widely used in the analysis of scRNA-
seq data.

We used Wanderlust (16) in pseudo trajectory analysis,
which constructs no-branch pseudo trajectory by giving
each cell a value to represent the cell order, and the cells in
the later stages will get larger values. In this work, we used
the known time series of the dataset as gold standard. Com-
pare every two cells’ Wanderlust values. If cell i is in the later
stage of cell j and Wanderlust value of cell i is larger than cell
j, T plus 1; if cell i is in the later stage of cell j but Wanderlust
value of cell i is NOT larger than cell j, F plus 1. Then we
used the value of T / (T+F) to measure the accuracy of the
pseudo trajectory.

Normalization and preprocessing methods

NDM comes straightforwardly from GEM (Figure 1), i.e.
initial matrix → GEM → NDM. Generally, the normaliza-
tion and preprocessing methods to the initial matrix will in-
fluence the performance of both GEM and NDM. The nor-
malization methods are listed in Supplementary Note S5 for
each dataset. In addition, we also compared the clustering
performance of GEM and NDM from different normaliza-
tion methods including FPKM, TPM and counts, which are
the most widely-used in scRNA-seq studies.

The usual preprocessing methods to initial data matrix
include gene selection and imputation. In this work, we only
discarded the genes that were expressed in a small number
of cells (<10 cells) or never expressed, and thus most genes
(∼15 000 genes) were used. The number of genes used in
GEM and NDM on each dataset is listed in Supplemen-
tary Note S5. In addition, we also compared the clustering
performance of GEM and NDM based on different gene
selection rules. Imputation was not used in the CSN and
NDM construction, but as some studies (7) indicated that
the imputation to the zero counts may solve the problem of
dropout events in scRNA-seq data, we also compared the
performance of GEM and NDM from the imputed data by
scImpute (7). In addition, we took logarithm log(1+x) to
the initial matrix, which is used in almost all scRNA-seq
data.

Comparison with bulk RNA-seq data

Besides single-cell RNA-seq data, our CSN method can be
applied to the analysis of bulk RNA-seq data provided that
there are a large number of samples which are required by
our method. In this work, we conducted the CSN studies on
TCGA adenocarcinoma and squamous cell carcinoma bulk
RNA-seq data (Project: TCGA-LUAD and TCGA-LUSC,
https://cancergenome.nih.gov) due to the large sample size,
in the same way as scRNA-seq analysis.

Datasets used for validation of CSN

In this work, we collected several high-quality datasets from
the literatures to demonstrate the advantages of our CSN
method. These datasets include human and mouse embry-
onic stem cells, cortical cells, tumor cells and so on, which
represent various studies in scRNA-seq. The cell types in

most datasets are quite clear as they are defined by the dif-
ferent cell sources (e.g. blood cells, neural cells), different
cases (e.g. patients, normal people) or different time points.
For other datasets, marker genes or FACS assay with re-
spective markers were used to identify cell types, which also
ensures the quality of data. Brief introductions and sources
of all datasets are listed here and in Supplementary Note
S5, respectively.

Buettner dataset (17) includes 182 cells and three cell
types. This dataset contained mouse embryonic stem cells
under different cell-cycle stages that have been annotated
(G1, S and G2/M). 5600 genes are obtained per cell on av-
erage.

Kolodziejczyk dataset (18) includes 704 cells and three
cell types. This dataset was obtained from a stem cell study
on how different culture conditions influence pluripotent
states of mouse embryonic stem cells. The cells came from
several experiments involving three different culture condi-
tions: serum + LIF, 2i + LIF and alternative 2i + LIF. 7700
genes are obtained per cell on average.

Pollen dataset (19) includes 249 cells and 11 cell types.
This dataset includes skin cells, pluripotent stem cells, blood
cells, neural cells and so on, which was designed to test the
utility of low-coverage single-cell RNA-seq in identifying
distinct cell populations. 7200 genes are obtained per cell
on average.

Zeisel dataset (20) includes 3005 cells and nine cell types.
This dataset contained the cells from the mouse cortex
and hippocampus. The cell types including interneurons,
S1 pyramidal cells, CA1 pyramidal, mural cells, endothe-
lial cells, microglia, ependymal cells, astrocytes and oligo-
dendrocytes were identified by hierarchical biclustering and
validated by gene markers. 3700 genes are obtained per cell
on average.

Darmanis dataset (21) includes 420 cells and eight cell
types. This dataset contained the cells of human cortical
tissue from eight adults and four embryonic samples. The
cell types including OPCs, oligodendrocytes, astrocytes, mi-
croglia, neurons, endothelial cells, replicating neuronal pro-
genitors and quiescent newly born neurons were identified
by unbiased clustering and validated by some gene markers
derived from the mouse brain. 4100 genes are obtained per
cell on average.

Chu-type dataset (22) includes 1018 cells and seven cell
types. This dataset contained the cells of human embryonic
stem cell-derived lineage-specific progenitors. The cell types
including H1 embryonic stem cells, H9 embryonic stem
cells, human foreskin fibroblasts, neuronal progenitor cells,
definitive endoderm cells, endothelial cells and trophoblast-
like cells were identified by fluorescence-activated cell sort-
ing (FACS) with their respective markers. 9600 genes are ob-
tained per cell on average.

Chu-time dataset (22) includes 758 cells and six cell types.
This dataset contained the cells with 6 time points along
the differentiation protocol to produce definitive endoderm
cells from human ES cells. A total of 758 cells were captured
and profiled by scRNA-seq at 0, 12, 24, 36, 72 and 96 h of
differentiation. 8700 genes are obtained per cell on average.

Kim dataset (23) includes 118 cells and three cell types.
This dataset is designed to identify successful clonal prop-
agation from patient to PDX samples and understand

https://cancergenome.nih.gov
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pathogenesis from primary (pRCC) to metastatic renal cell
carcinoma (mRCC). The cell types including the tumor
cells from the parental mRCC, PDX-mRCC and PDX-
pRCC were identified by fluorescent microscopic observa-
tion. 6700 genes are obtained per cell on average.

Trapnell dataset (24) includes 372 cells and four cell types.
This dataset contained the cells with four time points along
the differentiation protocol of primary human myoblasts.
Cells were first cultured in high-serum medium, and then,
after a switch to low-serum medium, cells were dissociated,
individually captured and profiled by scRNA-seq at 0, 24,
48 and 72 h. 6600 genes are obtained per cell on average.

Xin dataset (25) includes 1600 cells and four cell types.
This dataset contained the human pancreatic �-, �-, �-
and PP cells from non-diabetic and type 2 diabetes organ
donors. 5700 genes are obtained per cell on average.

TCGA lung cancer data (Project: TCGA-LUAD and
TCGA-LUSC) is bulk RNA-seq dataset, including 1135
samples from 1016 cases, which comprise of 524 adenocar-
cinoma samples, 61 adenocarcinoma adjacent normal tis-
sues samples, 501 squamous cell carcinoma samples and 49
squamous cell carcinoma adjacent normal tissues samples.
In this work, we used the dataset normalized by FPKM and
selected 33 409 genes that are expressed in at least 500 sam-
ples to calculate GEM and NDM.

RESULTS

Network analysis on a single-cell basis

In this paper, we performed network analysis based on our
CSN method to Chu-type dataset (22), which was illustrated
in Figure 3. This dataset was obtained from a study of de-
velopmental biology, which contains seven cell types in-
cluding H1 embryonic stem cells (H1), H9 embryonic stem
cells (H9), human foreskin fibroblasts (HFF), neuronal pro-
genitor cells (NPC), definitive endoderm cells (DEC), en-
dothelial cells (EC) and trophoblast-like cells (TB). These
cell types can be distinguished clearly by t-SNE in both
GEM and NDM. Figure 3A illustrates the genes correla-
tion networks constructed by the grouped cells (H1) and
by the CSN of a single cell (H1 Exp2.113, GEO sample
ID: GSM1966635), respectively. It is obvious that in spite
of some differences, both networks comprise of three mod-
ules, where most genes from the two networks are present
in the similar way (in particular, in module 1). Figure S7
(Supplementary Note S6) also illustrates the high relevance
between the correlation coefficient and normalized statistic
of two genes. Thus, the CSN of each cell is generally simi-
lar to the correlation network constructed by the grouped
cells, and any tool of network studies can be also used for
the further analysis of the constructed CSNs.

However, CSN is a method for a single-cell network,
which makes it possible to analyze the gene–gene associ-
ations at a single-cell resolution. Figure 3C illustrates the
scatter diagram of genes POU5F1 and GATA6. We can
see the high level of POU5F1 corresponds to the zero ex-
pression of GATA6, which is in agreement with the ex-
perimental results that POU5F1 inhibits the expression of
GATA6 and down regulation of POU5F1 is accompanied
by the increased expression of the endoderm-associated
genes GATA6 in human embryonic stem cells (26,27). We

can also see the low level of POU5F1 cannot inhibit the ex-
pression of GATA6 and there is little association between
GATA6 and the low level of POU5F1. From the perfor-
mance of the normalized statistic of edge POU5F1-GATA6
based on CSN method (Figure 3D), we can see clearly that
POU5F1 and GATA6 are associated in H1 and H9 embry-
onic stem cells where POU5F1 is highly expressed, and not
associated in the other cell types where POU5F1 is lowly
expressed. By contrast, if we construct the correlation net-
works for each cell type based on the grouped cells instead
of single cell (i.e. one network for one cell type), we will find
the correlations between POU5F1 and GATA6 are always
almost zero. Moreover, if we estimate the correlation based
on all cells, we can find the global negative correlation but
do not know in which cell types the two genes are associ-
ated. This is the limitation of the networks constructed by
the grouped cells, and could be overcome by CSN method
(Supplementary Note S7).

From Figure 3D, we can also see the values of the normal-
ized statistic are significantly high in some cell types, which
indicates that there are some strong associations between
the two genes specifically in these cell types. Based on the
statistic test, we can find the differential edges just similarly
as the differential genes, and thus, not only key genes, but
also key gene-associations can be identified, though these
associations are not necessarily direct or causal relations.

In addition, many important genes interact with multiple
partners and thus our CSN method is able to find key genes
from a network viewpoint, e.g. the hub genes with high
degrees. Supplementary Note S8 lists the top 10 genes of
each cell type on Chu-type dataset with the highest degree.
We can see that some genes such as POU5F1, L1TD1 and
PCGF1 have been validated to play a key role in cell differ-
entiation and pluripotency. POU5F1 encodes a transcrip-
tion factor that plays an important role in embryonic devel-
opment and stem cell pluripotency (28). LITD1 is related to
the post-transcriptional regulation in human pluripotency
(29). PCGF1 represents a physical and functional link be-
tween Polycomb function and pluripotency (30).

‘Dark’ genes

Based on CSN method, we can not only find the differen-
tial expression genes but also the differential degree genes.
If a gene has a significant difference between case and con-
trol samples not in a gene expression level but in a net-
work degree level, we call this gene as ‘dark’ gene (Sup-
plementary Note S9). Figure 3E–J illustrate some ‘dark’
genes of endothelial cells (EC). It is obvious that genes
FBXO33 and ZHX2 show high degrees in EC (low de-
grees in other cell types), but at the expression level, there
is no significant difference among all cell types. We can see
the obvious differential associations between FBXO33 and
KDR, and between ZHX2 and PECAM1. In fact, KDR
encodes one of the two receptors of vascular endothelial
growth factor (VGCF), and VGCF is a major growth fac-
tor for endothelial cells. The protein encoded by PECAM1
makes up a large portion of endothelial cell intercellu-
lar junctions (NCBI Gene, https://www.ncbi.nlm.nih.gov/
gene). These results imply FBXO33 and ZHX2 may also

https://www.ncbi.nlm.nih.gov/gene
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Figure 3. Illustration of network analyses of Chu-type dataset based on our CSN method. (A) Correlation network of grouped cells (edge means correlation
coefficient of two genes > 0.7) and CSN of a single cell (edge means normalized statistic of two genes > 8). The genes used in the network construction
are all the same. (B) t-SNE plots of Chu-type dataset, where different cell types could be distinguished clearly (ARI = 0.98). (C) Scatter diagrams of genes
POU5F1 and GATA6, colored by the cell types listed in (B). (D) Performance of edge POU5F1 - GATA6 in the t-SNE plots, colored by the normalized
statistic. (E-J) Performance of genes FBXO33 and ZHX2 in the t-SNE plots, colored by (E) the gene expression level of FBXO33, (F) the network degree
level of FBXO33, (G) the normalized statistic of edge FBXO33-KDR, (H) the gene expression level of ZHX2, (I) the network degree level of ZHX2, (J)
the normalized statistic of edge ZHX2-PECAM1.

play biological roles in EC, which needs to be further stud-
ied in future.

Network rewiring on a single-cell basis

In this paper, we also performed the network rewiring anal-
ysis on Chu-time dataset (22), which came from a study of
developmental biology, and contained 758 cells with 6 time

points (0, 12, 24, 36, 72, 96 h) along the differentiation pro-
tocol to produce definitive endoderm cells from human em-
bryonic stem cells. Figure 4A illustrates the partial CSNs of
some single cells with the 20 genes that are involved in hu-
man embryo development. We can see the network topology
changes dynamically at different time points. At 12 h, the as-
sociations among these genes are the strongest, while at 72 h
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Figure 4. Illustration of network analyses of Chu-time dataset based on our CSN method. (A) CSNs of some single cells with the 20 genes that are involved
in human embryo development, where the larger normalized statistic leads to the darker edge. (B) Network degrees of POU5F1, NANOG and CDH1
along the six time points of embryo development.

and 96 h, the associations become quite weak. We can also
see the network degrees of POU5F1, NANOG and CDH1
show their peaks at 12 h from Figure 4B, which means these
genes are correlated with more other genes and may play
important roles as hub genes from a network viewpoint at
12 h. These results imply that the key time point may be
around 12 h due to the drastic network rewiring during the
embryo development.

Network-based cell clustering and gene dimension-reduction
analysis

Based on our CSN method, we used several algorithms
including hierarchical clustering, k-means (12), k-medoids
(13), SNN-Cliq (14) and SIMLR (8) to perform the cell
clustering analysis, PCA and t-SNE (15) that represent lin-
ear and nonlinear methods to perform dimension-reduction
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Figure 5. The clustering performances of NDM and GEM on four datasets. t-SNE plots are used for visualization and different colors represent different
cell types.

analysis. GEM and NDM were used for comparison on the
nine datasets from literatures (17–24), where we adopted the
same the algorithm parameters (Supplementary Note S4)
and normalization method (Supplementary Note S5). As
the classification label of each observation had been known,
adjusted random index (ARI), F1-measure, purity and en-
tropy were used as the indexes in comparison. From the re-
sults shown in Table 1 and Supplementary Note S10, we can
see the superior performances of our NDM over the orig-
inal GEM for various methods clearly. The best results of
all datasets come from our NDM and even linear method
such as hierarchical clustering can produce quite good per-
formances based on our NDM. In the dimension-reduction
analysis shown in Figure 5 and Supplementary Note S11,
NDM can also distinguish different cell types more clearly
than GEM by both linear (PCA) and nonlinear (t-SNE)
method.

Network-based cell pseudo trajectory analysis

In this work, we used two datasets with the gold stan-
dard from literatures to perform pseudo trajectory analy-
sis, which include 758 cells with 6 stages (0, 12, 24, 36, 72,
96 h) in Chu-time dataset (22) and 372 cells with four stages
(0, 24, 48, 72 h) in Trapnell dataset (24). Wanderlust (16)
is a method to construct no-branch pseudo trajectory and
GEM and NDM are used for comparison. From the results
shown in Figure S10 (Supplementary Note S12), we can see
the Wanderlust values increase in accordance with the time
sequence in Chu-time dataset, and the results of GEM and
NDM are quite similar, whose accuracy is 0.92 and 0.93
respectively. But in Trapnell dataset, NDM is able to iden-
tify the change at 72 h, but GEM fails, and the accuracy of
GEM and NDM is 0.62 and 0.73 respectively. Thus, it is in-
dicated that NDM is also able to reconstruct the time series
of single cells corresponding to the developmental stages,
and may produce similar or better results than the original
GEM.

Comparison of NDM for different CSN parameters, normal-
ization and preprocessing methods

In this paper, we set nx
(k) = ny

(k) = 0.1n, where the coeffi-
cient 0.1 is called as the box size. Figure S11 (Supplemen-
tary Note S13) illustrates how the ARI in clustering analysis
changes with the box size and P-value in different datasets.
It is indicated that the optimum box size is about 0.1, and
the optimum P-value is about 0.01 on average, which are set
as the default parameters of CSN method.

We compared different normalization methods on the
same dataset in Supplementary Note S14. We can see NDM
from the GEM normalized by TPM/FPKM/count gets the
similar performances on the same dataset, though the re-
sult by TPM seems to be better. Thus, our NDM method
is not sensitive to the normalization method, and is suitable
to various types of gene expression matrix.

We also compared different gene selection rules on the
same dataset in Supplementary Note S15. We can see the
different gene selection rules such as ‘FPKM per cell on av-
erage >1 (or >5, >10, >50)’ have just a little influence on
the performance of GEM and NDM. Clearly, NDM is still
superior to GEM and is also not so sensitive to the gene
selection rules.

Imputation was not used in the construction of CSN and
NDM in this paper except Supplementary Note S16 that
uses the imputation for comparison purpose. We compared
the clustering performance of GEM and NDM from the
imputed data in Figure S12 (Supplementary Note S16). We
can see that the imputed GEM gets better results than the
original GEM in some datasets, but is usually inferior to the
performance of NDM from the original GEM. The result
of NDM from the imputed GEM is slightly better than the
imputed GEM, but is obviously worse than NDM from the
original GEM. As a conclusion, the imputation by existing
methods is not recommended in our CSN construction. Ex-
isting imputation methods such as scImpute (7) are based
on the expression level of scRNA-seq data without the con-
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Table 1. The comparison of GEM and NDM in clustering analysis, evaluated by adjusted random index (ARI)

Buettner
Kolod
ziejczyk Pollen Zeisel Darmanis

Chu-
type

Chu-
time Kim Trapnell

Hierarchical GEM 0.48 0.49 0.95 0.55 0.63 0.75 0.67 0.66 0.08
NDM 0.82 0.99 0.96 0.53 0.91 0.77 0.72 0.73 0.24

k-means GEM 0.31 0.53 0.90 0.39 0.58 0.73 0.59 0.60 0.14
NDM 0.74 0.80 0.87 0.43 0.77 0.77 0.70 0.83 0.44

Hierarchical (tSNE) GEM 0.32 0.99 0.94 0.60 0.67 0.98 0.68 0.66 0.16
NDM 0.97 1.00 0.85 0.62 0.86 0.99 0.68 1.00 0.43

k-means (tSNE) GEM 0.30 0.99 0.94 0.62 0.65 0.98 0.69 0.72 0.16
NDM 0.94 1.00 0.85 0.65 0.85 0.99 0.69 1.00 0.47

k-medoids GEM 0.14 0.03 0.91 0.43 0.36 0.60 0.43 0.57 0.00
NDM 0.31 0.73 0.89 0.11 0.23 0.76 0.41 0.61 0.23

SIMLR GEM 0.92 0.99 0.90 0.56 0.75 0.74 0.66 0.97 0.21
NDM 1.00 1.00 0.92 0.67 0.90 0.75 0.67 0.95 0.31

SNN-Cliq GEM 0.00 0.00 0.90 0.50 0.20 0.64 0.30 0.58 0.00
NDM 0.50 0.65 0.90 0.60 0.01 0.61 0.36 0.58 0.24

Hierarchical (tSNE) and k-means (tSNE) represent that the clustering analysis is performed after dimension-reduction by t-SNE.

sideration of the gene associations, and thus may result in
the alterations of edges or correlations between genes, which
leads to the worse performance of the NDM from the im-
puted data for some cases.

Comparison with bulk RNA-seq data

In this work, we also applied our CSN method to TCGA
lung cancer bulk RNA-seq data. Based on the clustering
analysis shown in Figure 6A, we can see the distinctions
among adenocarcinoma (AD), squamous cell carcinoma
(SC) and adjacent normal tissues are clearer based on NDM
than GEM (ARI of GEM = 0.69 and ARI of NDM =
0.81, t-SNE + k-means clustering), and especially, cluster-
ing analysis based on NDM is able to distinguish AD adja-
cent tissues and SC adjacent tissues, while GEM fails. We
can also find some genes that show significant difference
between the two types of adjacent tissues in terms of both
expression and network degree (Supplementary Note S17),
but some genes such as SPRR2E only show the difference
in terms of network degree (Figure 6B). This result implies
that AD adjacent tissues and SC adjacent tissues are dif-
ferent, and their major differences can be revealed in the
gene associations or at a network level instead of gene ex-
pression. In addition, we can divide SC samples into two
parts based on NDM (Supplementary Note S18), and the
survival analysis shows the significant difference between
the two parts (Figure 6C), which validated the effective-
ness of our CSN method for the identification of possible
new subtype of lung cancers. Thus, our method is also suit-
able for bulk RNA-seq data if the sample size is large, and
NDM shows obvious advantage over traditional GEM in
clustering analysis. In addition, our NDM may find some
new subtypes of cancers, which has potential applications
in medicine or personalized treatment.

Moreover, we identified a number of the ‘dark’ genes in
TCGA lung cancer bulk RNA-seq data. Those ‘dark’ genes
have no differential expressions between lung cancer sam-
ples and normal samples, which are ignored by the tradi-
tional methods. But by our CSN method, they are found
to have significantly differential network degrees, which are
considered important at a network level. Actually, although
those ‘dark’ genes by their gene expressions cannot prog-

nose the lung cancer samples, survival analyses on those
‘dark’ genes from TCGA clinic data validated that they can
be used to make the prognosis analysis or prediction on
the lung cancer samples by their network degrees, and thus
may have potential applications in medicine (Supplemen-
tary Note S19).

DISCUSSION

CSN provides a method to analyze gene associations at
a single-cell level, and thus we can find differential gene
associations just similar as differential genes. Gene regu-
lations are essential for many important biological pro-
cesses such as transcriptional regulation, co-expression, al-
ternative splicing, DNA modification and function of non-
coding RNA, and are presented as the dependency between
two genes in the scRNA-seq data. For example, if genes x
and y are co-expressed, the RNA levels of the two genes will
be positively correlated, and if x and y are different alter-
natively spliced transcripts from the same pre-mRNA, the
RNA levels of the two genes will be usually negative corre-
lated. Our CSN method is able to identify the dependency
and independency of two genes in a single cell, and then
finds the changes of gene associations among different cell
types. In addition, as an unsupervised method, CSNs are
directly constructed from the gene expression matrix with-
out the pre-knowledge on clusters or cell types, and thus the
analysis based on CSN is unbiased.

A biological process can be viewed as the evolution of
a dynamical system with gene/protein as variables, it can
be represented as ẋ(t) = f (x (t)), where x(t) is gene ex-
pressions or molecular concentrations changing dynami-
cally or even drastically with the time and conditions, and
f is the functions or linear/nonlinear associations among
genes which generally remain unchanged or change grad-
ually with small perturbations (31–36). Thus, gene expres-
sions are considered too ‘volatile/unstable’ to characterize
the status of the biological process, comparing to the gene
associations which are ‘stable’ features. Though the vari-
ance of scRNA-seq reveals the heterogeneity and functional
diversity among cell population, the wide variance will in-
terfere with the distinguishing of key genes in different cell
types or developmental stages. In contrast, the gene associ-
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Figure 6. Comparison of GEM and NDM based on TCGA adenocarcinoma and squamous cell carcinoma bulk RNA-seq data. (A) Clustering perfor-
mance (t-SNE) between GEM and NDM. Different colors represent different cell types. (B) The expression level FPKM and network degree of gene
SPRR2E. (C) Squamous cell carcinoma can be divided into two parts S1 and S2 based on NDM, and the survival analysis shows the significant difference
between S1 and S2.

ations are stable with small perturbations, and thus reliable
to characterize the cell types or clusters, and also key genes.
Our CSN method can be viewed as the data transforma-
tion from ‘unstable’ gene expression form to ‘stable’ gene
association form on a single-cell basis. Thus, rather than
the originally measured GEM data, we use the transformed
NDM for further analysis, which can reliably characterize
the cell states. From the results, regardless of the analysis
approaches, our NDM illustrated better performance than
original GEM on most datasets. The network degree is able
to distinguish different cell types and reconstruct the time
series of single cells corresponding to the developmental
stages, and each of cell type or developmental stage has sim-
ilar gene associations rather than similar gene expressions.
The result validated the effectiveness of CSN, and demon-
strated that it is the gene associations that stably character-
ize the cell types or developmental process.

Traditionally, we use differential expression analysis to
find the important genes, but small changes of some genes
may lead to a large biological effect, which makes this kind
of key genes ignored by traditional analysis. In this paper,
CSN method measures the biological effect of each gene
from the network perspective, and may identify these ‘dark’
genes even with significant difference between case and con-
trol samples not in a gene expression level but in a network
degree level.

In biology, cell types are defined by morphology and
functionality. As different cell types usually exhibit distinct
transcriptional expression patterns, scRNA-seq may help
to detect new cell types based on the clustering analysis
of gene expression data. In this work, we provided a new
method based on the network degree data, which is a valu-
able supplement to the traditional methods. Figure 7 illus-

trates the clustering of Xin dataset (25) that contains 1600
human pancreatic �-, �-, �- and PP cells from non-diabetic
and type 2 diabetes (T2D) organ donors. Based on the clus-
tering result of GEM, we can see the four cell types can be
distinguished clearly, but it is hard to distinguish the cells
of non-diabetic donors from T2D donors. This result is in
agreement with the literature (25). By contrast, in the re-
sult of NDM, the four cell types can be also distinguished,
but �-, �- and �-cells are obviously divided into two parts.
Furthermore, we can find some genes that are significantly
different in expression between the two parts (Figure 7B),
which implies that the human pancreatic �-, �- and �-cells
may be further divided into two subtypes. Of course, the
division of clusters may also come from the different exper-
imental conditions instead of different cell types, and thus
scRNA-seq alone cannot define new cell types and further
validation by experiments is essential.

In addition, our method can be also applied to bulk
RNA-seq datasets for constructing individual network of
each single sample in a similar way provided that there are
a large number of samples, which indicates the wide applica-
tions to network biology. However, there are still some lim-
itations in our CSN method. CSN is a kind of correlation
network instead of causal network. Hence, the identified as-
sociations are not necessarily causal relations between two
genes, which is actually one of our future topics.
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The datasets supporting the conclusions of this article are
listed in Supplementary Note 5. The source code is available
in Supplementary Note 20 and Hao Dai’s GitHub reposi-
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Figure 7. Cell type analysis of Xin dataset. (A) Clustering performance (t-SNE) of Xin dataset based on GEM and NDM. Different colors represent
different cell types (pp cells, alpha cells, beta cells and delta cells). (B) Clustering performance of Xin dataset based on GEM and NDM. Different colors
represent different cell sources (T2D and non-diabetic). (C) The expression levels of genes HSP90AB2P and PPY.
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