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Recent evidence suggests that disruption of integrative processes in sensation and perception may play a critical
role in cognitive and behavioural atypicalities characteristic of ASD. In line with this, ASD is associated with al-
tered structural and functional brain connectivity and atypical patterns of inter-regional communication which
have been proposed to contribute to cognitive difficulties prevalent in this group. The present MEG study used
atlas-guided source space analysis of inter-regional phase synchronization in ASD participants, as well as
matched typically developing controls, during a dot number estimation task. This task included stimuliwith glob-
ally integrated forms (animal shapes) as well as randomly-shaped stimuli which lacked a coherent global
pattern. Early task-dependent increases in inter-regional phase synchrony in theta, alpha and beta frequency
bands were observed. Reduced long-range beta-band phase synchronization was found in participants with
ASD at 70–145 ms during presentation of globally coherent dot patterns. This early reduction in task-
dependent inter-regional connectivity encompassed numerous areas including occipital, parietal, temporal,
and frontal lobe regions. These results provide the first evidence for inter-regional phase synchronization during
numerosity estimation, as well as its alteration in ASD, and suggest that problems with communication among
brain areas may contribute to difficulties with integrative processes relevant to extraction of meaningful ‘Gestalt’
features in this population.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1.0. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder
with a broad continuum of severity. Increasing prevalence of this
disorder is accompanied by growing evidence that individuals with
ASD can benefit from research-based interventions. For instance simple
adaptations of sensory stimulation can overcome difficulties in sensory
perception in ASD and on larger scales foster independence and partic-
ipation in society (Gepner and Féron, 2009; Lainé et al., 2011). There-
fore, to properly identify target systems for intervention strategies,
research into the neurocognitive mechanisms underlying ASD is be-
coming increasingly urgent.
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ASD is diagnosed on the basis of impairments in social interaction and
communication (including social–emotional reciprocity), and restrictive/
repetitive behaviours (including atypical sensory processing; APA, 2013)
and is marked by abnormalities in various cognitive domains. Individuals
with ASD typically show symptoms related to impaired sensory and per-
ceptual processing (Dawson, 2002;Minshewet al., 1997, 2002), including
impaired integration of stimuli during the perception of faces and emo-
tions (Nackaerts et al., 2012). In everyday situations, however, perceiving
and interpreting parts of stimuli in terms of their context is often required
to “see the big picture”. Individuals with ASD tend to take narrow per-
spectives, utilizing local processing styles over global integrative informa-
tion processing styles (Happé, 1999) and focusing on details at the
expense of integrating separate features into one coherent object or con-
cept (Frith, 1989). Several studies provide evidence for a reduced ability
in individuals with ASD to unify visual components into single coherent
representations (for a review see Happé and Frith, 2006).

Human stimulus processing capacities are limited and attention
helps to select and integrate stimulus features in noisy environments.
-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Functional disabilities in ASDmay in part be attributable to impaired se-
lective attention. ASD is linked to problems with rapid coordination of
attention between sensory modalities, impaired orienting of attention
to living stimuli (i.e. people of interest), and impaired early selection
of relevant objects or object features (Belmonte and Yurgelon-Todd,
2003; Courchesne et al., 1994; Leekam and Moore, 2001; Rinehart
et al., 2001). These findings suggest problems with higher-order atten-
tional control networks in ASD.

Neuroscience has traditionally focused mainly on characterizing the
function of individual brain regions and neurons. Recent findings, how-
ever, suggest that various cognitive symptoms of ASD may originate
from abnormalities in coordinated functioning involvingwidely distrib-
uted brain regions (Belmonte and Bourgeron, 2006; Uhlhaas and Singer,
2006). The coordination of neural oscillations across the brain has been
described as a basis for communication in brain networks (Fries, 2005;
Uhlhaas et al., 2009a; see Donner and Siegel, 2011 for a review). The un-
derlying mechanism for communication through coherence is under-
stood to be the synchronization of presynaptic potentials in a
neuronal populationwhich enhances their impact on postsynaptic neu-
rons in the target area (Azouz and Gray, 2000; Bruno and Sakmann,
2006; Siegel and Donner, 2012). Encoding of sensory stimuli primarily
involves local cortical interactions. Sensory and perceptual integration,
however, requires coordination among distant brain regions. Several
studies have shown that long-range cortical interactions often involve
correlated neuronal interactions in the beta band (Donner and Siegel,
2011; Engel et al., 2001; Varela et al., 2001). Synchronization of beta
band oscillations have been related to feature integration, as well as
the development of these processes throughout childhood and adoles-
cence (Uhlhaas et al., 2006; Uhlhaas et al., 2009b).Moreover, disruption
of long-range beta band synchronization has been associated with im-
paired integration of facial features in psychiatric populations
(Uhlhaas et al., 2006). Reduced salience of social cues in ASD patients
has been explained by alterations in high-level attentional processes
that modulate the synchronization of neural activity between early vi-
sual and fusiform areas (while watching faces vs. houses; Bird, 2006).
This impaired top-down modulation of fast sensory processing in ASD
may be explained by reduced neural connectivity (Frith, 2003). Findings
of weaker neural connectivity in ASD have supported the notion of
impaired attentional control relying on neuronal feedback connections
from fronto-parietal areas (Belmonte and Bourgeron, 2006; see Uhlhaas
and Singer, 2006 for a review).

In line with such findings, the underconnectivity theory in autism
attributes the symptoms of ASD to functional underconnectivity be-
tween frontal and posterior brain areas (Just et al., 2007, 2012). This
has been found consistently with electrophysiological (Khan et al.,
2013) and haemodynamic measures during execution of various tasks
(Anagnostou and Taylor, 2011; Darmala et al., 2010; Koshino et al.,
2005; see Baribeau and Anagnostou, 2013 for a review) as well as
during resting state measurements (Barttfeld, 2011; see Müller et al.,
2011 and Schipul et al., 2011 for reviews) and with computational
modelling (Lewis and Elman, 2008). Those deficits in functional connec-
tivity typically increase over age and are associated with alterations in
structural connectivity in adults diagnosed with ASD which have been
observed using diffusion tensor imaging (DTI) methods (Lee et al.,
2007; Mak-Fan et al., 2013; see Travers et al., 2012 for review). Individ-
uals with ASD typically show abnormal brain maturation and over-
growth of white matter in childhood (Casanova et al., 2006; Piven
et al., 1996; Mak-Fan et al., 2013), but have reduced white matter and
smaller corpus callosum size in adulthood (Vidal et al., 2006; Duerden
et al., 2012). Recent studies consistently find general reductions in func-
tional neuronal connectivity across various brain regions in ASD
(Barttfeld, 2011; Domínguez et al., 2013; Khan et al., 2013; Wass,
2011). In summary, atypical sensory processes due to impaired
top-down attention regulation and altered integrative mechanisms
in ASD may be the result of atypical synaptic interactions between
cortical regions (Courchesne and Pierce, 2005; Just et al., 2007,
2012) and reduced neural synchronization (Baribeau and Anagnostou,
2013; Belmonte et al., 2004, 2006; Brock et al., 2002; Hill and Frith,
2003; White, 2009).

The synchronization of neuronal activity has been related to the
integration of visual information (Uhlhaas et al., 2006, 2009a,b).
Reduced functional connectivity between early visual and frontal re-
gions has been linked, for instance, to impaired visual task performance
(Villalobos et al., 2005). In autism, impaired integration of visual infor-
mation has been attributed to diminished neuronal synchrony of high
frequency oscillations (Dakin and Frith, 2005; Sun et al., 2012) whereas
typically developing individuals process visual information for overall
Gestalt at the expense of processing the details (Frith, 1989). Visual in-
formation integration becomes relevant if multiple grouped items are
present, for example, when a quick estimate of the number of items is
needed. Numerosity estimation involves distinct neurocognitive mech-
anisms and requires processing of local features, rather than focusing on
the Gestalt. Thus, differences in stimulus processing between ASD and
typically developed individuals might occur when global processing is
required (i.e. if stimulus patterns provide globally meaningful charac-
teristics). In a previous study from our group, performance during a
numerosity estimation taskwas worse in controls if dots were arranged
in animal shapes conveying a globalmeaning, compared to dot patterns
organized in random shapes, whereas in adults with ASD, the accuracy
of estimates was insensitive to the global meaningfulness of dot arrays
(Meaux et al., 2014).Widespread differential activation of brain regions
was found at several stages of neural processing during number estima-
tion, suggesting atypical strategies in ASD. In accordance with the weak
central coherence theory, instead of searching for meaningful patterns,
individuals with ASD may orient towards local features when process-
ing visual input for numerosity estimations.

The current study investigated neural network connectivity (phase
synchrony), underlying visual stimulus perception in a numerosity esti-
mation task in adults with ASD and age and sexmatched controls. First,
we investigatedmagnetoencephalographic (MEG) connectivity dynam-
ics underlying normative numerosity estimation during perception of
animal patterns with global meaningfulness and randomly shaped dot
patterns. Second, we determined whether long-range connectivity dy-
namics were altered in ASD. We hypothesized that participants with
ASD would show a reduced network synchronization relevant for inte-
grative processes during number estimation of globally meaningful an-
imal stimuli, compared to typically developed controls.

2.0. Methods

2.1. Participants

Data were recorded from fourteen adults with ASD (10 males;
mean = 24.77 years ± 3.96) and fourteen controls (10 males;
mean = 24.92 years ± 3.78). ASD participants had been diagnosed by
a registered medical professional experienced with autistic spectrum
disorders according to DSM-IV (APA, 1994) criteria, using the Autism
Diagnostic Observation Schedule (ADOS, module 4; Rutter et al.,
2002). IQ was assessed using the WASI (Wechsler, 1999; ASD: 108 ±
14.2; controls: 120 ± 8.5). Controls were age- and sex-matched to the
ASD participants. Two Mann–Whitney tests showed that age and IQ
did not significantly differ between the groups. Medication use was
screened prior to inclusion, and none of the participants had a history
of behavioural, psychiatric or neurological disorders (other than autism
in the ASD group), or any metallic implants or ferromagnetic dental
work which would interfere with MEG recordings. This set of exclusion
criteria, together with age and sexmatching, was designed tomaximize
sample size while retaining a degree of homogeneity well suited for a
clinical neuroimaging study. All participants had normal or corrected-
to-normal vision and gave informed written consent. The study was
approved by the Research Ethics Board at the Hospital for Sick Children
in Toronto.
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2.2. Task and stimuli

Stimuli consisted of 224 pictures andwere composed of between 80
and 150 dark grey dots (each 0.17°) on a light grey background. The dot
position was randomized, with dots either located within a meaningful
animal shape (animal condition) or within a non-meaningful shape
(non-animal condition; 112 pictures in each condition). Pattern size
and shape were independent of the number of dots. Eight different an-
imal shapes (butterfly, camel, chicken, dog, donkey,mouse, panther and
seal) and 8 different non-animal shapeswere used. The stimulus display
and time course are depicted in Fig. 1.

The stimuliwere projected centrally onto a screenpositioned 60 cm in
front of the participant using Presentation software (Neurobehavioural
Systems, Albany CA). Stimuli subtended a visual angle of 8.38° horizontal-
ly and 6.52° vertically. The order of stimuli was randomized. Stimuli were
shown for 600 ms, followed by a brief single tone starting 100 ms after
stimulus offset. In order to avoid anticipation effects stimuliwere present-
ed at an irregular intervalwith a jitter. Afixation crosswas thus presented
in between stimuli for a randomized duration of 4500–5500 ms. Partici-
pants were instructed to give a verbal estimation of the number of dots.
To prevent MEG contamination by mouth movement, participants were
instructed to wait for the tone before answering. To ensure that partici-
pants understood the task, the experiment startedwith a training session
outside the magnetically shielded room, during which ten pictures were
shownon a computer screen. During training, feedback about the number
of dots contained in the picture was presented after the participants3 re-
sponses. Head movements were monitored continuously throughout
recording.

2.3. Behavioural data analysis

The absolute estimation error was defined as the difference between
the estimated number of dots and the actual number of dots. A repeated
measures ANOVAs (Dot shape (2: Animal/Non-animal) * Group (2: ASD/
TD)) was performed on the data.

2.4. Data acquisition

MEG data were recorded at a 600 Hz sampling rate using a 151-
channel whole-head MEG system with axial gradiometers (CTF/MISL,
Coquitlam, B.C.) at the Hospital for Sick Children in Toronto. Data were
recorded continuously with an on-line bandpass of 0–100 Hz, and fil-
tered off-line to 0.1–30 Hz. Fiducial coils were placed at the nasion
and pre-auricular points to localize the subject3s head relative to the
MEG sensors at the start and finish of the experiment. Participants lay
Fig. 1. The stimulus display and its time course, including a representative example of A) animal
the number of dots after a brief tone. Order of trail type was randomized and the inter-stimulu
supine in the MEG dewar while completing the task inside a dimly
lit magnetically shielded room. Head localizations (with an accuracy
of 1 mm) were completed before and after the experimental proce-
dure. Head movements were continuously monitored throughout the
recording procedure using a video camera. The MEG study required
15–20 min. Following the MEG recordings, for structure-function co-
registration purposes, fiducial coils were replaced with MRI contrast
markers in the same locations and an anatomic MRI was acquired
on a 3 T MAGNETOM Tim Trio MRI scanner (Siemens AG, Erlangen,
Germany). A high-resolution T1-weighted volumetric MRI image
was acquired for each participant using a 3D MPRAGE sequence.

2.5. Data analyses

2.5.1. Preprocessing and source reconstruction
In accordance withmovement thresholds for MEG studies in clinical

populations (Herdman and Cheyne, 2009; Hung et al., 2012), subjects
were excluded if theymovedmore than 10mmbetween the beginning
and the end of the recording session. Data epochs were extracted from
100 ms prior to 800 ms after stimulus onset. MEG data were co-
registered with each participant3s individual MRI image. Multisphere
head models were constructed based on initial fiducial positions using
each individual3s MRI scan (Lalancette et al., 2011). MRIs were normal-
ized into standard MNI space. Non-linear normalization was performed
using SPM2 (see Ashburner and Friston, 1999; Ashburner et al., 1997;
Friston et al., 1995). The coordinates of 90 seed locations representing
all cortical and subcortical areas from the Automated Anatomical Label-
ing (AAL) atlas (Tzourio-Mazoyer et al., 2002) were then unwarped
from standard MNI space into each individual3s headspace. Scalar
beamformer analysis (Cheyne et al., 2006) was used to estimate broad-
band time series for each source location and trial for each subject
representing the activity of each of the 90 sources. This method imple-
ments a spatial filter to estimate the contribution of a single target loca-
tion to themeasured field while attenuating activity from other sources
and thereby minimizes ocular and non-ocular artefacts (Robinson and
Vrba, 1998; Sekihara et al., 2001; Cheyne et al., 2006, 2007). Using
beamformer to estimate activity from various locations in source
space, and calculating connectivity among reconstructed source time
series is congruentwith the emerging view that source space connectiv-
ity findings are preferable to sensor-space analysis due to the ability
to infer the putative role of specific brain regions (see Schoffelen
and Gross, 2009 for review). Moreover, the specific combination of
beamformer reconstruction with MEG of oscillatory coherence/
synchrony has emerged as a standard practice in the field (i.e. Doesburg
et al., 2013; Gross et al., 2001; Herdman, 2011).
stimuli, followed by B) a non-animal stimulus. Participants verbally reported an estimate of
s interval (ISI) was varied to induce a jitter.

image of Fig.�1
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2.5.2. Inter-regional phase-locking analysis
Data were filtered into theta (4–7 Hz), alpha (8–14 Hz) and beta

(15–30 Hz) frequency ranges for inter-regional phase-locking analysis.
Digital filtering was performed using FFT filters as implemented in the
EEGLAB toolbox (see Delorme and Makeig, 2004). These frequency
ranges were selected as prior research has indicated they are critical
for organizing communication among distributed brain areas (von
Stein and Sarnthein, 2000b; Palva and Palva, 2007; Donner and Siegel,
2011). Although prior research has suggested that synchronous
gamma oscillations are relevant for integrative processes, we chose to
exclude this frequency range from analysis asmany synchronization re-
sponses initially reported in the gamma-band (i.e. Rodriguez et al.,
1999) have been indicated by more recent studies to be centred in the
beta-band (i.e. Uhlhaas et al., 2006, 2009b). This is consistent with the
emerging view that gamma oscillations are more relevant for local pro-
cesses, whereas coherence in lower frequency ranges is more pertinent
for large-scale network integration (see Donner and Siegel, 2011).
Moreover, accumulating evidence suggests that task-dependent chang-
es in gamma can more easily arise from artefactual sources than is the
case for lower frequency ranges (i.e. Yuval-Greenberg et al., 2008). Ac-
cordingly, we did not include the gamma frequency range in this
analysis.

The Hilbert transform was used to obtain time series of instanta-
neous phase measures for each source, epoch and frequency. The
phase lag index (PLI) was calculated across trials for each time point,
and used as an indicator of functional connectivity. PLI is a measure of
asymmetry of the distribution of phase differences between two
sources. In this case, PLI represents the stability of phase angles between
a pair of sources for a given time point across analysed trials, with the
addition of a constraint which is intended to attenuate spurious syn-
chronization from common sources (see Stam et al., 2007). Specifically,
PLI quantifies the reliability of interregional phase locking by removing/
attenuating synchronization that occurs at/near zero phase difference
and thus reducing the influence of spurious synchronization originating
from shared sources (Stam et al., 2007). As a result, source-by-source
(90 × 90) adjacency matrices were obtained for each time point within
each analysed frequency band, for each subject. To study task-
dependent connectivity dynamics, PLI was averaged across source pairs
for each time point and subsequently averaged across individuals, pro-
ducing time series representing global network connectivity dynamics
for each groupand trial condition. Identification of relevant timewindows
for further statistical analyses was based on these adjacency matrices to-
gether with average network connectivity time series, obtained by aver-
aging PLI across sources for each time point.

Time windows exhibiting peaks in network connectivity were se-
lected, and for each frequency, adjacency matrices representing this
task-dependent increase in network connectivity were obtained for
each subject by averaging the adjacency matrices across time points in
the (active) peak window for each condition. Corresponding baseline
adjacency matrices were constructed by averaging across an equivalent
number of time points in the pre-stimulus interval. Baseline and active
window adjacency matrices were contrasted to investigate task-
dependent changes in connectivity. To investigate group differences,
task-dependent changes in connectivity were indexed by subtracting
the baseline adjacency matrix from the active window adjacency ma-
trix, for each subject for each condition.

The non-parametric Network-Based Statistic (NBS) approach was
used for statistical comparison of connectivity differences between ac-
tive and baseline task intervals and differences across groups (Zalesky
et al., 2010, 2012). NBS initially performs multiple univariate tests on
all analysed edges (in this case each element in the adjacency matrix;
see also Maris and Oostenveld, 2007 and Nichols and Holmes, 2002
for similar approaches). The size of contiguously connected components
is recorded, group membership is shuffled and the largest contiguously
connected component is derived using the same univariate threshold to
index the largest component that could occur by chance, assuming the
null hypothesis. This process is then repeated 5000 times to create a sur-
rogate distribution, and the rank ordering of the extent of connectivity
components in the real data, relative to the extent of connectivity com-
ponents in the surrogate distribution, is then used to test for statistical
significance. Since the maximum extent of a differentially connected
component is obtained considering all elements in the adjacency ma-
trix, this method effectively controls for false positives due to multiple
comparisons (Zalesky et al., 2010). Statistical correction for multiple
comparisons was performed within each frequency range, but the
various bands were treated independently, consistent with emerging
statistical approaches in the field of oscillatory network connectivity
(Doesburg et al., 2013; Mazaheri et al., 2009). Using the NBS method,
statistical significance is assigned at the level of the connectivity compo-
nent as awhole, rather than at the level of the individual connections. As
different stringencies for initial univariate threshold can yield differen-
tial sensitivities under various scenarios of differential connectivity
(for example, small focal changes comparedwithweak diffuse changes)
this thresholdmust be adapted to the data distribution under investiga-
tion (see Zalesky et al., 2010, 2012). Accordingly thresholds were set to
t = 4.0 (which corresponds to p = 0.0005, two-tailed) for analysis of
task-dependent connectivity (active window vs. baseline) and t = 3.0
(which corresponds to p = 0.006, two-tailed) for comparison of ASD
participants with controls. Time series of node strengths were calculat-
ed from the adjacency matrices using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010) to index the network involvement of
particular regions. Results obtained using NBS and graph theoretical
analysis for individual regions were plotted using the BrainNet Viewer
toolbox (Xia et al., 2013). Specifically, nodes and edges belonging to
statistically significant components were plotted, and the size of each
node represented differences in connectivity strength for nodes in the
significant connectivity component.

3.0. Results

3.1. Behavioural results

Comparing task performance between participants with ASD (M=
25.9; SD = 8.3) and controls (M= 21.1; SD = 3.9), the mean absolute
error of estimation (number of dots) showed a non-significant trend to-
wards being larger in individuals with ASD. The arrangement of dots
(animal vs. non-animal) significantly influenced performance accuracy
(F(1.26) = 13.3; p = .001, η² = 0.33) in favour of non-animal shapes
and significantly interactedwith group (ASD vs. control) on task perfor-
mance (F(1,26) = 11.3; p= 0.002; η² = 0.33). ASD subjects presented
the same mean error for non-animal (M= 24.8; SD = 6.8) and animal
(M= 25.2; SD= 9.9) dot pattern whereas controls had more difficulty
accurately estimating the number of dots arranged in animal shapes
(M = 24.9; SD = 4.5) than estimating non-meaningful (non-animal)
patterns (M = 17.2; SD = 3.4). The behavioural data from this study
have previously been published in Meaux et al. (2014)).

3.2. MEG results

3.2.1. Task-dependent increase in oscillatory synchrony
For both groups and both stimulus conditions animated connectivity

matrices over time andmean connectivity plots over time indicated that
peaks of increased theta, alpha and beta-band connectivity occurred
around 200, 150, and 100 ms after stimulus onset, respectively (see
Fig. 2A for the time course of task-dependent beta band network con-
nectivity). The time courses of task-dependent connectivity appeared
roughly similar between ASD participants and controls and across task
conditions. Therefore, we investigated brain connectivity dynamics
by selecting mean PLI active intervals of 75 ms length in the corres-
ponding time ranges: 165–240 ms for theta, 125–200 ms for alpha,
and 70–145 ms beta for frequency ranges. Those active windows were
statistically compared to −75–0 ms baseline windows for all three



Fig. 2.A) Time course of task-dependent beta band network connectivity for ASD and control participants, obtained by averaging over all analysed region pairs and correcting for baseline
connectivity. B) Adjacencymatrices depicting beta connectivity for each region pair during the peak (100ms) of task-dependent synchronization. Note the clear pattern of increased con-
nectivity in the control participants, which corresponds to increased connectivity between visual cortical regions and other brain areas (left). Conversely, visual inspection suggests amore
disorganized pattern of task-dependent connectivity for theASDparticipants (middle), and this contrast is also evidence in the visualization of group differences (right). See Fig. 3 formore
detailed spatial information about regions that constitute the network of task-related connectivity differences and Fig. 4 for differences between groups.
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frequency bands for both conditions and for both groups separately. For
the controls, NBS results yielded significant task-related connectivity
increases in theta (p b 0.001 for animal and non-animal), alpha (animal:
Table 1
NBS output indicating statistical significance of task-related connectivity increases (upper
panel) and group differences in task-based connectivity (lower panel) for analysed
frequency ranges.
p b 0.002; non-animal: p b 0.001) and beta frequency (p b 0.001 for
animal and non-animal) bands peaking around 100 ms following
both, animal and non-animal stimulus arrangements (see Table 1).

Control participants showed strong task-dependent increases in func-
tional connectivity in the theta band encompassing all four lobes of the
cortex (with strong involvement of right temporal areas for animal pro-
cessing). During animal stimulus processing higher alpha band connectiv-
ity appeared in a network including right hemispheric occipitotemporal
connections, connections from right occipital to bilateral parietal lobes
and connections to frontal lobes. In comparison, networks that showed
task-related alpha connectivity included fewer regions (nodes) during
non-animal stimulus processing (see Table 1). Fig. 3A shows increased
beta band connectivity in controls during perception of animal stimuli.
The network of increased connectivity mainly included right occipital
regions (including lingual gyrus and right cuneus). Although the
thresholding in Fig. 2B appears to indicate that task-dependent beta
connectivity increases in the control group between early occipital brain
regions and numerous other areas, statistical thresholding as presented
in Fig. 3 indicates that this pattern is selective. Specifically, occipital re-
gions showed task-dependent phase synchronization with a network
encompassing frontal regions as well as temporal (including amygdala,
parahippocampus, fusiform and insula of the right hemisphere) and pari-
etal regions. During processing of non-animal stimuli, overall increase in
functional connectivity in beta band appeared less pronounced. This net-
work of increased functional beta connectivity mainly included connec-
tions from occipital regions to left frontal, parietal and temporal
(parahippocampus, hippocampus and fusiform area) areas. Interestingly,

image of Fig.�2
Unlabelled image


Fig. 3. A) Increased beta band connectivity in control participants during processing of the animal shapes. Lines represent the connections among regions that comprise the network of
statistically significant increases in synchrony above baseline, and the size of each sphere denotes task-dependent increases in connectivity strength, calculated across all 90 analysed re-
gions. B) Increased beta connectivity in controls during processing of the non-animal shapes. Note that in both stimulus pattern the dominant pattern of connectivity suggests commu-
nication between visual cortical regions and other, widespread brain areas.
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in both conditions right, but not left, occipital lobe showed high con-
nectivity to frontal regions. For controls onlywhile viewingmeaningful
animal stimuli, the network of significantly increased connectivity
encompassed connections from inferior occipital regions to both amyg-
dalae (implicated in processing of social cues).

For the ASD group, task-dependent connectivity increases were
found only for theta (p b 0.001 for animal and non-animal) and alpha
(animal: p b 0.004; non-animal: p b 0.002) frequency bands, peaking
around 100 ms poststimulus (during presentation of both stimulus
types). For this group no significant task-dependent connectivity
changes were found for the beta band (Table 1). ASD participants
showed increased theta connectivity with disorganized patterns during
presentation of meaningful animal stimuli. Task-dependent connectivi-
ty increaseswerewidely spread and involved a large number of connec-
tions to occipital regions. Similar connectivity dynamics were observed
during non-animal stimulus processing. Right occipital areas appeared
more functionally connected than left occipital areas and increased
connectivity from right parietal to temporal and frontal regions was
observed. In the alpha band, only few connections from left visual to
bilateral parietal showed increased synchronization during processing
of animal stimuli. Similar patterns were found for the non-animal con-
dition with additional slight increases in connectivity strength for left
temporal and frontal regions. In summary, we found modulations in
beta band connectivity across experimental conditions in controls but
not in ASD group.
3.2.2. Reduced beta band synchronization in ASD
To compare connectivity dynamics between ASD and typically devel-

oped participants during stimulus processing, mean PLI in 65–140 ms
active intervals, contrastedwith−75–0ms baselinewindowswere com-
pared between groups. Patterns of task-dependent synchrony appeared
clearly organized in controls, while connectivity in ASD participants ap-
pearedmore diffuse and disorganized (see Fig. 2B). Compared to controls,
participantswith ASD showed significantly reduced inter-regional phase-
locking in the beta frequency band duringmeaningful animal stimuli pre-
sentation (p=0.045; Fig. 4, Table 2). This network of reduced connectiv-
ity included occipital areas, showing reduced task-dependent beta
connectivity to frontal (including orbifrontal cortex), parietal and tempo-
ral areas (including right hippocampus and rolandic operculum). Interest-
ingly, group differences in functional connectivity involving frontal areas
incorporated connections with right but not left occipital nodes. Left
occipital areas showed decreased beta connectivity exclusively to right
occipital and right parietal areas. No latency differences were observed
between groups. No significant group differences were found for the
non-animal (i.e. non-meaningful shapes) trials. No significant group

image of Fig.�3


Fig. 4. Reduced beta band connectivity during number estimation in participants with ASD. Each line indicates significant reductions in task-dependent network synchronization, relative
to controls. The size of each region expressing one or more significant reductions in connectivity reflects the strength of between-group connectivity differences, within the significantly
differentially connected component. Numbering of nodes corresponds to region names according to the AAL atlas (see Supplementarymaterial). Note the scaling of node size differs from
that in Fig. 4 due to differences in the magnitude of overall task effects, in contrast to group differences (see Fig. 2). See Supplementary material for region names corresponding to
numbers.
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differences were observed for either trial type or for any other analysed
frequency range.

4.0. Discussion

We present the first findings of task-dependent neuromagnetic
increases in inter-regional connectivity in theta, alpha and beta band
connectivity during the performance of a numerosity estimation task.
Task-dependent modulation of beta band connectivity was found in
the control, but not in the ASD group and the pattern of beta connectiv-
ity during performance of the task appeared more disorganized in
participants with ASD, relative to controls. Importantly, this rapid
Table 2
List of connections from region A to region B, comprising the neural net-
work showing statistically significantly reduced beta-band inter-regional
phase-locking in ASD during presentation of animal stimuli.

Region A (AAL) Region B (AAL)

46 Cuneus R 74 Sup temporal gyrus R
72 Heschl3s gyrus R
78 Mid temporal gyrus R
73 Sup temporal gyrus L
71 Heschl3s gyrus L
59 Sup parietal gyrus L
63 Supramarginal gyrus L
88 Pallidum R

11 Inf frontal operculum L 25 Med orbifrontal gyrus L
14 Inf frontal triangularis R 49 Sup occipital R

46 Cuneus R
7 Mid frontal gyrus L 46 Cuneus R
25 Mid orbifrontal gyrus L 82 Sup temporal R

46 Cuneus R
3 Sup frontal gyrus L 46 Cuneus R
6 Sup orbifrontal gyrus R 46 Cuneus R
21 Olfactory L 46 Cuneus R
38 Hippocampus R 82 Sup temporal gyrus R
52 Mid occipital gyrus R 82 Sup Temporal gyrus R
69 Paracentral lobule L 72 Heschl3s gyrus R
62 Inf parietal lobule R 72 Heschl3s gyrus R

82 Sup temporal R
28 Rectus R 46 Cuneus R
18 Rolandic operculum R 46 Cuneus R

50 Sup occipital gyrus L

Note: R denotes right and L denotes left hemisphere. Inf—inferior, Sup—
superior, Mid—middle. See Supplementary material for full region names.
synchronizationwas reduced in the ASD group only during the process-
ing of coherent, meaningful dot patterns, suggesting the relevance of
this synchronization to the disrupted integrative processes in sensation
and perception in ASD.

Task-dependent increases in inter-regional theta synchrony were
observed for both groups 165–240 ms after stimulus presentation.
Theta rhythms are thought to be critical for regulating oscillations
across the cortex (Belluscio et al., 2012; Canolty and Knight, 2010;
Doesburg et al., 2012a,b) and for representation and organization of
multiple task-relevant items during sensory and memory processing
(Lisman and Jensen, 2013). Our results are consistent with earlier find-
ings of wide-spread task-induced increases in theta band connectivity
appearing 150 ms after stimulus onset in ASD and normally developed
populations (Doesburg et al., 2013).

Our findings also revealed task-dependent increases in long-range
alpha frequency coupling during early number estimation. Several cog-
nitive processes that are possibly relevant for numerosity estimation in-
duce alpha oscillatory activity, e.g. mental imagery (Cooper et al., 2003;
Hari et al., 1997; von Stein et al., 2000a),mental calculations, short-term
memory retention and retrieval and maintenance of object representa-
tions in, and retention and retrieval from visual working memory
(Klimesch, 1996; Palva et al., 2005; Palva and Palva, 2007; von Stein
et al., 2000a). Local alpha synchrony (power) is understood to be
relevant for sensory stimulus inhibition during tasks that require atten-
tion to internal cognitive processing (Jensen et al., 2002; Jensen and
Mazaheri, 2010; Klimesch et al., 2000). Long-range synchronization in
the alpha band, conversely, may be relevant for functional integration
(see Palva and Palva, 2007; von Stein and Sarnthein, 2000b). For our
control subjects, synchrony in alpha band frequencies appeared more
widespead for animal stimuli (compared to non-animal) and were
strongly connected in the orbitofrontal cortex, which is responsible for
sensory integration and processing of affective stimulus properties
(Kringelbach et al., 2005). Task-based cognitive processing (e.g. mental
imagery and retrieval of information frommemory), possibly associated
with the meaningfulness of the animal stimuli, might explain these
findings. This is congruent with our behavioural findings of decreased
performanceduringnormative number estimation formeaningful stim-
uli (animal shapes).

Task-dependent increases in long-range beta band synchrony were
found very early, at 70–145ms after stimulus onset in the adult controls
but not in individuals with ASD. Synchrony in the beta frequency band
has consistently been found in long-range cortical interactions among
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distant brain regions (Donner and Siegel, 2011; Engel et al., 2001; Varela
et al., 2001). Beta band synchrony is thought to be related to various
cognitive functions potentially involved at early processing stages of
number estimation: focused attention underlying stimulus selection
(Buschman and Miller, 2007; Donner et al., 2007; Gross et al., 2004),
perceptual grouping and feature binding (Uhlhaas et al., 2009b; Fries
et al., 2001), top-down attention serving feature integration (Donner
and Siegel, 2011), maintenance of visual cues in short term memory
(Tallon-Baudry, 2004), and accumulation of sensory evidence for deci-
sion making (Donner et al., 2007; Siegel et al., 2011; Wang, 2008).
Moreover, electrophysiological studies have provided evidence for
rapid processing of visual stimuli indexed by event-related potentials
(ERPs) over occipital regions (Batty and Taylor, 2002; Taylor and
Khan, 2000; Van Voorhis andHillyard, 1977). Normative numerosity es-
timation based on visual cues requires numerical mental representa-
tions (Fink et al., 2001; Meaux et al., 2014; Santens et al., 2010) which
can occur at early processing stages (Kadosh et al., 2007; Koten et al.,
2011) andMEG and EEG studies have shown that the perception of Ge-
stalt (integration of local elements into a global shape) can occur very
early,within theN1 time range. Thefirst visual processing stage affected
by global/local perception occurs just before 100 ms (Han et al., 1997,
2000; Heinze et al., 1998; Tanskanen et al., 2008; Yamaguchi et al.,
2000). Estimation of quantity may occur as early as 200 ms in parietal,
temporal and frontal regions (Hyde and Spelke, 2009; Libertus et al.,
2007; Meaux et al., 2014; Nan et al., 2006; Pagano and Mazza, 2012).

Our results regarding normative number estimation reveal early
task-related neural network connectivity which shows strong involve-
ment of right temporal regionswhichmay be relevant for rapid process-
ing of dot patterns and their integration into meaningful animal shapes.
Processing of randomly shaped stimuli not conveying a global meaning,
however, elicited an asymmetric network of beta connectivity (with
fewer right temporal regions showing connectivity above the thresh-
old). These results are in agreement with findings of higher right
(tempo-parietal) activation for a global interpretation style (Gestalt
perception) and with leftward lateralization for local processing styles
of visual information (Fink et al., 1997, 2001; Flevaris et al., 2010;
Huberle and Karnath, 2012; Robertson and Lamb, 1991, 1988; Volberg
et al., 2009; Weissman and Woldorff, 2005; Yovel et al., 2001).
Moreover, right unilateral temporal lobe damage is associated with im-
paired feature integration relevant for recognition of familiar faces
(prosopagnosia; Evans et al., 1995;Mayer et al., 2007). EarlierMEGfind-
ings show involvement of right temporal regions in early (120–220ms)
processing of meaningfully shaped dot patterns, but not randomly
shaped stimuli, during number estimation. Thus, if dot patterns convey
a global meaning, early integration of several distinct objects at the
global levelmay occur (Meaux et al., 2014). As it is the case for all statis-
tical thresholds, in interpreting the results one should keep inmind that
effects that are just below the threshold may not differ greatly from
some effects that pass thresholds.

Modulations of task-induced beta connectivity in fronto-occipital
connections were observed very early, from 70 to 145 ms. These in-
volved a more spatially extended network when meaningful (animal)
stimuli were processed, encompassing the lingual gyrus, cuneus, amyg-
dala, parahippocampus, fusiformand insula of the right hemisphere and
with parietal regions. Early integration of stimulus features tomeaning-
ful animal shapeswould recruit different cognitive resources and there-
fore explain reduced behavioural performance when coherent, globally
meaningful stimuli were presented to typically developed controls. This
is consistent with our findings of reduced beta connectivity in ASD in a
widespread cortical network including orbifrontal cortex and hippo-
campus. Quick recognition of stimulus patterns (e.g. face perception)
have been crucial for human survival and ourfindings highlight theflex-
ibility of rapid processing of single stimulus elements in meaningful
contexts. Findings of early task-dependent interregional neuronal com-
munication suggests rapid feature integration (Tallon-Baudry et al.,
2008) and are consistent with the view that cognitive deficits in ASD
may originate from problems with integrative processes beginning at
the sensory level (APA, 2013).

Compared to controls, the ASD group showed decreased connectiv-
ity in a network encompassing early visual processing areas (right
cuneus) being connected to areas typically involved in spatial attention
(superior parietal gyrus) (see Table 1). Additionally, for the controls
processing of animal stimuli elicited a neuronal network that included
stronger connectivity between the superior parietal gyrus (spatial at-
tention) and the inferior occipital lobule (associated with visual object
and face perception; Gainotti and Marra, 2011; Martin et al., 1996).
Moreover, the precuneus, as part of the superior parietal lobule, is in-
volved in directing attention in space (Cavanna and Trimble, 2006;
Simon et al., 2002) and showed task-based activity linkedwith occipital
regions for both, animal perception and non-animal perception.

Considered together, these findings suggest that typical visual stim-
ulus evaluation involves early processing components (possibly related
to attention to social stimuli and top down modulation of attention by
visual working memory) that are impaired in autism and might result
in different processing strategies (local over global processing). Task-
dependent modulations in beta band connectivity were not found in
the ASD group and their task-related connectivity pattern appeared
much more disorganized. Meaux et al. (2014) found atypical activity
in visual areas in the early phase (80–120 ms) and in temporal regions
(120–290ms) of numerosity processing in ASD patients for stimuli that
allowed meaningful global pattern integration, suggesting atypical
global stimulus processing in ASD. Our behavioural results show that
while ASD participant3s abilities to estimate numerositywere not affect-
ed by the global meaningfulness of dot patterns control subjects per-
formed less accurately for animal shapes than non-animal shape
patterns. Overall task accuracy however did not differ between groups.
This suggests that observed differences in connectivity patterns were
not caused by differences in performance, but rather were due to differ-
ences in cognitive strategies across participants. Reduced long-range
task-dependent connectivity has been found in ASD in combination
with no group differences in behaviour (Doesburg et al., 2013). These
findings suggest that despite impaired connectivity in ASD, normative
behavioural performance can be achieved by compensatory use of dif-
ferent brain networks (resulting in different connectivity patterns).
Also, while controls showed early modulations of MEG signals by the
animal shapes in temporal areas, this effectwas not found inASDpartic-
ipants, suggesting an involvement of temporal cortices in local/global
perception during numerosity processing and possible impairment in
autism.

In this study reduced beta band synchrony was primarily observed
in occipitofrontal, occipitotemporal and occitoparietal connections
with a rightward lateralization of decreased connectivity for the ASD
group. Structural, as well as functional abnormalities during a wide va-
riety of tasks have been reported in primary visual brain areas in ASD
(Amaral et al., 2008; Batty et al., 2011; Hyde et al., 2010; Jemel et al.,
2010; Vandenbroucke et al., 2008). In line with this hemispheric asym-
metry in neural connectivity (Fiebelkorn et al., 2013; Gabard-Durnam
et al., 2013; Sutton et al., 2005), underconnectivity between the cerebral
hemispheres (Casanova et al., 2011; Just et al., 2007; Piven et al., 1997),
and early (120–180ms) decreases in right temporal activity during pro-
cessing of stimuli with a global meaning compared in a numerosity task
have been found for ASD participants (Meaux et al., 2014). Taken to-
gether, current findings suggest reduced communication among brain
regions in ASD, combined with atypical hemispheric specialization, as
a reason for a processing bias of local over global stimulus properties
(Fiebelkorn et al., 2013).

Some of the sources implicated in network synchronization effects
involve deep structures. Discussion surrounding signal detectability
from deep sources usingMEG continues in the literature. Increasing ev-
idence, however, supports the view that MEG is able to detect even
weak signals from various deep brain structures (Cornwell et al.,
2008a,b) including the hippocampus (Hamada et al., 2004; Kirsh et al.,
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2003), the amygdala (Hung et al., 2010; Luo et al., 2007) and the thala-
mus (Bardouille and Ross, 2008; Bish et al., 2004). Recent studies using
realistic simulations (Attal and Schwartz, 2013; Balderston et al., 2013)
– including those focusing on CTFMEG systems such as the one used in
our study (Mills et al., 2012; Quraan et al., 2011)− have indicated that
MEG is indeed able to detect activity originating from deep gray matter
structures. For this reason, together with the relevance of deep sources
for cognition and altered brain function in ASD, we feel that the poten-
tial knowledge gained by imaging connectivity involving deep sources
outweighs the disadvantages associated with continued uncertainty
surrounding MEG and deep sources.

In summary, our results provide additional evidence for the functional
relevance of neuronal synchronization across distant regions. This study is
the first to show significantly reduced long-range beta band synchrony in
ASD during the performance of a number estimation task. Our findings
support the hypothesis that individuals with ASD have atypical long-
range coordination of neural activity. These results are relevant for
current theories regarding ASD, which emphasize that core aspects of
the disorder may result from functional underconnectivity among dis-
tant brain regions and fewer long-range interactions (Belmonte and
Bourgeron, 2006;Müller et al., 2011; Uhlhaas and Singer, 2006). The pres-
ent study provides the first evidence for reduced large-scale beta band
neuronal synchronization during a number estimation task in adults
with ASD. This altered connectivity included several occipito-
frontal, occipito-temporal and occipito-perietal connections, sug-
gesting that coordination among task-relevant brain regions in
ASD is less effective. Reduced ability to recruit beta band synchroniza-
tion in large-scale networks may contribute to cognitive difficulties
prevalent in ASD. Our results add to the growing body of literature indi-
cating atypical oscillatory coherence in brain networks is associated
with cognitive difficulties in neurodevelopmental disorders.

Acknowledgements

Wewould like to thank SimeonM.Wong and Daniel Cassel for their
help with the data analyses. We would also like to thank CIHR (MOP-
81161) for financial support of this project to Margot J. Taylor, NSERC
(RGPIN-435659) for financial support to Sam M. Doesburg, and VSB
(13/ 116) for financial support to Katrin A. Bangel.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2014.08.020.

References

Amaral, D.G., Schumann, C.M., Nordahl, C.W., 2008. Neuroanatomy of autism. Trends in
Neurosciences 31, 137–145. http://dx.doi.org/10.1016/j.tins.2007.12.00518258309.

Anagnostou, E., Taylor, M.J., 2011. Review of neuroimaging in autism spectrum disorders:
what havewe learned and wherewe go from here?Molecular Autism 2 (1), 4. http://
dx.doi.org/10.1186/2040-2392-2-421501488.

APA, DSM, 1994. IV Diagnostic and Statistical Manual of Mental DisordersFourth edition.
American Psychiatric Association, Washington, D.C.

APA, 2013. Diagnostic and Statistical Manual of Mental DisordersFifth edition. Psychiatric
Publishing, Arlington, VA, American.

Ashburner, J., Friston, K.J., 1999. Nonlinear spatial normalization using basis functions.
Human Brain Mapping 7 (4), 254–26610408769.

Ashburner, J., Neelin, P., Collins, D.L., Evans, A.C., Friston, K.J., 1997. Incorporating prior
knowledge into image registration. Neuroimage 6, 344–352. http://dx.doi.org/10.
1006/nimg.1997.02999417976.

Attal, Y., Schwartz, D., 2013. Assessment of subcortical source localization using deep
brain activity imaging model with minimum norm operators: A MEG study. PloS
One 8 (3), e59856. http://dx.doi.org/10.1371/journal.pone.005985623527277.

Azouz, R., Gray, C.M., 2000. Dynamic spike threshold reveals a mechanism for synaptic co-
incidence detection in cortical neurons in vivo. Proceedings of the National Academy
of Sciences of the United States of America 97 (14), 8110–8115. http://dx.doi.org/10.
1073/pnas.13020079710859358.

Balderston, N.L., Schultz, D.H., Baillet, S., Helmstetter, F.J., 2013. How to detect amygdala
activity with magnetoencephalography using source imaging. Journal of Visualized
Experiments: JoVE 76, e50212. http://dx.doi.org/10.3791/5021223770774.
Bardouille, T., Ross, B., 2008. MEG imaging of sensorimotor areas using inter-trial coher-
ence in vibrotactile steady-state responses. Neuroimage 42, 323–331. http://dx.doi.
org/10.1016/j.neuroimage.2008.04.17618511307.

Baribeau, D.A., Anagnostou, E., 2013. A comparison of neuroimaging findings in childhood
onset schizophrenia and autism spectrum disorder: a review of the literature. Fron-
tiers in Psychiatry 4, 175. http://dx.doi.org/10.3389/fpsyt.2013.00175.

Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., Sigman, M., 2011. A big-world net-
work in ASD: dynamical connectivity analysis reflects a deficit in long-range connec-
tions and an excess of short-range connections. Neuropsychologia 49, 254–263.
http://dx.doi.org/10.1016/j.neuropsychologia.2010.11.02421110988.

Batty, M., Meaux, E., Wittemeyer, K., Rogé, B., Taylor, M.J., 2011. Early processing of
emotional faces in children with autism: an event-related potential study. Journal
of Experimental Child Psychology 109, 430–444. http://dx.doi.org/10.1016/j.jecp.
2011.02.00121458825.

Batty,M., Taylor, M.J., 2002. Visual categorization during childhood: an ERP study. Psycho-
physiology 39, 482–490. http://dx.doi.org/10.1111/1469-8986.394048212212640.

Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., Webb, S.J.,
2004. Autism and abnormal development of brain connectivity. Journal ofNeuroscience:
theOfficial Journal of the Society forNeuroscience 24 (42), 9228–9231. http://dx.doi.org/
10.1523/JNEUROSCI.3340-04.200415496656.

Belmonte, M.K., Bourgeron, T., 2006. Fragile X syndrome and autism at the intersection of
genetic and neural networks. Nature Neuroscience 9 (10), 1221–1225. http://dx.doi.
org/10.1038/nn176517001341.

Belmonte,M.K., Yurgelun-Todd, D.A., 2003. Functional anatomy of impaired selective attention
and compensatory processing in autism. Brain Research. Cognitive Brain Research 17 (3),
651–664. http://dx.doi.org/10.1016/S0926-6410(03)00189-714561452.

Belluscio, M.A., Mizuseki, K., Schmidt, R., Kempter, R., Buzsáki, G., 2012. Cross-frequency
phase-phase coupling between θ and γ oscillations in the hippocampus. Journal of
Neuroscience: the Official Journal of the Society for Neuroscience 32 (2), 423–435.
http://dx.doi.org/10.1523/JNEUROSCI.4122-11.201222238079.

Bird, G., Catmur, C., Silani, G., Frith, C., Frith, U., 2006. Attention does not modulate neural
responses to social stimuli in autism spectrum disorders. Neuroimage 31 (4),
1614–1624. http://dx.doi.org/10.1016/j.neuroimage.2006.02.03716616862.

Bish, J.P., Martin, T., Houck, J., Ilmoniemi, R.J., Tesche, C., 2004. Phase shift detection in
thalamocortical oscillations using magnetoencephalography in humans. Neurosci-
ence Letters 362, 48–52. http://dx.doi.org/10.1016/j.neulet.2004.02.03215147778.

Brock, J., Brown, C.C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothe-
sis of autism. Development and Psychopathology 14 (2), 209–22412030688.

Bruno, R.M., Sakmann, B., 2006. Cortex is driven by weak but synchronously active
thalamocortical synapses. Science (New York, N.Y.) 312, 1622–1627. http://dx.doi.
org/10.1126/science.112459316778049.

Buschman, T.J., Miller, E.K., 2007. Top-down versus bottom-up control of attention in the
prefrontal and posterior parietal cortices. Science (New York, N.Y.) 315 (5820),
1860–1862. http://dx.doi.org/10.1126/science.113807117395832.

Cavanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy and
behavioural correlates. Brain: A Journal of Neurology 129 (3), 564–583. http://dx.doi.
org/10.1093/brain/awl00416399806.

Canolty, R.T., Knight, R.T., 2010. The functional role of cross-frequency coupling. Trends in
Cognitive Sciences 14 (11), 506–515. http://dx.doi.org/10.1016/j.tics.2010.09.
00120932795.

Casanova, M.F., El-Baz, A., Elnakib, A., Switala, A.E., Williams, E.L., Williams, D.L.,
Minshew, N.J., Conturo, T.E., 2011. Quantitative analysis of the shape of the cor-
pus callosum in patients with autism and comparison individuals. Autism: the
International Journal of Research and Practice 15 (2), 223–238. http://dx.doi.
org/10.1177/136236131038650621363871.

Casanova, M.F., van Kooten, I.A., Switala, A.E., van Engeland, H., Heinsen, H., Steinbusch, H.
W., Hof, P.R., Trippe, J., Stone, J., Schmitz, C., (2006), Minicolumnar abnormalities in
autism. Acta Neuropathologica, 112(3) (2006) 287–303. doi:10.1007/s00401-006-
0085-5. Pubmed: 16819561

Cheyne, D., Bakhtazad, L., Gaetz, W., 2006. Spatiotemporal mapping of cortical activ-
ity accompanying voluntary movements using an event-related beamforming
approach. Human Brain Mapping 27 (3), 213–229. http://dx.doi.org/10.1002/
hbm.2017816037985.

Cheyne, D., Bostan, A.C., Gaetz,W., Pang, E.W., 2007. Event-related beamforming: a robust
method for presurgical functional mapping using MEG. Clinical Neurophysiology: Of-
ficial Journal of the International Federation of Clinical Neurophysiology 118 (8),
1691–1704. http://dx.doi.org/10.1016/j.clinph.2007.05.06417587643.

Cornwell, B.R., Carver, F.W., Coppola, R., Johnson, L., Alvarez, R., Grillon, C., 2008a. Evoked
amygdala responses to negative faces revealed by adaptive MEG beamformers. Brain
Research 1244, 103–112. http://dx.doi.org/10.1016/j.brainres.2008.09.06818930036.

Cornwell, B.R., Johnson, L.L., Holroyd, T., Carver, F.W., Grillon, C., 2008b. Human hippo-
campal and parahippocampal theta during goal-directed spatial navigation predicts
performance on a virtual Morris water maze. Journal of Neuroscience: the Official
Journal of the Society for Neuroscience 28 (23), 5983–5990. http://dx.doi.org/10.
1523/JNEUROSCI.5001-07.200818524903.

Cooper, N.R., Croft, R.J., Dominey, S.J., Burgess, A.P., Gruzelier, J.H., 2003. Paradox lost?
Exploring the role of alpha oscillations during externally vs. internally directed
attention and the implications for idling and inhibition hypotheses. International
Journal of Psychophysiology: Official Journal of the International Organization of
Psychophysiology 47 (1), 65–74. http://dx.doi.org/10.1016/S0167-8760(02)00107-
112543447.

Courchesne, E., Pierce, K., 2005. Why the frontal cortex in autism might be talking only to
itself: local over-connectivity but long-distance disconnection. Current Opinion in
Neurobiology 15, 225–230. http://dx.doi.org/10.1016/j.conb.2005.03.00115831407.

Courchesne, E., Townsend, J., Akshoomoff, N.A., Saitoh, O., Yeung-Courchesne, R., Lincoln,
A.J., James, H.E., Haas, R.H., Schreibman, L., Lau, L., 1994. Impairment in shifting

http://dx.doi.org/10.1016/j.nicl.2014.08.020
http://dx.doi.org/10.1016/j.nicl.2014.08.020
http://www.ncbi.nlm.nih.gov/pubmed/18258309
http://www.ncbi.nlm.nih.gov/pubmed/21501488
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref3
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref3
http://refhub.elsevier.com/S2213-1582(14)00129-6/bb4
http://refhub.elsevier.com/S2213-1582(14)00129-6/bb4
http://www.ncbi.nlm.nih.gov/pubmed/10408769
http://dx.doi.org/10.1006/nimg.1997.0299
http://www.ncbi.nlm.nih.gov/pubmed/9417976
http://www.ncbi.nlm.nih.gov/pubmed/23527277
http://dx.doi.org/10.1073/pnas.130200797
http://www.ncbi.nlm.nih.gov/pubmed/10859358
http://www.ncbi.nlm.nih.gov/pubmed/23770774
http://www.ncbi.nlm.nih.gov/pubmed/18511307
http://dx.doi.org/10.3389/fpsyt.2013.00175
http://www.ncbi.nlm.nih.gov/pubmed/21110988
http://dx.doi.org/10.1016/j.jecp.2011.02.001
http://www.ncbi.nlm.nih.gov/pubmed/21458825
http://www.ncbi.nlm.nih.gov/pubmed/12212640
http://www.ncbi.nlm.nih.gov/pubmed/15496656
http://www.ncbi.nlm.nih.gov/pubmed/17001341
http://www.ncbi.nlm.nih.gov/pubmed/14561452
http://www.ncbi.nlm.nih.gov/pubmed/22238079
http://www.ncbi.nlm.nih.gov/pubmed/16616862
http://www.ncbi.nlm.nih.gov/pubmed/15147778
http://www.ncbi.nlm.nih.gov/pubmed/12030688
http://www.ncbi.nlm.nih.gov/pubmed/16778049
http://www.ncbi.nlm.nih.gov/pubmed/17395832
http://www.ncbi.nlm.nih.gov/pubmed/16399806
http://dx.doi.org/10.1016/j.tics.2010.09.001
http://www.ncbi.nlm.nih.gov/pubmed/20932795
http://www.ncbi.nlm.nih.gov/pubmed/21363871
http://www.ncbi.nlm.nih.gov/pubmed/16819561
http://dx.doi.org/10.1002/hbm.20178
http://www.ncbi.nlm.nih.gov/pubmed/16037985
http://www.ncbi.nlm.nih.gov/pubmed/17587643
http://www.ncbi.nlm.nih.gov/pubmed/18930036
http://dx.doi.org/10.1523/JNEUROSCI.5001-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18524903
http://dx.doi.org/10.1016/S0167-8760(02)00107-1
http://www.ncbi.nlm.nih.gov/pubmed/12543447
http://www.ncbi.nlm.nih.gov/pubmed/15831407


211K.A. Bangel et al. / NeuroImage: Clinical 6 (2014) 202–213
attention in autistic and cerebellar patients. Behavioral Neuroscience 108, 848–865.
http://dx.doi.org/10.1037/0735-7044.108.5.8487826509.

Dakin, S., Frith, U., 2005. Vagaries of visual perception in autism. Neuron 48, 497–507.
http://dx.doi.org/10.1016/j.neuron.2005.10.01816269366.

Dawson, G., Webb, S., Schellenberg, G.D., Dager, S., Friedman, S., Aylward, E., Richards, T.,
2002. Defining the broader phenotype of autism: genetic, brain, and behavioral per-
spectives. Development and Psychopathology 14, 581–61112349875.

Damarla, S.R., Keller, T.A., Kana, R.K., Cherkassky, V.L., Williams, D.L., Minshew, N.J., Just,
M.A., 2010. Cortical underconnectivity coupled with preserved visuospatial cognition
in autism: evidence from an fMRI study of an embedded figures task. Autism
Research: Official Journal of the International Society for Autism Research 3 (5),
273–279. http://dx.doi.org/10.1002/aur.15320740492.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. Journal of Neuroscience
Methods 134, 9–21. http://dx.doi.org/10.1016/j.jneumeth.2003.10.00915102499.

Doesburg, S.M., Green, J.J., McDonald, J.J., Ward, L.M., 2012a. Theta modulation of inter-
regional gamma synchronization during auditory attention control. Brain Research
1431, 77–85. http://dx.doi.org/10.1016/j.brainres.2011.11.00522133304.

Doesburg, S.M., Vidal, J., Taylor, M.J., 2013. Reduced theta connectivity during set-shifting
in children with autism. Frontiers in Human Neuroscience 7, 785. http://dx.doi.org/
10.3389/fnhum.2013.0078524294201.

Doesburg, S.M., Vinette, S.A., Cheung,M.J., Pang, E.W., 2012b. Theta-modulated gamma-band
synchronization among activated regions during a verb generation task. Frontiers in
Psychology 3, 195. http://dx.doi.org/10.3389/fpsyg.2012.0019522707946.

Domínguez, L.G., Velázquez, J.L.P., Galán, R.F., 2013. Amodel of functional brain connectiv-
ity and background noise as a biomarker for cognitive phenotypes: application to au-
tism. PloS One 8 (4), e61493.

Donner, T.H., Siegel, M., 2011. A framework for local cortical oscillation patterns.
Trends in Cognitive Sciences 15 (5), 191–199. http://dx.doi.org/10.1016/j.tics.
2011.03.00721481630.

Donner, T.H., Siegel, M., Oostenveld, R., Fries, P., Bauer, M., Engel, A.K., 2007. Population
activity in the human dorsal pathway predicts the accuracy of visual motion detec-
tion. Journal of Neurophysiology 98 (1), 345–359. http://dx.doi.org/10.1152/jn.
01141.200617493916.

Duerden, E.G., Mak-Fan, K.M., Taylor, M.J., Roberts, S.W., 2012. Regional differences in
grey and white matter in children and adults with autism spectrum disorders: an
activation likelihood estimate (ALE) meta-analysis. Autism Research: Official Journal
of the International Society for Autism Research 5 (1), 49–66. http://dx.doi.org/10.
1002/aur.23522139976.

Engel, A.K., Fries, P., Singer, W., 2001. Dynamic predictions: oscillations and synchrony in
top-down processing. Nature Reviews. Neuroscience 2, 704–716. http://dx.doi.org/
10.1038/3509456511584308.

Evans, J.J., Heggs, A.J., Antoun, N., Hodges, J.R., Progressive prosopagnosia associated with
selective right temporal lobe atrophy. A new syndrome? Brain: A Journal of Neurology,
118 ( Pt 1)(1) (1995) 1–13. doi:10.1093/brain/118.1.1. Pubmed: 7894996

Fiebelkorn, I.C., Foxe, J.J., McCourt, M.E., Dumas, K.N., Molholm, S., 2013. Atypical category
processing and hemispheric asymmetries in high-functioning children with autism:
revealed through high-density EEG mapping. Cortex; a Journal Devoted to the
Study of the Nervous System and Behavior 49 (5), 1259–1267. http://dx.doi.org/10.
1016/j.cortex.2012.04.00722652240.

Fink, G.R., Dolan, R.J., Halligan, P.W., Marshall, J.C., Frith, C.D., Space-based and
object-based visual attention: shared and specific neural domains. Brain: A Jour-
nal of Neurology, 120 ( Pt 11) (1997) 2013–2028. doi:10.1093/brain/120.11.
2013. Pubmed: 9397018

Fink, G.R., Marshall, J.C., Gurd, J., Weiss, P.H., Zafiris, O., Shah, N.J., Zilles, K., 2001. Deriving
numerosity and shape from identical visual displays. NeuroImage 13, 46–55. http://
dx.doi.org/10.1006/nimg.2000.067311133308.

Flevaris, A.V., Bentin, S., Robertson, L.C., 2010. Local or global? Attentional selection of
spatial frequencies binds shapes to hierarchical levels. Psychological Science 21 (3),
424–431. http://dx.doi.org/10.1177/095679760935990920424080.

Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R., 2001. Modulation of oscillatory neuronal
synchronization by selective visual attention. Science (New York, N.Y.) 291 (5508),
1560–1563. http://dx.doi.org/10.1126/science.105546511222864.

Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.-B., Heather, J.D., Frackowiak, R.S.J., 1995.
Spatial registration and normalization of images. Human Brain Mapping 3 (3),
165–189. http://dx.doi.org/10.1002/hbm.460030303.

Frith, U., 1989. Autism: Explaining the EnigmaBlackwell, Oxford.
Frith, C., 2003. What do imaging studies tell us about the neural basis of autism? Novartis

Foundation Symposium 251, 149–17614521192.
Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through

neuronal coherence. Trends in Cognitive Sciences 9 (10), 474–480. http://dx.doi.
org/10.1016/j.tics.2005.08.01116150631.

Gainotti, G., Marra, C., 2011. Differential contribution of right and left temporo-occipital
and anterior temporal lesions to face recognition disorders. Frontiers in Human Neu-
roscience 5, 55. http://dx.doi.org/10.3389/fnhum.2011.0005521687793.

Gabard-Durnam, L., Tierney, A.L., Vogel-Farley, V., Tager-Flusberg, H., Nelson, C.A., 2013.
Alpha asymmetry in infants at risk for autism spectrum disorders. Journal of
Autism and Developmental Disorders http://dx.doi.org/10.1007/s10803-013-1926-
423989937.

Gepner, B., Féron, F., 2009. Autism: a world changing too fast for a mis-wired brain?
Neuroscience and Biobehavioral Reviews 33 (8), 1227–1242. http://dx.doi.org/10.
1016/j.neubiorev.2009.06.00619559043.

Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., 2001. Dynamic
imaging of coherent sources: studying neural interactions in the human brain.
Proceedings of the National Academy of Sciences of the United States of America
98 (2), 694–699. http://dx.doi.org/10.1073/pnas.98.2.69411209067.
Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., Schnitzler, A., 2004.
Modulation of long-range neural synchrony reflects temporal limitations of visual
attention in humans. Proceedings of the National Academy of Sciences of the
United States of America 101 (35), 13050–13055. http://dx.doi.org/10.1073/pnas.
040494410115328408.

Hamada, Y., Sugino, K., Kado, H., Suzuki, R., 2004. Magnetic fields in the human hippocam-
pal area evoked by a somatosensory oddball task. Hippocampus 14 (4), 426–433.
http://dx.doi.org/10.1002/hipo.1019615224980.

Han, S., Fan, S., Chen, L., Zhuo, Y., 1997. On the different processing of wholes and parts:
a psychophysiological analysis. Journal of Cognitive Neuroscience 9 (5), 687–698.
http://dx.doi.org/10.1162/jocn.1997.9.5.68723965124.

Han, S., He, X., Woods, D.L., 2000. Hierarchical processing and level-repetition effect as
indexed by early brain potentials. Psychophysiology 37 (6), 817–830. http://dx.doi.
org/10.1111/1469-8986.376081711117462.

Happé, F., 1999. Autism: cognitive deficit or cognitive style? Trends in Cognitive Sciences
3 (6), 216–222. http://dx.doi.org/10.1016/S1364-6613(99)01318-2.

Happé, F., Frith, U., 2006. The weak coherence account: detail-focused cognitive style in
autism spectrum disorders. Journal of Autism and Developmental Disorders 36 (1),
5–25. http://dx.doi.org/10.1007/s10803-005-0039-016450045.

Hari, R., Salmelin, R., 1997. Human cortical oscillations: a neuromagnetic view through
the skull. Trends in Neurosciences 20 (1), 44–49. http://dx.doi.org/10.1016/S0166-
2236(96)10065-59004419.

Heinze, H.J., Hinrichs, H., Scholz, M., Burchert, W., Mangun, G.R., 1998. Neural
mechanisms of global and local processing. A combined PET and ERP study.
Journal of Cognitive Neuroscience 10 (4), 485–498. http://dx.doi.org/10.1162/
0898929985628989712678.

Herdman, A.T., 2011. Functional communication within a perceptual network processing
letters and pseudoletters. Journal of Clinical Neurophysiology: Official Publication of
the American Electroencephalographic Society 28 (5), 441–449. http://dx.doi.org/
10.1097/WNP.0b013e318230da5f21946359.

Herdman, A., Cheyne, D., 2009. A practical guide for MEG and beamforming. Handy T.
Brain Signal AnalysisMIT Press, pp. 99–140.

Hill, E.L., Frith, U., 2003. Understanding autism: insights from mind and brain. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences 358 (1430),
281–289. http://dx.doi.org/10.1098/rstb.2002.120912639326.

Huberle, E., Karnath, H.O., 2012. The role of temporo-parietal junction (TPJ) in global
gestalt perception. Brain Structure & Function 217 (3), 735–746. http://dx.doi.org/
10.1007/s00429-011-0369-y22193335.

Hung, Y., Smith, M.L., Bayle, D.J., Mills, T., Cheyne, D., Taylor, M.J., 2010. Unattended
emotional faces elicit early lateralized amygdala-frontal and fusiform activations.
NeuroImage 50 (2), 727–733. http://dx.doi.org/10.1016/j.neuroimage.2009.12.
09320045736.

Hung, Y., Smith, M.L., Taylor, M.J., 2012. Development of ACC-amygdala activations in
processing unattended fear. NeuroImage 60 (1), 545–552. http://dx.doi.org/10.
1016/j.neuroimage.2011.12.00322182768.

Hyde, K.L., Samson, F., Evans, A.C., Mottron, L., 2010. Neuroanatomical differences in brain
areas implicated in perceptual and other core features of autism revealed by cortical
thickness analysis and voxel-based morphometry. Human Brain Mapping 31,
556–566. http://dx.doi.org/10.1002/hbm.2088719790171.

Hyde, D.C., Spelke, E.S., 2009. All numbers are not equal: an electrophysiological investi-
gation of small and large number representations. Journal of Cognitive Neuroscience
21 (6), 1039–1053. http://dx.doi.org/10.1162/jocn.2009.2109018752403.

Jemel, B., Mimeault, D., Saint-Amour, D., Hosein, A., Mottron, L., 2010. VEP contrast sensitivity
responses reveal reduced functional segregation of mid and high filters of visual chan-
nels in autism. Journal of Vision 10 (6), 13. http://dx.doi.org/10.1167/10.6.1320884562.

Jensen, O., Gelfand, J., Kounios, J., Lisman, J.E., 2002. Oscillations in the alpha band
(9–12 Hz) increase with memory load during retention in a short-term memory
task. Cerebral Cortex (New York, N.Y.: 1991) 12 (8), 877–882. http://dx.doi.org/10.
1093/cercor/12.8.87712122036.

Just, M.A., Cherkassky, V.L., Keller, T.A., Kana, R.K., Minshew, N.J., 2007. Functional and
anatomical cortical underconnectivity in autism: evidence from an fMRI study of an
executive function task and corpus callosum morphometry. Cerebral Cortex (New
York, N.Y.: 1991) 17, 951–961. http://dx.doi.org/10.1093/cercor/bhl00616772313.

Just, M.A., Keller, T.A., Malave, V.L., Kana, R.K., Varma, S., 2012. Autism as a neural systems
disorder: a theory of frontal-posterior underconnectivity. Neuroscience and Biobe-
havioral Reviews 36 (4), 1292–1313. http://dx.doi.org/10.1016/j.neubiorev.2012.02.
00722353426.

Kadosh, R.C., Kadosh, K.C., Linden, D.E., Gevers, W., Berger, A., Henik, A., 2007. The brain
locus of interaction between number and size: a combined functional magnetic res-
onance imaging and event-related potential study. Journal of Cognitive Neuroscience
19 (6), 957–970. http://dx.doi.org/10.1162/jocn.2007.19.6.95717536966.

Khan, S., Gramfort, A., Shetty, N.R., Kitzbichler, M.G., Ganesan, S., Moran, J.M., et al., 2013.
Local and long-range functional connectivity is reduced in concert in autism spectrum
disorders. Proceedings of the National Academy of Sciences of the United States of
America 110 (8), 3107–3112. http://dx.doi.org/10.1073/pnas.121453311023319621.

Kirsch, P., Achenbach, C., Kirsch, M., Heinzmann,M., Schienle, A., Vaitl, D., 2003. Cerebellar
and hippocampal activation during eyeblink conditioning depends on the experi-
mental paradigm: A MEG study. Neural Plasticity 10 (4), 291–301. http://dx.doi.
org/10.1155/NP.2003.29115152983.

Klimesch, W., Doppelmayr, M., Röhm, D., Pöllhuber, D., Stadler, W., 2000. Simultaneous
desynchronization and synchronization of different alpha responses in the human
electroencephalograph: a neglected paradox? Neuroscience Letters 284 (1-2),
97–10010771171.

Klimesch, W., Schimke, H., Doppelmayr, M., Ripper, B., Schwaiger, J., Pfurtscheller, G.,
1996. Event-related desynchronization (ERD) and the Dm effect: does alpha
desynchronization during encoding predict later recall performance? International

http://www.ncbi.nlm.nih.gov/pubmed/7826509
http://www.ncbi.nlm.nih.gov/pubmed/16269366
http://www.ncbi.nlm.nih.gov/pubmed/12349875
http://www.ncbi.nlm.nih.gov/pubmed/20740492
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://www.ncbi.nlm.nih.gov/pubmed/22133304
http://www.ncbi.nlm.nih.gov/pubmed/24294201
http://www.ncbi.nlm.nih.gov/pubmed/22707946
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9000
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9000
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9000
http://dx.doi.org/10.1016/j.tics.2011.03.007
http://www.ncbi.nlm.nih.gov/pubmed/21481630
http://dx.doi.org/10.1152/jn.01141.2006
http://www.ncbi.nlm.nih.gov/pubmed/17493916
http://dx.doi.org/10.1002/aur.235
http://www.ncbi.nlm.nih.gov/pubmed/22139976
http://www.ncbi.nlm.nih.gov/pubmed/11584308
http://www.ncbi.nlm.nih.gov/pubmed/7894996
http://dx.doi.org/10.1016/j.cortex.2012.04.007
http://www.ncbi.nlm.nih.gov/pubmed/22652240
http://www.ncbi.nlm.nih.gov/pubmed/9397018
http://www.ncbi.nlm.nih.gov/pubmed/11133308
http://www.ncbi.nlm.nih.gov/pubmed/20424080
http://www.ncbi.nlm.nih.gov/pubmed/11222864
http://dx.doi.org/10.1002/hbm.460030303
http://refhub.elsevier.com/S2213-1582(14)00129-6/bb55
http://www.ncbi.nlm.nih.gov/pubmed/14521192
http://www.ncbi.nlm.nih.gov/pubmed/16150631
http://www.ncbi.nlm.nih.gov/pubmed/21687793
http://dx.doi.org/10.1007/s10803-013-1926-4
http://www.ncbi.nlm.nih.gov/pubmed/23989937
http://dx.doi.org/10.1016/j.neubiorev.2009.06.006
http://www.ncbi.nlm.nih.gov/pubmed/19559043
http://www.ncbi.nlm.nih.gov/pubmed/11209067
http://dx.doi.org/10.1073/pnas.0404944101
http://www.ncbi.nlm.nih.gov/pubmed/15328408
http://www.ncbi.nlm.nih.gov/pubmed/15224980
http://www.ncbi.nlm.nih.gov/pubmed/23965124
http://www.ncbi.nlm.nih.gov/pubmed/11117462
http://dx.doi.org/10.1016/S1364-6613(99)01318-2
http://www.ncbi.nlm.nih.gov/pubmed/16450045
http://dx.doi.org/10.1016/S0166-2236(96)10065-5
http://www.ncbi.nlm.nih.gov/pubmed/9004419
http://dx.doi.org/10.1162/089892998562898
http://www.ncbi.nlm.nih.gov/pubmed/9712678
http://www.ncbi.nlm.nih.gov/pubmed/21946359
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref71
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref71
http://www.ncbi.nlm.nih.gov/pubmed/12639326
http://www.ncbi.nlm.nih.gov/pubmed/22193335
http://dx.doi.org/10.1016/j.neuroimage.2009.12.093
http://www.ncbi.nlm.nih.gov/pubmed/20045736
http://dx.doi.org/10.1016/j.neuroimage.2011.12.003
http://www.ncbi.nlm.nih.gov/pubmed/22182768
http://www.ncbi.nlm.nih.gov/pubmed/19790171
http://www.ncbi.nlm.nih.gov/pubmed/18752403
http://www.ncbi.nlm.nih.gov/pubmed/20884562
http://dx.doi.org/10.1093/cercor/12.8.877
http://www.ncbi.nlm.nih.gov/pubmed/12122036
http://www.ncbi.nlm.nih.gov/pubmed/16772313
http://dx.doi.org/10.1016/j.neubiorev.2012.02.007
http://www.ncbi.nlm.nih.gov/pubmed/22353426
http://www.ncbi.nlm.nih.gov/pubmed/17536966
http://www.ncbi.nlm.nih.gov/pubmed/23319621
http://www.ncbi.nlm.nih.gov/pubmed/15152983
http://www.ncbi.nlm.nih.gov/pubmed/10771171


212 K.A. Bangel et al. / NeuroImage: Clinical 6 (2014) 202–213
Journal of Psychophysiology: Official Journal of the International Organization of Psy-
chophysiology 24 (1-2), 47–608978435.

Koshino, H., Carpenter, P.A., Minshew, N.J., Cherkassky, V.L., Keller, T.A., Just, M.A., 2005.
Functional connectivity in an fMRI working memory task in high-functioning autism.
Neuroimage 24 (3), 810–821. http://dx.doi.org/10.1016/j.neuroimage.2004.09.
02815652316.

Koten Jr, J.W., Lonnemann, J., Willmes, K., Knops, A., 2011. Micro and macro pattern
analyses of fMRI data support both early and late interaction of numerical and spatial
information. Frontiers in Human Neuroscience 5, 115. http://dx.doi.org/10.3389/
fnhum.2011.0011522028688.

Kringelbach, M.L., 2005. The human orbitofrontal cortex: linking reward to hedonic expe-
rience. Nature Reviews. Neuroscience 6 (9), 691–702. http://dx.doi.org/10.1038/
nrn174716136173.

Lainé, F., Rauzy, S., Tardif, C., Gepner, B., 2011. Slowing down the presentation of facial and
body movements enhances imitation performance in children with severe autism.
Journal of Autism and Developmental Disorders 41 (8), 983–996. http://dx.doi.org/
10.1007/s10803-010-1123-720960040.

Lalancette, M., Quraan, M., Cheyne, D., 2011. Evaluation of multiple-sphere head models
for MEG source localization. Physics in Medicine and Biology 56 (17), 5621–5635.
http://dx.doi.org/10.1088/0031-9155/56/17/01021828900.

Lee, J.E., Bigler, E.D., Alexander, A.L., Lazar, M., DuBray, M.B., Chung, M.K., et al., 2007.
Diffusion tensor imaging of white matter in the superior temporal gyrus and tempo-
ral stem in autism. Neuroscience Letters 424 (2), 127–132. http://dx.doi.org/10.1016/
j.neulet.2007.07.04217714869.

Leekam, S.R., Moore, C., 2001. The development of attention and joint attention in
children with autism. In: Burack, J.A., Charman, T., Yirmiya, N., Zelazo, P.R. (Eds.),
The Development of Autism: Perspectives From Theory and Practice. Lawrence
Erlbaum, New Jersey, pp. 105–129.

Lewis, J.D., Elman, J.L., 2008. Growth-related neural reorganization and the autism pheno-
type: a test of the hypothesis that altered brain growth leads to altered connectivity.
Developmental Science 11 (1), 135–155. http://dx.doi.org/10.1111/j.1467-7687.
2007.00634.x18171375.

Libertus, M.E., Woldorff, M.G., Brannon, E.M., 2007. Electrophysiological evidence for no-
tation independence in numerical processing. Behavioral and Brain Functions: BBF 3
(1), 1. http://dx.doi.org/10.1186/1744-9081-3-117214890.

Lisman, J.E., Jensen, O., 2013. The θ–γ neural code. Neuron 77 (6), 1002–1016. http://dx.
doi.org/10.1016/j.neuron.2013.03.00723522038.

Luo, Q., Holroyd, T., Jones, M., Hendler, T., Blair, J., 2007. Neural dynamics for facial
threat processing as revealed by gamma band synchronization using MEG.
NeuroImage 34, 839–847. http://dx.doi.org/10.1016/j.neuroimage.2006.09.
02317095252.

Mak-Fan, K.M., Morris, D., Vidal, J., Anagnostou, E., Roberts, W., Taylor, M.J., 2013. White
matter and development in children with an autism spectrum disorder. Autism:
The International Journal of Research and Practice 17, 541–557. http://dx.doi.org/
10.1177/136236131244259622700988.

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data.
Journal of Neuroscience Methods 164, 177–190. http://dx.doi.org/10.1016/j.
jneumeth.2007.03.02417517438.

Martin, A., Wiggs, C.L., Ungerleider, L.G., Haxby, J.V., 1996. Neural correlates of
category-specific knowledge. Nature 379 (6566), 649–652. http://dx.doi.org/
10.1038/379649a08628399.

Mayer, E., Rossion, B., 2007. Prosopagnosia, In: Godefroy, O., Bogousslavsky, J. (Eds.), The
Behavioural and Cognitive Neurology of Stroke, first edition Cambridge University
Press, New York, pp. 315–334.

Mazaheri, A., Nieuwenhuis, I.L., van Dijk, H., Jensen, O., 2009. Prestimulus alpha and mu
activity predicts failure to inhibit motor responses. Human Brain Mapping 30 (6),
1791–1800. http://dx.doi.org/10.1002/hbm.2076319308934.

Jensen, O., Mazaheri, A., 2010. Shaping functional architecture by oscillatory alpha activity:
gating by inhibition. Frontiers in Human Neuroscience 4, 186. http://dx.doi.org/10.
3389/fnhum.2010.0018621119777.

Meaux, E., Taylor, M.J., Pang, E.W., Vara, A.S., Batty, M., 2014. Neural substrates of
numerosity estimation in autism. Human Brain Mapping 35, 4362–4385. http://dx.
doi.org/10.1002/hbm.22480.1002/hbm.2248024639374.

Mills, T., Lalancette, M., Moses, S.N., Taylor, M.J., Quraan, M.A., 2012. Techniques for detec-
tion and localization of weak hippocampal and medial frontal sources using
Beamformers in MEG. Brain Topography 25, 248–263. http://dx.doi.org/10.1007/
s10548-012-0217-222350670.

Minshew, N.J., Goldstein, G., Siegel, D.J., 1997. Neuropsychologic functioning in autism:
profile of a complex information processing disorder. Journal of the International
Neuropsychological Society: JINS 3 (4), 303–3169260440.

Minshew, N.J., Sweeney, J., Luna, B., 2002. Autism as a selective disorder of complex informa-
tion processing and underdevelopment of neocortical systems. Molecular Psychiatry 7
(Suppl. 2), S14–S15. http://dx.doi.org/10.1038/sj.mp.400116612142935.

Müller, R.A., Shih, P., Keehn, B., Deyoe, J.R., Leyden, K.M., Shukla, D.K., 2011.
Underconnected, but how? A survey of functional connectivity MRI studies in autism
spectrum disorders. Cerebral Cortex (New York, N.Y.: 1991) 21 (10), 2233–2243.
http://dx.doi.org/10.1093/cercor/bhq29621378114.

Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S.P., Wenderoth, N., Alaerts, K., 2012.
Recognizing biological motion and emotions from point-light displays in autism
spectrum disorders. PloS One 7 (9), e44473. http://dx.doi.org/10.1371/journal.pone.
004447322970227.

Nan, Y., Knösche, T.R., Luo, Y.J., 2006. Counting in everyday life: discrimination and enu-
meration. Neuropsychologia 44 (7), 1103–1113. http://dx.doi.org/10.1016/j.
neuropsychologia.2005.10.02016360184.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional neuro-
imaging: a primer with examples. Human Brain Mapping 15 (1), 1–2511747097.
Pagano, S., Mazza, V., 2012. Individuation of multiple targets during visual enumeration:
New insights from electrophysiology. Neuropsychologia 50 (5), 754–761. http://dx.
doi.org/10.1016/j.neuropsychologia.2012.01.00922266261.

Palva, S., Palva, J.M., 2007. New vistas for α-frequency band oscillations. Trends in Neuro-
sciences 30 (4), 150–158. http://dx.doi.org/10.1016/j.tins.2007.02.00117307258.

Palva, J.M., Palva, S., Kaila, K., 2005. Phase synchrony among neuronal oscillations in
the human cortex. Journal of Neuroscience: the Official Journal of the Society for
Neuroscience 25 (15), 3962–3972. http://dx.doi.org/10.1523/JNEUROSCI.4250-04.
200515829648.

Piven, J., Arndt, S., Bailey, J., Andreasen, N., 1996. Regional brain enlargement in autism:
a magnetic resonance imaging study. Journal of the American Academy of Child
and Adolescent Psychiatry 35, 530–536. http://dx.doi.org/10.1097/00004583-
199604000-000208919716.

Piven, J., Bailey, J., Ranson, B.J., Arndt, S., 1997. An MRI study of the corpus callosum in au-
tism. American Journal of Psychiatry 154 (8), 1051–10569247388.

Quraan, M.A., Moses, S.N., Hung, Y., Mills, T., Taylor, M.J., 2011. Detection and localization
of hippocampal activity using beamformers with MEG: a detailed investigation using
simulations and empirical data. Human Brain Mapping 32, 812–827. http://dx.doi.
org/10.1002/hbm.2106821484951.

Rinehart, N.J., Bradshaw, J.L., Moss, S.A., Brereton, A.V., Tonge, B.J., 2001. A deficit in
shifting attention present in high-functioning autism but not Asperger3s disorder.
Autism: the International Journal of Research and Practice 5 (1), 67–80. http://dx.
doi.org/10.1177/136236130100500100711708391.

Robertson, L.C., Lamb, M.R., 1991. Neuropsychological contributions to theories of part/
whole organization. Cognitive Psychology 23 (2), 299–330. http://dx.doi.org/10.
1016/0010-0285(91)90012-D2055002.

Robertson, L.C., Lamb, M.R., Knight, R.T., 1988. Effects of lesions of temporal-parietal junc-
tion on perceptual and attentional processing in humans. Journal of Neuroscience 8
(10), 3757–3769.

Robinson, S., Vrba, J., 1998. Functional neuroimaging by synthetic aperturemagnetometry
(SAM). In: Yoshimoto, T., et al. (Eds.), Recent Advances in Biomagnetism. Tokyo Uni-
versity Press, Sendai, Japan, pp. 302–305.

Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J., 1999.
Perception3s shadow: long-distance synchronization of human brain activity. Nature
397 (6718), 430–433. http://dx.doi.org/10.1038/171209989408.

Rubinov, M., Sporns, O., 2010. Complex networkmeasures of brain connectivity: uses and
interpretations. Neuroimage 52, 1059–1069. http://dx.doi.org/10.1016/j.neuroimage.
2009.10.00319819337.

Rutter, M., DiLavore, P.C., Risi, S., 2002. Autism Diagnostic Observation Schedule:
ADOSWestern Psychological Services, Los Angeles, CA11055457.

Santens, S., Roggeman, C., Fias, W., Verguts, T., 2010. Number processing pathways in
human parietal cortex. Cerebral Cortex (New York, N.Y.: 1991) 20, 77–88. http://dx.
doi.org/10.1093/cercor/bhp08019429864.

Schoffelen, J.M., Gross, J., 2009. Source connectivity analysis with MEG and EEG. Human
Brain Mapping 30 (6), 1857–1865. http://dx.doi.org/10.1002/hbm.2074519235884.

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y., 2001. Reconstructing
spatiotemporal activities of neural sources using an MEG vector beamformer tech-
nique. IEEE Transactions on Bio-Medical Engineering 48 (7), 760–771. http://dx.doi.
org/10.1109/10.93090111442288.

Schipul, S.E., Keller, T.A., Just, M.A., 2011. Inter-regional brain communication and its dis-
turbance in autism. Frontiers in Systems Neuroscience 5, 10. http://dx.doi.org/10.
3389/fnsys.2011.0001021390284.

Siegel, M., Donner, T.H., Engel, A.K., 2012. Spectral fingerprints of large-scale neuronal in-
teractions. Nature Reviews. Neuroscience 13, 121–134. http://dx.doi.org/10.1038/
nrn313722233726.

Siegel, M., Engel, A.K., Donner, T.H., 2011. Cortical network dynamics of perceptual
decision-making in the human brain. Frontiers in Human Neuroscience 5, 21.
http://dx.doi.org/10.3389/fnhum.2011.0002121427777.

Simon, O., Mangin, J.F., Cohen, L., Le Bihan, D., Dehaene, S., 2002. Topographical layout of
hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron
33, 475–487. http://dx.doi.org/10.1016/S0896-6273(02)00575-511832233.

Stam, C.J., Nolte, G., Daffertshofer, A., 2007. Phase lag index: assessment of functional connec-
tivity from multi channel EEG and MEG with diminished bias from common sources.
Human BrainMapping 28, 1178–1193. http://dx.doi.org/10.1002/hbm.2034617266107.

Sun, L., Grützner, C., Bölte, S., Wibral, M., Tozman, T., Schlitt, S., et al., 2012. Impaired
gamma-band activity during perceptual organization in adults with autism spectrum
disorders: evidence for dysfunctional network activity in frontal-posterior cortices.
Journal of Neuroscience: the Official Journal of the Society for Neuroscience 32
(28), 9563–9573. http://dx.doi.org/10.1523/JNEUROSCI.1073-12.201222787042.

Sutton, S.K., Burnette, C.P., Mundy, P.C., Meyer, J., Vaughan, A., Sanders, C., Yale, M., 2005.
Resting cortical brain activity and social behavior in higher functioning children with
autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines 46 (2),
211–222. http://dx.doi.org/10.1111/j.1469-7610.2004.00341.x15679529.

Tallon-Baudry, C., Mandon, S., Freiwald, W.A., Kreiter, A.K., 2004. Oscillatory synchrony in
the monkey temporal lobe correlates with performance in a visual short-term mem-
ory task. Cerebral Cortex (New York, N.Y.: 1991) 14 (7), 713–720. http://dx.doi.org/
10.1093/cercor/bhh03115054050.

Tallon-Baudry, C., 2008. Neural bases of first impression formation. Frontiers in Human
Neuroscience 2.

Tanskanen, T., Saarinen, J., Parkkonen, L., Hari, R., 2008. From local to global: cortical dy-
namics of contour integration. Journal of Vision 8 (7), 1–12. http://dx.doi.org/10.
1167/8.7.1519146248.

Taylor, M.J., Khan, S.C., 2000. Top-down modulation of early selective attention processes
in children. International Journal of Psychophysiology: Official Journal of the Interna-
tional Organization of Psychophysiology 37, 135–147. http://dx.doi.org/10.1016/
S0167-8760(00)00084-210832000.

http://www.ncbi.nlm.nih.gov/pubmed/8978435
http://dx.doi.org/10.1016/j.neuroimage.2004.09.028
http://www.ncbi.nlm.nih.gov/pubmed/15652316
http://dx.doi.org/10.3389/fnhum.2011.00115
http://www.ncbi.nlm.nih.gov/pubmed/22028688
http://dx.doi.org/10.1038/nrn1747
http://www.ncbi.nlm.nih.gov/pubmed/16136173
http://www.ncbi.nlm.nih.gov/pubmed/20960040
http://www.ncbi.nlm.nih.gov/pubmed/21828900
http://dx.doi.org/10.1016/j.neulet.2007.07.042
http://www.ncbi.nlm.nih.gov/pubmed/17714869
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref93
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref93
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref93
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref93
http://dx.doi.org/10.1111/j.1467-7687.2007.00634.x
http://www.ncbi.nlm.nih.gov/pubmed/18171375
http://www.ncbi.nlm.nih.gov/pubmed/17214890
http://www.ncbi.nlm.nih.gov/pubmed/23522038
http://dx.doi.org/10.1016/j.neuroimage.2006.09.023
http://www.ncbi.nlm.nih.gov/pubmed/17095252
http://www.ncbi.nlm.nih.gov/pubmed/22700988
http://dx.doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
http://www.ncbi.nlm.nih.gov/pubmed/8628399
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref101
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref101
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref101
http://www.ncbi.nlm.nih.gov/pubmed/19308934
http://dx.doi.org/10.3389/fnhum.2010.00186
http://www.ncbi.nlm.nih.gov/pubmed/21119777
http://dx.doi.org/10.1002/hbm.22480
http://www.ncbi.nlm.nih.gov/pubmed/24639374
http://dx.doi.org/10.1007/s10548-012-0217-2
http://www.ncbi.nlm.nih.gov/pubmed/22350670
http://www.ncbi.nlm.nih.gov/pubmed/9260440
http://www.ncbi.nlm.nih.gov/pubmed/12142935
http://www.ncbi.nlm.nih.gov/pubmed/21378114
http://dx.doi.org/10.1371/journal.pone.0044473
http://www.ncbi.nlm.nih.gov/pubmed/22970227
http://dx.doi.org/10.1016/j.neuropsychologia.2005.10.020
http://www.ncbi.nlm.nih.gov/pubmed/16360184
http://www.ncbi.nlm.nih.gov/pubmed/11747097
http://www.ncbi.nlm.nih.gov/pubmed/22266261
http://www.ncbi.nlm.nih.gov/pubmed/17307258
http://dx.doi.org/10.1523/JNEUROSCI.4250-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15829648
http://dx.doi.org/10.1097/00004583-199604000-00020
http://www.ncbi.nlm.nih.gov/pubmed/8919716
http://www.ncbi.nlm.nih.gov/pubmed/9247388
http://www.ncbi.nlm.nih.gov/pubmed/21484951
http://www.ncbi.nlm.nih.gov/pubmed/11708391
http://dx.doi.org/10.1016/0010-0285(91)90012-D
http://www.ncbi.nlm.nih.gov/pubmed/2055002
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9050
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9050
http://refhub.elsevier.com/S2213-1582(14)00129-6/rf9050
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref120
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref120
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref120
http://www.ncbi.nlm.nih.gov/pubmed/9989408
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://www.ncbi.nlm.nih.gov/pubmed/11055457
http://www.ncbi.nlm.nih.gov/pubmed/19429864
http://www.ncbi.nlm.nih.gov/pubmed/19235884
http://www.ncbi.nlm.nih.gov/pubmed/11442288
http://dx.doi.org/10.3389/fnsys.2011.00010
http://www.ncbi.nlm.nih.gov/pubmed/21390284
http://dx.doi.org/10.1038/nrn3137
http://www.ncbi.nlm.nih.gov/pubmed/22233726
http://www.ncbi.nlm.nih.gov/pubmed/21427777
http://www.ncbi.nlm.nih.gov/pubmed/11832233
http://www.ncbi.nlm.nih.gov/pubmed/17266107
http://www.ncbi.nlm.nih.gov/pubmed/22787042
http://www.ncbi.nlm.nih.gov/pubmed/15679529
http://www.ncbi.nlm.nih.gov/pubmed/15054050
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref136
http://refhub.elsevier.com/S2213-1582(14)00129-6/subref136
http://dx.doi.org/10.1167/8.7.15
http://www.ncbi.nlm.nih.gov/pubmed/19146248
http://dx.doi.org/10.1016/S0167-8760(00)00084-2
http://www.ncbi.nlm.nih.gov/pubmed/10832000


213K.A. Bangel et al. / NeuroImage: Clinical 6 (2014) 202–213
Travers, B.G., Adluru, N., Ennis, C., Tromp, D.P.M., Destiche, D., Doran, S., et al., 2012. Diffu-
sion tensor imaging in autism spectrum disorder: a review. Autism Research: Official
Journal of the International Society for Autism Research 5 (5), 289–313. http://dx.doi.
org/10.1002/aur.124322786754.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273–289. http://dx.doi.org/10.1006/nimg.2001.097811771995.

Uhlhaas, P.J., Linden, D.E., Singer, W., Haenschel, C., Lindner, M., Maurer, K., Rodriguez, E.,
2006. Dysfunctional long-range coordination of neural activity during gestalt percep-
tion in schizophrenia. Journal of Neuroscience: the Official Journal of the Society for
Neuroscience 26 (31), 8168–8175. http://dx.doi.org/10.1523/JNEUROSCI.2002-06.
200616885230.

Uhlhaas, P.J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., Singer, W.,
2009a. Neural synchrony in cortical networks: history, concept and current status.
Frontiers in Integrative Neuroscience 3, 17. http://dx.doi.org/10.3389/neuro.07.017.
200919668703.

Uhlhaas, P.J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., Rodriguez, E., 2009b. The
development of neural synchrony reflects late maturation and restructuring of func-
tional networks in humans. Proceedings of the National Academy of Sciences of the
United States of America 106 (24), 9866–9871. http://dx.doi.org/10.1073/pnas.
090039010619478071.

Uhlhaas, P.J., Singer, W., 2006. Neural synchrony in brain disorders: relevance for cogni-
tive dysfunctions and pathophysiology. Neuron 52 (1), 155–168. http://dx.doi.org/
10.1016/j.neuron.2006.09.02017015233.

Van Voorhis, S., Hillyard, S.A., 1977. Visual evoked potentials and selective attention to
points in space. Perception & Psychophysics 22 (1), 54–62. http://dx.doi.org/10.
3758/BF03206080.

Vandenbroucke, M.W., Scholte, H.S., van Engeland, H., Lamme, V.A., Kemner, C., 2008. A
neural substrate for atypical low-level visual processing in autism spectrum disorder.
Brain: A Journal of Neurology 131, 1013–1024. http://dx.doi.org/10.1093/brain/
awm32118192288.

Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase synchroni-
zation and large-scale integration. Nature Reviews. Neuroscience 2 (4), 229–239.
http://dx.doi.org/10.1038/3506755011283746.

Vidal, C.N., Nicolson, R., DeVito, T.J., Hayashi, K.M., Geaga, J.A., Drost, D.J., et al., 2006.
Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity.
Biological Psychiatry 60 (3), 218–225. http://dx.doi.org/10.1016/j.biopsych.2005.11.
01116460701.

Villalobos, M.E., Mizuno, A., Dahl, B.C., Kemmotsu, N., Müller, R.A., 2005. Reduced func-
tional connectivity between V1 and inferior frontal cortex associated with
visuomotor performance in autism. NeuroImage 25 (3), 916–925. http://dx.doi.org/
10.1016/j.neuroimage.2004.12.02215808991.
Volberg, G., Kliegl, K., Hanslmayr, S., Greenlee, M.W., 2009. EEG alpha oscillations in the
preparation for global and local processing predict behavioral performance. Human
Brain Mapping 30 (7), 2173–2183. http://dx.doi.org/10.1002/hbm.2065918830957.

von Stein, A., Chiang, C., König, P., 2000a. Top-down processing mediated by interareal
synchronization. Proceedings of the National Academy of Sciences of the United
States of America 97 (26), 14748–14753. http://dx.doi.org/10.1073/pnas.97.26.
1474811121074.

von Stein, A., Sarnthein, J., 2000b. Different frequencies for different scales of cortical in-
tegration: from local gamma to long range alpha/theta synchronization. International
Journal of Psychophysiology 38 (3), 301–313. http://dx.doi.org/10.1016/S0167-
8760(00)00172-0.

Yovel, G., Levy, J., Yovel, I., 2001. Hemispheric asymmetries for global and local visual per-
ception: effects of stimulus and task factors. Journal of Experimental Psychology.
Human Perception and Performance 27 (6), 1369–138511766931.

Yuval-Greenberg, S., Tomer, O., Keren, A.S., Nelken, I., Deouell, L.Y., 2008. Transient
induced gamma-band response in EEG as a manifestation of miniature saccades.
Neuron 58 (3), 429–441. http://dx.doi.org/10.1016/j.neuron.2008.03.02718466752.

Wang, X.J., 2008. Decisionmaking in recurrent neuronal circuits. Neuron 60 (2), 215–234.
http://dx.doi.org/10.1016/j.neuron.2008.09.03418957215.

Wass, S., 2011. Distortions and disconnections: disrupted brain connectivity in autism.
Brain and Cognition 75 (1), 18–28. http://dx.doi.org/10.1016/j.bandc.2010.10.
00521055864.

Wechsler, D., 1999. Wechsler Abbreviated Scale of IntelligencePsychological Corporation,
San Antonio, TX.

Weissman, D.H., Woldorff, M.G., 2005. Hemispheric asymmetries for different compo-
nents of global/local attention occur in distinct temporo-parietal loci. Cerebral Cortex
(New York, N.Y.: 1991) 15 (6), 870–876. http://dx.doi.org/10.1093/cercor/
bhh18715459080.

White, S., O’Reilly, H., Frith, U., 2009. Big heads, small details and autism.
Neuropsychologia 47, 1274–1281. http://dx.doi.org/10.1016/j.neuropsychologia.
2009.01.01219428391.

Xia, M., Wang, J., He, Y., 2013. Brainnet viewer: a network visualization tool for human
brain connectomics. PloS One 8 (7), e68910. http://dx.doi.org/10.1371/journal.pone.
006891023861951.

Yamaguchi, S., Yamagata, S., Kobayashi, S., 2000. Cerebral asymmetry of the “top-down”
allocation of attention to global and local features. Journal of Neuroscience: the Offi-
cial Journal of the Society for Neuroscience 20 (9), RC7210777814.

Zalesky, A., Cocchi, L., Fornito, A., Murray, M.M., Bullmore, E., 2012. Connectivity differ-
ences in brain networks. NeuroImage 60, 1055–1062. http://dx.doi.org/10.1016/j.
neuroimage.2012.01.06822273567.

Zalesky, A., Fornito, A., Bullmore, E.T., 2010. Network-based statistic: identifying differ-
ences in brain networks. NeuroImage 53, 1197–1207. http://dx.doi.org/10.1016/j.
neuroimage.2010.06.04120600983.

http://www.ncbi.nlm.nih.gov/pubmed/22786754
http://www.ncbi.nlm.nih.gov/pubmed/11771995
http://dx.doi.org/10.1523/JNEUROSCI.2002-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16885230
http://dx.doi.org/10.3389/neuro.07.017.2009
http://www.ncbi.nlm.nih.gov/pubmed/19668703
http://dx.doi.org/10.1073/pnas.0900390106
http://www.ncbi.nlm.nih.gov/pubmed/19478071
http://www.ncbi.nlm.nih.gov/pubmed/17015233
http://dx.doi.org/10.3758/BF03206080
http://dx.doi.org/10.3758/BF03206080
http://dx.doi.org/10.1093/brain/awm321
http://www.ncbi.nlm.nih.gov/pubmed/18192288
http://www.ncbi.nlm.nih.gov/pubmed/11283746
http://dx.doi.org/10.1016/j.biopsych.2005.11.011
http://www.ncbi.nlm.nih.gov/pubmed/16460701
http://www.ncbi.nlm.nih.gov/pubmed/15808991
http://www.ncbi.nlm.nih.gov/pubmed/18830957
http://dx.doi.org/10.1073/pnas.97.26.14748
http://www.ncbi.nlm.nih.gov/pubmed/11121074
http://dx.doi.org/10.1016/S0167-8760(00)00172-0
http://dx.doi.org/10.1016/S0167-8760(00)00172-0
http://www.ncbi.nlm.nih.gov/pubmed/11766931
http://www.ncbi.nlm.nih.gov/pubmed/18466752
http://www.ncbi.nlm.nih.gov/pubmed/18957215
http://dx.doi.org/10.1016/j.bandc.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21055864
http://refhub.elsevier.com/S2213-1582(14)00129-6/bb157
http://refhub.elsevier.com/S2213-1582(14)00129-6/bb157
http://dx.doi.org/10.1093/cercor/bhh187
http://www.ncbi.nlm.nih.gov/pubmed/15459080
http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.012
http://www.ncbi.nlm.nih.gov/pubmed/19428391
http://dx.doi.org/10.1371/journal.pone.0068910
http://www.ncbi.nlm.nih.gov/pubmed/23861951
http://www.ncbi.nlm.nih.gov/pubmed/10777814
http://dx.doi.org/10.1016/j.neuroimage.2012.01.068
http://www.ncbi.nlm.nih.gov/pubmed/22273567
http://dx.doi.org/10.1016/j.neuroimage.2010.06.041
http://www.ncbi.nlm.nih.gov/pubmed/20600983

	Reduced beta band connectivity during number estimation in autism
	1.0. Introduction
	2.0. Methods
	2.1. Participants
	2.2. Task and stimuli
	2.3. Behavioural data analysis
	2.4. Data acquisition
	2.5. Data analyses
	2.5.1. Preprocessing and source reconstruction
	2.5.2. Inter-regional phase-locking analysis


	3.0. Results
	3.1. Behavioural results
	3.2. MEG results
	3.2.1. Task-dependent increase in oscillatory synchrony
	3.2.2. Reduced beta band synchronization in ASD


	4.0. Discussion
	Acknowledgements
	Appendix A. Supplementary data
	References


