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Abstract: Japanese quail is a highly economically valuable bird due to its commercial production for
meat and eggs. Although studies have reported Cadmium (Cd) is a ubiquitous heavy metal that
can cause injury to various organs, the molecular mechanisms of Cd on quail kidney injury remain
largely unknown. It has been reported that Honokiol (HKL), a highly functional antioxidant, can
protect cells against oxidative stress effectively. This study was conducted to investigate the effects of
Cd on quail kidneys injury and the protective effect of HKL on Cd-induced nephrotoxicity. A total of
40 Japanese quails were randomly divided into four groups: the control group, Cd treatment group,
Co-treatment group and HKL treatment group. The results showed that Cd resulted in significant
changes in growth performance, kidney histopathology and kidney biochemical status, antioxidant
enzymes and oxidative stress parameters, and ultrastructure of renal tubular epithelial cells, compared
with controls. Cd increased the expression of autophagy-related and apoptosis-related genes, but
decreased expression of lysosomal function-related and UPRmt-related genes. The co-treatment group
ameliorated Cd-induced nephrotoxicity by alleviating oxidative stress, inhibiting apoptosis, repairing
autophagy dysfunction and UPRmt disorder. In conclusion, dietary supplementation of HKL showed
beneficial effects on Japanese quail kidney injury caused by Cd.

Keywords: Honokiol; cadmium; kidney; autophagy; apoptosis; UPRmt

1. Introduction

Cadmium (Cd) is a highly toxic heavy metal pollutant, that is widely distributed in
the biosphere related to various human activities [1]. Cd pollution has occurred frequently
in recent years, and has caused serious harm to livestock production and human public
health [2–5]. Absorbed Cd is extremely difficult to remove from the body and has a
long biological half-life of 15–30 years [6]. Long-term exposure to Cd is related to the
occurrence and development of many diseases, such as hypertension, osteoporosis, diabetes,
renal fibrosis, and interstitial renal nephritis [7,8]. The kidney is the main organ for Cd
accumulation and damage, and the damage caused by Cd is mainly manifested as acute
kidney injury and chronic kidney disease, which is related to lesions of parenchymal cells
such as renal tubular cells and mesangial cells [9,10]. The contents of blood urea nitrogen
(BUN), creatinine (Crea) and uric acid (UA) are significantly increased, the expression of
kidney injury molecule-1 (Kim-1) increased, and the proximal tubule cells were subjected
to edema and hypertrophy in Cd-induced nephrotoxicity of rats [11,12]. Japanese quail
meat has the characteristics of high protein content, low fat content, low calorific value, and
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high vitamin A content, which makes the quail meat very popular among consumers [13].
Therefore, quail were used as the experimental subject to investigate the effect of Cd on
nephrotoxicity in the present study.

Although Cd is not a redox active metal, it causes cellular oxidative stress by inducing
an imbalance in the oxidative-antioxidant system. Mitochondria are the main sites of
reactive oxygen species (ROS) production and also the target organelles for Cd-induced
cytotoxicity, which ultimately results in increased ROS production during Cd exposure. It
has been reported that the thiol protein is very important in cellular antioxidant defense
and redox signaling, and the combination of Cd and thiol inhibits the function of the
antioxidant defense system, which further aggravate oxidative damage [14]. In vivo and
in vitro studies have found that Cd induces mitochondrial damage, increased content of
lipid peroxide products, decreased antioxidant enzyme activity or antioxidant content,
increased nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and
elevated target protein expression, and altered trace element content in vertebrate renal
tubular epithelial cells [15–18].

Autophagy is a highly conserved lysosome-dependent cycling process in eukaryotic
cells, and plays a vital role in the survival, differentiation, development and homeostasis of
cells through the degradation of organelles, proteins and macromolecules in the cytoplasm,
as well as reuse of degradation products [19]. Similarly, apoptosis is a programmed cell
death process with typical morphological characteristics including plasma membrane
blistering, cell shrinkage, chromatin condensation and fragmentation. Numerous studies
have found that autophagy and apoptosis are involved in Cd-induced nephrotoxicity in
mammals [20–23]. Notably, studies have reported that autophagy caused by Cd exerts
a protective effect on renal tubular damage in the initial stage, while continuous Cd
exposure induces lysosomal alkalization that blocks autophagy flux and cargo degradation,
causing renal tubular cell damage and apoptosis [20,21,24]. In addition, many studies
have found Cd up-regulates the expression of autophagy-related genes including Atg5,
Lc3b, Becn1, and apoptosis-related genes including Casp-3, Bak-1, Bax, increases the number
of autophagosomes, and induces apoptosis in duck kidneys and renal tubular epithelial
cells [16,25,26]. The mitochondrial unfolded protein response (UPRmt), an important
molecular activity in mitochondrial quality control, is induced by the accumulation of
large numbers of denatured or misfolded proteins within the mitochondria and exceeds
their clean-up capacity, thereby regulating mitochondrial quality and function [27]. Silent
mating type information regulation 2 homolog-1 (SIRT1) and silent mating type information
regulation 2 homolog-3 (SIRT3) are the main coordinators of the UPRmt and activate the
target protein peroxisome proliferators-activated receptor γ coactivator 1alpha (PGC-1α)
and peroxisome proliferators-activated receptor γ coactivator 1 beta (PGC-1β) through their
deacetylase activity [28,29]. Nuclear factor (erythroid-derived 2)-like 1 (NRF1) and its target
gene mitochondrial transcription factor A (TFAM), as transcription factors in the nucleus
and mitochondria, respectively, play an important role in regulating the transcription of
genes related to mitochondrial biogenesis and function [30,31]. However, it remains largely
unknown whether Cd contributes to quail kidney injury by affecting autophagy, apoptosis,
and UPRmt, which requires further study.

Honokiol (HKL) is a compound extracted from the bark of Chinese herbal medicine
Magnolia officinalis. It has a variety of biological and pharmacological properties, including
anti-oxidation, anti-inflammatory, anti-apoptosis, and lowering blood sugar effects [32,33].
The protective effect of HKL against cisplatin-induced renal injury may be mediated by
reducing ROS production, inhibiting caspase-3 expression and repairing mitochondrial
membrane potential collapse [34]. The administration of HKL can maintain blood glucose
control and prevent or delay the development of diabetic nephropathy in type 2 diabetic
mice [35]. In addition, HKL significantly alleviates the increase of renal BUN and Crea,
histological damage and apoptosis caused by ischemia-reperfusion (I/R) [36,37]. Therefore,
this study used quail as an animal model to explore the mechanism of Cd-induced nephro-
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toxicity in poultry, and provides potential applications for HKL to prevent kidney injure
in breeding.

2. Materials and Methods
2.1. Animal Experiment and Chemicals

The animals used in this experiment were 1-day-old Japanese quails (40 birds, and
were purchased from a farm in Zhenjiang City, Jiangsu Province). After pre-feeding for
1 week, they were randomly divided into the following four groups: control group (only
normal feed), Cd treatment Group (normal feed containing 75 mg/kg CdCl2), Cd and
HKL co-treatment group (normal feed containing 50 mg/kg HKL pre-fed for 4 weeks, then
supplemented with 75 mg/kg CdCl2 to continue feeding 4 weeks), HKL group (normal
feed containing 50 mg/kg HKL). The temperature, and humidity conditions, and light
time in the breeding environment were in line with the animal breeding requirements of
the Animal Management Committee of Yangzhou University. From 12 h before the end
of the animal experiment, all animals were fasted and then dissected in accordance with
the protocol and ethical procedures. The study was approved by the Animal Care and
Use Committee of Yangzhou University (Approval ID: 202012-201). Blood samples were
allowed to stand at 37 ◦C for 30 min then centrifuged at 2500× g rpm for 10 min and the
supernatant was collected. Part of the kidney tissue was immersed in neutral tissue fixative
and 2.5% glutaraldehyde fixative, and the remaining tissue was stored in a refrigerator at
−80 ◦C for detection of related indicators.

CdCl2 was obtained from Sigma-Aldrich (St. Louis, MO, USA), HKL and purchased
from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).

2.2. Detection of Biochemical Indicators in Serum

The main biochemical indicators of renal function were measured in quail serum
using AU5800 automatic blood biochemical analyzer (Beckman Coulter, Brea, CA, USA),
including Crea, uric acid (UA) and blood glucose.

2.3. Preparation and Observation of Transmission Electron Microscope Samples

Kidneys were divided into small pieces, fixed in buffered glutaraldehyde 2.5% at
4 ◦C for 2 h, then the samples were post-fixed in 1% osmium tetraoxide for 2 h at 4 ◦C
and dehydrated in different concentrations of ethanol. The samples were immersed in a
mixture of equal volumes of ethanol (100%) and acetone (100%) for 15 min, then in acetone
(100%) for another 15 min. Subsequently, the samples were placed in equal volumes of
epon and acetone for 60 min, then 1:2 acetone: epon for 60 min. After that, the samples
were immersed in epon only in embedding capsules and placed in a 60 ◦C oven overnight
for polymerization. Ultrathin sections (60 nm) were prepared. The sections were subjected
to double staining with 2% uranyl acetate for 10 min followed by Reynold’s lead citrate
solution for 10 min. The morphology of the cell nucleus, the ultrastructure of mitochondria
and autophagosomes were observed and photographed using a transmission electron
microscope (Philips, AMS, NL) under different magnifications.

2.4. RNA Isolation and Quantitative Real-Time PCR

According to whole genome sequence of the studied gene in Gen Bank, Primer 5.0
software (Premier, Palo Alto, CA, USA) was used to design primers for related genes.
The designed primers were handed over to the Invitrogen company for synthesis. The
primer sequence is shown in Supplementary Table S1. RNA was separated using Trizol
(Ambion, UT, Austin, TX, USA). RNA was subsequently reverse transcribed into cDNA
using PrimeScript™ RT Master Mix (Takara, Japan). Quantitative PCR was performed
using SYBR Green™ Premix Ex Taq™ (Takara, Japan). QRT-PCR was performed using a
two-step method, and the reaction conditions were set at 95 ◦C, 30 s; 60 ◦C, 37 s; 40 cycles.
All reactions were carried out using the 7500 Real Time PCR System (Applied Biosystems,
Shanghai, China). After the reaction was finished, the specificity of the PCR product was
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determined by a melting curve. Gapdh was used as the internal reference, and the relative
fold change was calculated by the comparative CT method.

2.5. Determination of Elements

About 250 mg of fresh kidney tissues were weighed and subsequently placed in an
oven for 48 h to completely dehydrate to obtain dry tissue. The dry tissues were accurately
weighed using an electronic analytical balance. Each dry tissue sample was dissolved with
3 mL HNO3 (excellent grade pure) and placed in a microwave digester (Intertek, London,
UK) for tissue digestion, and a blank sample tube was set with only 3 mL HNO3 added.
After dissolution the solution was transferred to a constant volume tube, and ultrapure
water was added to a constant volume of 10 mL and mixed. The content of Cd and other
trace elements were measured using an atomic absorption spectrophotometer (PerkinElmer,
Waltham, MA, USA), and blank sample tube was used as a zero to remove background
interference. The final element contents are presented as the ratio of the detected element
content (µg or mg) to the dry weight (g) of the tissue sample.

2.6. Hematoxylin and Eosin (H&E) Staining

Freshly separated quail kidney tissue was fixed in neutral fixative for 24 h. The sample
was rinsed with running water for 12–24 h. The samples were placed in a series of ethanol
with different concentrations of 15, 30, 50, 70, 80, 95 and 100% for 45 min to 1 h to completely
dehydrate the tissue. The tissue was first placed in an equal volume mixture of absolute
ethanol and xylene for 60 min, and then placed in xylene I and II for 60 min. The samples
were embedded in paraffin and formed into paraffin sections by a sectioning mechanism.
The slices were placed in xylene I and II for 10 min each. The slices were further placed
in the mixture of xylene and absolute ethanol for 2 min. The samples were placed in 100,
90, 80 and 70% alcohol for 5 min and rinsed with running water. Hematoxylin staining
was conducted for 5–10 min, and the samples rinsed with running water. The samples
were treated with 0.5% hydrochloric acid ethanol for 1–3 s and washed with running water,
then stained with 0.5% eosin solution for 1–3 min and rinsed with running water. The
slices were placed in 70, 80, 90, 100% alcohol for 10 s, and then in xylene 2 min. The slices
were sealed with neutral gum, and then histopathological changes were observed under an
optical microscope.

2.7. Apoptosis Detection by TUNEL Assay

Apoptosis was assessed in kidney tissues using the terminal deoxynucleotidyl transferase-
mediated nick-end labeling (TUNEL) of fragmented nuclei assay. According to the manu-
facturer’s instructions (Roche, Mannheim, Germany), the paraffin-embedded sections of
kidney tissues of different groups were processed. Finally, apoptotic cells within the kidney
tissues were detected with a fluorescent microscope. Apoptotic cell number in each section
was calculated by counting the number of TUNEL-positive apoptotic cells in four fields per
slide randomly at 400× magnification.

2.8. Detection of MDA and Antioxidant Enzymes Activity

Kidney tissue (80–100 mg) was weighed and rinsed with 1 mL of normal saline, fol-
lowed by centrifugation at 2500× g rpm for 5 min and the supernatant was removed.
The tissue pellet was homogenized with 1 mL of normal saline to produce a 10% tissue
homogenate. Then, the homogenate was centrifuged at 2500× g rpm for 10 min and the
supernatant was collected. The level of malondialdehyde (MDA) and glutathione (GSH),
and the activities of catalase (CAT), total superoxide dismutase (T-SOD), and total antioxi-
dant capacity (T-AOC) were evaluated by commercial kits according to the manufacturers’
protocols. The protein concentration of the samples was determined by bicinchoninic acid
(BCA) assay to normalize the level. All detection kits used were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China).
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2.9. Western Blot

Total protein from kidney tissue was extracted by a commercial kit (NCM, Suzhou,
China) and protein concentration was determined using a BCA protein detection kit (Bey-
otime, Shanghai, China). Protein samples were separated by SDS-PAGE and transferred to
polyvinylidene difluoride (PVDF) membranes (Merck, Cork, Ireland). After blocking with
TBST containing 5% fat-free milk, PVDF membranes were co-incubated with diluted anti-
BAX (ab32503, abcom, Cambs, UK), anti-BCL2 (ab196495, abcom, Cambs, UK), anti-LC3
(L7543, Sigma, St. Louis, MO, USA), anti-SQSTM1 (P0067, Sigma, St. Louis, MO, USA) and
anti-β-actin (4970L, CST, Danvers, MA, USA) at 4 ◦C overnight. PVDF membranes were
incubated with secondary antibodies (CST, MA, USA) at 37 ◦C for around 2 h and washed
with PBST. By using the ECL kit (NCM, Shanghai, China), the immune complex was visual-
ized by a Tanon chemiluminescence imaging analysis system (Tanon, Shanghai, China).
Densitometry analysis was quantified by Image J software (NIH, Bethesda, MD, USA).

2.10. Statistical Analysis

The statistical results are presented in Mean ± SEM (n ≥ 3). IBM SPSS Statistics
19 statistical software (IBM, Armonk, NY, USA) was used to perform one-way ANOVA
statistical analysis on the data. p > 0.05 means that there is no significant difference
between different groups; p < 0.05 means that the difference between different groups
is significant; p < 0.01 means that the difference between different groups is extremely
significant. GraphPad Prism software (San Diego, CA, USA) was used to draw charts.

3. Results
3.1. Honokiol Relieves Cd-Induced Quail Kidney Injury

To study the effect of HKL on Cd-induced nephrotoxicity, body weight and kidney
weight were analyzed first. The results showed that Cd significantly reduced the body
weight, and significantly increased the kidney weight and the kidney coefficient compared
to control group. However, the co-treatment group had significant reversal of these changes
induced by Cd exposure (Figure 1A–C). Histopathological changes were observed to assess
the injure of quail kidneys. The renal tubular epithelial cells and glomerular cells in the
control group and the HKL group were arranged regularly without any visible changes.
The Cd-treated group showed significant damage to morphology, mainly manifested as
disordered arrangement (yellow arrow), vacuolization, swelling (green arrow), or even
sloughed off (blue arrow) of renal tubular epithelial cells, as well as red blood cells infil-
trating the renal interstitium (red arrow). These pathological changes induced by Cd were
alleviated significantly in the co-treatment group (Figure 1D). Additionally, renal function-
related biochemical indicators showed that in addition to blood glucose, the UA and Crea
levels in the Cd-exposed group significantly increased compared to the control group,
but the changes caused by the Cd were reversed in the co-treatment group (Figure 1E–G).
These results indicate that HKL can effectively alleviate quail kidney damage caused by
Cd treatment.
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Figure 1. Honokiol alleviates Cd-induced kidney injury in quail. Quail body weight (A), kidney
weight (B) and kidney coefficient (C) were analyzed. (D) The histological structure of quail kidney
was observed by H&E staining. The magnifications were 100 and 200 respectively, and the scale
bars indicate 50 and 20 µm respectively. The contents of Crea (E), UA (F) and Glucose (G) in serum
were detected. Each experiment was duplicated at least three times (ns, not significant; * p < 0.05,
** p < 0.01).

3.2. Honokiol Relieves Cd-Induced Oxidative Stress in Quail Kidneys

Since oxidative stress is one of the main causes of Cd-induced cytotoxicity, we explored
whether the protective effect of HKL on quail nephrotoxicity caused by Cd is related to
its antioxidant nature. The oxidation status of the body is coordinated and regulated by
the oxidation-antioxidant systems. Among them, the antioxidant system mainly includes
a variety of antioxidants and antioxidant enzymes, such as GSH, SOD and so on. First,
we detected the content of MDA in quail kidney, which is a product of lipid peroxidation,
and its content is widely used as a key indicator to evaluate the oxidation state of the body.
The result showed that compared with the control group, Cd significantly increased the
MDA content, which was prevented by HKL administration (Figure 2A). Meanwhile, the
results of antioxidant enzyme activity and antioxidant content showed that, compared with
the control group, T-SOD, T-AOC and CAT activity, and GSH content were significantly
reduced in the Cd-treated group, and were alleviated by HKL administration (Figure 2B–E).
Subsequently, we detected expression levels of antioxidant-related genes at the transcription
level. These results showed that compared with the control group, Cd significantly reduced
the gene expression levels of Nrf2, Sod2, and Gss, but significantly increased the expression
levels of Hmox1 and Gpx4, which were reversed by HKL administration. However, Cat
gene expression did not change significantly in the Cd group and the co-treatment group
(Figure 2F–K). Finally, trace element contents in the kidney were detected by an atomic
absorption spectrometry. The results showed that compared with the control group, Cd
caused a significant increase in Zinc (Zn) and Copper (Cu) contents, but a significant
decrease in Iron (Fe) content in quail kidney tissue. The co-treatment group had significant
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reversal of the changes of trace elements caused by Cd. However, there was no significant
change in the Selenium (Se) content of the Cd group and the co-treatment group (Figure 3A–
E). These results indicate that the protective effect of HKL on quail nephrotoxicity induced
by Cd is partially related to its antioxidant properties.
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Figure 2. Honokiol repairs Cd-induced oxidative stress in quail kidneys. (A) The level of MDA in
quail kidney tissues. The activity of T-AOC (B), T-SOD (C) and CAT (D) was detected to evaluate the
level of oxidative stress in kidney tissue. (E) GSH levels in the kidney tissues of quail. The expression
levels of antioxidant-related genes Nrf2 (F) and Hmox1 (G), Gpx4 (H), Gss (I), Cat (J) and Sod2 (K) in
quail kidney tissues were analyzed using qRT-PCR. The expression of genes was measured by the
comparative CT method. Each experiment was duplicated at least three times (ns, not significant;
* p < 0.05, ** p < 0.01).
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Figure 3. Effects of Cd or Honokiol treatments on the content of Cd and other trace elements in quail
kidneys. The contents of Cd (A) and trace elements Fe (B), Cu (C), Zn (D) and Se (E) in kidneys were
detected by atomic spectrophotometer. Each experiment was duplicated at least three times (ns, not
significant; * p < 0.05, ** p < 0.01).

3.3. Honokiol Alleviates Cd-Induced Autophagy Dysfunction in Kidney

Autophagy is a strictly conserved metabolic process in evolution. A large number
of studies have proved that autophagy is involved in Cd-induced nephrotoxicity, and
oxidative stress is also a common cause of autophagy [38]. The above results proved
that HKL reduce the body’s oxidative stress through its antioxidant properties. Based
on this, we further studied the relationship between autophagy and HKL on Cd-induced
nephrotoxicity. Transmission electron microscopy showed that the number of autophago-
somes or autophagolysosome increased significantly in the Cd treatment group compared
with the control group, but the increase caused by Cd was reduced significantly in the
co-treatment group (Figure 4A). Secondly, the expression levels of autophagy-related genes
were detected by qRT-PCR. The results showed that compared with the control group, the
Lc3b, Atg5 and Becn1 genes were significantly increased in the Cd-treated group, while the
expression levels of Tfeb, Cstb and Cstd were significantly reduced. Compared with the
Cd-treated group, the Lc3b, Atg5 and Becn1 genes in the co-treatment group were reduced
significantly, and Tfeb, Cstb and Cstd were significantly increased. However, the expression
of Sqstm1, Lamp2 and Rab7 genes did not change significantly in the Cd-treated group and
the co-treatment group (Figure 4B–J). Finally, Western blot results showed that Cd caused
increased expression of SQSTM1 and LC3 II proteins, suggesting that autophagy is dys-
functional, possibly due to the inability of SQSTM1 and LC3 II proteins to be degraded by
autophagy, leading to their accumulation. As expected, HKL supplementation significantly
reduced the up-regulation of SQSTM1 and LC3 II proteins in quail kidneys induced by
Cd (Figure 4K–M). These results indicate that HKL can alleviate autophagy dysfunction
induced by Cd in quail kidneys.
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Figure 4. Honokiol alleviates the Cd-induced autophagy blockade and lysosomal dysfunction in quail
kidneys. (A) Autophagosomes or autolysosomes (the arrows represent) observed by transmission
electron microscopy. The magnification is 18,500, and the scale bar is 0.5 µm. Expression levels of
autophagy-related genes Lc3b (B), Atg5 (C), Becn1 (D) and Sqstm1 (E) were analyzed using qRT-PCR.
The expression levels of lysosomal function-related genes Lamp2 (F), Rab7 (G), Tfeb (H), Cstb (I) and
Cstd (J) were analyzed using qRT-PCR. The expression of genes was measured by the comparative
CT method. Representative Western blot images (K) and quantitative analysis (L,M) of SQSTM1 and
LC3 protein in total cellular lysates. Each experiment was duplicated at least three times. (ns, not
significant; * p < 0.05, ** p < 0.01).

3.4. Honokiol Inhibits Cd-Induced Quail Kidney Apoptosis

Next, we further explored the effect of Cd on apoptosis in the quail kidney and the
protective effect of HKL. Transmission electron microscopy was used to observe nuclear
morphological changes. The control group and the HKL treatment group presented intact
nuclei and homogenized chromatin, but shrunken nuclei were observed in the Cd-treated
group. Co-treatment of HKL with Cd significantly alleviated Cd-induced changes in
nuclear morphology (Figure 5A). The Tunel staining result showed that the number of
Tunel-positive cells was low in the control group and the HKL-treated group, but Cd
significantly increased the number of Tunel-positive cells, especially in the renal tubule area.
As expected, the number of Tunel-positive cells in the co-treatment group was significantly
reduced compared with Cd-treated group (Figure 5B). Subsequently, the expression of
apoptosis-related genes was assessed to further prove the effect of co-treatment on the
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apoptosis of quail kidneys. Compared with the control group, Cd significantly increased
the expression of Casp3 and Bak1 genes and significantly decreased the expression of the
Bcl2 gene. Compared with the Cd treatment group, the expression of Casp3 and Bak1 genes
in the co-treatment group was reduced, while the expression of Bcl2 gene was significantly
up-regulated (Figure 5C–F). Finally, Western blot results showed that Cd up-regulated BAX
protein expression and down-regulated BCL2 protein expression, while co-treatment of
HKL with Cd significantly reversed these changes caused by Cd (Figure 5G–I). These results
indicate that HKL plays a protective role in Cd-induced nephrotoxicity by antagonizing
apoptosis.

Life 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

co-treatment of HKL with Cd significantly reversed these changes caused by Cd (Figure 
5G–I). These results indicate that HKL plays a protective role in Cd-induced nephrotoxi-
city by antagonizing apoptosis. 

 
Figure 5. Honokiol inhibits Cd-induced quail kidney apoptosis. (A)The nuclear morphology of quail 
kidneys was observed by transmission electron microscopy. Magnification x5800, scale bar = 2 μm. 
(B) Tunel staining was used to assess the level of apoptosis in quail kidneys (Arrows indicate Tunel 
-positive cells). The expression level of the apoptosis-related gene Casp3 (C), Casp9 (D), Bak1 (E) and 
Bcl2 (F) was detected using qRT-PCR. The expression of genes was measured by the comparative 
CT method. Western blot images (G) and quantitative analysis (H,I) of BAX and BCL-2 protein in 
total cellular lysates. Each experiment was duplicated at least three times. (ns, not significant; * p < 
0.05, ** p < 0.01). 

3.5. Honokiol Repairs Cd-Induced Inhibition of Mitochondrial Unfolded Protein Response in 
Quail Kidney 

Mitochondria are extremely sensitive to Cd toxicity, and mitochondrial dysfunction 
and biogenesis disorder have been involved in a variety of Cd poisonings. The ultrastruc-
ture of mitochondria was observed under transmission electron microscopy. The results 
showed the mitochondria in kidney tissue of the control group and HKL group showed a 
complete morphology with regular arrangement of cristae. Compared with the control 
group, the mitochondrial morphology of the Cd group changed significantly, mainly 
manifested as mitochondrial swelling and ridge breakage, dissolution or even loss, and 
mitochondrial membrane destruction. The mitochondrial ultrastructural damage of the 
quail kidney caused by Cd exposure was significantly improved in the co-treatment group 

Figure 5. Honokiol inhibits Cd-induced quail kidney apoptosis. (A) The nuclear morphology of quail
kidneys was observed by transmission electron microscopy. Magnification ×5800, scale bar = 2 µm.
(B) Tunel staining was used to assess the level of apoptosis in quail kidneys (Arrows indicate Tunel-
positive cells). The expression level of the apoptosis-related gene Casp3 (C), Casp9 (D), Bak1 (E) and
Bcl2 (F) was detected using qRT-PCR. The expression of genes was measured by the comparative CT
method. Western blot images (G) and quantitative analysis (H,I) of BAX and BCL-2 protein in total
cellular lysates. Each experiment was duplicated at least three times. (ns, not significant; * p < 0.05,
** p < 0.01).

3.5. Honokiol Repairs Cd-Induced Inhibition of Mitochondrial Unfolded Protein Response in
Quail Kidney

Mitochondria are extremely sensitive to Cd toxicity, and mitochondrial dysfunction
and biogenesis disorder have been involved in a variety of Cd poisonings. The ultra-
structure of mitochondria was observed under transmission electron microscopy. The
results showed the mitochondria in kidney tissue of the control group and HKL group
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showed a complete morphology with regular arrangement of cristae. Compared with
the control group, the mitochondrial morphology of the Cd group changed significantly,
mainly manifested as mitochondrial swelling and ridge breakage, dissolution or even loss,
and mitochondrial membrane destruction. The mitochondrial ultrastructural damage of
the quail kidney caused by Cd exposure was significantly improved in the co-treatment
group (Figure 6A). In addition, the statistical results of the average diameter and number of
mitochondria showed that compared with the control group, Cd significantly increased the
average diameter of mitochondria and significantly decreased the number of mitochondria,
which were significantly reversed by HKL administration (Figure 6B,C). Next, the expres-
sion levels of UPRmt-related genes in quail kidney were analyzed. The results showed that
compared with the control group, Cd significantly reduced the expression of Sirt1, Sirt3,
Nrf1, Ppargc1β and Tfam genes except the Ppargc1α gene, but the down-regulation of these
genes caused by Cd in quail kidney tissue was significantly reversed in the co-treatment
group (Figure 6D–I). These results indicate that HKL can exert beneficial effects on Cd-
induced quail nephrotoxicity by alleviating mitochondrial structural damage, repairing
mitochondrial dysgenesis, and maintaining mitochondrial quality control.
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Figure 6. Honokiol attenuates Cd-induced inhibition of the mitochondrial unfolded protein response
in quail kidneys. (A) Mitochondrial ultrastructure was observed by transmission electron microscopy.
Magnification ×18,500; scale bar = 0.5 µm. (B) The number of mitochondria was counted. (C) The
mitochondrial diameter was analyzed. The expression levels of the UPRmt-related gene Sirt1 (D),
Sirt3 (E), Ppargc1α (F), Ppargc1β (G), Nrf1 (H) and Tfam (I) were detected using qRT-PCR. Each
experiment was duplicated at least three times. (ns, not significant; * p < 0.05, ** p < 0.01).
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4. Discussion

Cd is a toxic heavy metal that exists widely in nature and has considerable occupational
and environmental hazards. Cd induces the production of ROS and causes oxidative stress,
which contribute to the development of various diseases including renal dysfunction, bone
disease and cardiovascular disease [2]. Many antioxidants and herbs have been used to
counteract the toxicity caused by Cd exposure [39]. HKL is a natural lignan extracted
from the Chinese herbal medicine species Magnolia officinalis, with anti-oxidation effects.
However, there are few reports on the effect of HKL on Cd toxicity. This study used quail
as an animal model to explore the mechanism of Cd on renal injure and the protective effect
of HKL on Cd-induced nephrotoxicity. We found that Cd accumulated in quail kidney and
caused kidney pathology and functional changes. Secondly, Cd induced oxidative stress,
autophagy dysfunction, apoptosis, and UPRmt disorder. Finally, HKL supplementation in
the basal diet significantly improved the kidney injury caused by Cd in quail.

Kidney is the main target organ for Cd bioaccumulation, second only to the liver, which
makes the kidney exceptionally sensitive to Cd toxicity [40]. Cd causes varying degrees
of irreversible kidney damage in poultry, such as chickens, ducks and quails [15,25,41].
Similar to previous results, our study showed that Cd caused body weight loss in quail,
but increased kidney weight and the kidney coefficient. Cd also caused pathological
changes in kidney tissue, which were mainly manifested as glomerular stenosis, red blood
cell infiltration in the interstitium, irregular arrangement of renal tubular epithelial cells,
and swelling, and even shedding, of some renal tubular epithelial cells. In addition,
Cd increased the UA and Crea content in quail, compared to controls. However, HKL
supplementation significantly reversed the Cd-induced changes in the above-mentioned
histopathology and renal function-related indicators.

Cd-induced nephrotoxicity is closely related to oxidative stress, resulting in the perox-
idation of biological macromolecules, such as proteins, lipids and DNA [14]. Many trace
elements are involved in regulating the balance of the oxidative-antioxidant system as key
cofactors of antioxidant enzymes or as natural antioxidants; however, Cd can replace or
reduce the absorption of trace elements involved in antioxidants [42,43]. Our study showed
that Cd caused an increase in MDA content, but a decrease in GSH content, and a decrease
in T-AOC, T-SOD and CAT activities in quail kidneys compared to controls. Cd also in-
duced a significant reduction in Fe content and a significant increase in Cd, Zn and Cu
content, except for Se content, compared to the control. In addition, Nrf2 is a transcription
factor and a key regulator of oxidative stress, which can coordinate the activation of multi-
ple Nrf2-dependent target genes induced by stress. Studies have found that Cd increases
the expression of the Nrf2 gene and its target genes in chicken kidneys [15]. Notably, our
study found that Cd significantly altered the expression levels of antioxidant-related genes,
except the Cat gene, in kidneys, which may be related to excessive Cd bioaccumulation and
severe damage in the kidney caused by high concentration Cd exposure in this experiment.
HKL supplement partially alleviated the Cd-induced changes in oxidative stress-related
indicators in quail kidneys, which may be related to the potent antioxidant properties of
HKL [44,45].

Autophagy is an evolutionarily conserved lysosomal-dependent degradation pro-
cess. Oxidative stress-mediated autophagy dysfunction is beneficial to Cd-induced renal
toxicity, which mainly involves the fusion of autophagosomes and lysosomes and lysoso-
mal dysfunction. Previous studies have found that autophagy is involved in Cd-induced
duck kidney injury in vivo and in vitro [16,46]. Our study showed that Cd caused the
up-regulation of Lc3b, Becn1 and Atg5 genes and significantly reduced the expression of
Tfeb and target genes Cstb and Cstd in quail kidneys. Consistently, transmission electron mi-
croscope showed that the number of autophagosomes and autophagolysosomes increased
after Cd treatment. HKL supplementation partially reversed Cd-induced changes in renal
autophagy-related markers. However, Cd or HKL supplementation had no significant
effect on Sqstm1, Rab7a and Lamp2 gene expression. Next, we explored the effect of HKL
and Cd on apoptosis, i.e., gene-regulated programmed death. Studies have found that
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Cd induces the expression of apoptosis-related genes or cell nuclear shrinkage in duck
kidneys or quail liver [25,41]. In this experiment, Cd caused obvious cell nucleus shrinkage
accompanied by crescent-shaped depressions, and increased the number of Tunnel-positive
cells significantly. Subsequently, we found that the expression of the pro-apoptotic genes
Casp3 and Bak1 increased and the expression of the anti-apoptotic gene Bcl2 decreased after
Cd treatment, but the Casp9 gene did not change significantly compared with the control.
In addition, Western blot results showed that Cd increased BAX, but decreased BCL-2
protein expression. HKL supplementation significantly alleviated Cd-induced changes in
apoptosis-related markers in quail kidneys. Therefore, dysfunction autophagy caused by
Cd may further lead to apoptosis and cause quail kidney damage. In line with with our
hypothesis, studies have shown that repairing dysfunctional autophagy can significantly
alleviate Cd-induced apoptosis and rat kidney injury [21].

UPRmt is a major stress response and protective mechanism for repairing damaged
mitochondria. Studies have found Cd causes the up-regulation of UPRmt-related genes
in duck kidneys, but the expression of some of them decreased with an increase of Cd
concentration [15]. In the present study, Cd caused disruption of mitochondrial structural
integrity, loss of cristae, swelling and reduction of mitochondrial numbers. Further, Cd de-
creased expression of the UPRmt-related genes Sirt1, Sirt3, Nrf1, Ppargc1β and Tfam, except
for Ppargc1α. HKL supplementation significantly alleviated mitochondrial ultrastructural
damage and partially upregulated the downregulation of UPRmt-related gene induced by
Cd in quail kidneys. We speculate that low-dose Cd compensatively activates UPRmt to
eliminate misfolded proteins in the mitochondrion, but UPRmt is eventually inhibited or
insufficient with increasing Cd concentrations or prolonged exposure to Cd, resulting in mi-
tochondrial structural damage and dysfunction. In addition, Cd-induced apoptosis in quail
kidneys may be related to UPRmt inhibition, because supplementation with HKL reversed
the down-regulation of UPRmt-related genes induced by Cd, and the level of apoptosis
was correspondingly reduced, which may be related to the mitigation of mitochondrial
dysfunction by repaired UPRmt. Interestingly, further activation of URPmt upregulated the
pro-apoptotic gene Bax in a study of fat and obesity-associated genes (FTO) on adipocyte
metabolism [47]. The difference between the two studies may be due to different cells and
different treatments, and the relationship between UPRmt and apoptosis needs to be further
investigated. It has been reported that UPRmt and mitophagy, a selective autophagy that
degrades damaged mitochondria synergistically, alleviates LPS-induced cardiac dysfunc-
tion, and endogenous UPRmt is upregulated and plays a compensatory role in maintaining
mitochondrial homeostasis in the context of mitophagy inhibition [48]. Notably, the present
results also found that Cd caused an increase in the number of encapsulated mitochondria
(Figure 4A, see yellow arrow), accompanied by an increase in the number of autophago-
somes or autophagolysosomes. Combined with the Cd-induced decrease in UPRmt-related
gene expression, our results imply that UPRmt inhibition may play a positive regulatory role
in mitophagy activation. Consistent with our results, it has been reported that continued
stimulation can cause mitochondrial damage to develop locally in the entire mitochondria,
and then activate mitophagy to remove the entire damaged mitochondria, otherwise the
dysfunctional mitochondria will cause further cell damage [49].

5. Conclusions

Cd causes quail kidney injury by inducing oxidative stress, autophagy dysfunction,
UPRmt inhibition and apoptosis, and HKL supplementation significantly alleviates Cd-
induced nephrotoxicity, which may be related to the potent antioxidant effect of HKL. In
conclusion, this study elaborates the mechanisms underlying nephrotoxicity caused by Cd
and provides potential applications for HKL-targeted therapy of kidney injury in livestock
and poultry breeding.
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