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Abstract

Deep Learning has a large impact on medical image analysis and lately has been adopted

for clinical use at the point of care. However, there is only a small number of reports of long-

term studies that show the performance of deep neural networks (DNNs) in such an environ-

ment. In this study, we measured the long-term performance of a clinically optimized DNN

for laryngeal glottis segmentation. We have collected the video footage for two years from

an AI-powered laryngeal high-speed videoendoscopy imaging system and found that the

footage image quality is stable across time. Next, we determined the DNN segmentation

performance on lossy and lossless compressed data revealing that only 9% of recordings

contain segmentation artifacts. We found that lossy and lossless compression is on par for

glottis segmentation, however, lossless compression provides significantly superior image

quality. Lastly, we employed continual learning strategies to continuously incorporate new

data into the DNN to remove the aforementioned segmentation artifacts. With modest man-

ual intervention, we were able to largely alleviate these segmentation artifacts by up to 81%.

We believe that our suggested deep learning-enhanced laryngeal imaging platform consis-

tently provides clinically sound results, and together with our proposed continual learning

scheme will have a long-lasting impact on the future of laryngeal imaging.

1 Introduction

Laryngeal videoendoscopy is a major assessment tool to evaluate voice physiology qualitatively

and quantitatively (Fig 1). Especially for quantifying voice physiology, high-speed videoendo-

scopy (HSV) [1, 2] is an emerging technique that is able to visualize each glottal cycle with

high spatial and temporal resolution. As the vocal folds, the main source of our voice, are

vibrating hundreds of times each second, high-speed recordings with at least 4,000 frames per

second (fps) are needed to accurately record this motion [1, 3]. This rich laryngeal imaging

data source has been assessed with various algorithms to understand voice physiology [4–6].
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The glottal area, the opening between the two vocal folds, is a good proxy for assessing the

oscillation behavior [1, 7]. Therefore, many works have focused on the segmentation of the

glottal area (Fig 1), especially avoiding any manual intervention [7, 8]. This critical step is one

of the main bottlenecks of the data analysis pipeline and has been the reason why HSV is barely

applied in the clinic, because fully automatic data analysis solutions have not been available

[1]. Lately, it has been shown that deep neural networks (DNNs) are highly suitable for solving

the task of glottis segmentation [9–12], but were also employed in various other laryngeal

imaging tasks [13–15].

DNNs are state-of-the-art in image segmentation [16–18]. These DNNs determine a given

class on a pixel-by-pixel level in a given image. A common architectural design is the usage of

contracting and expansion paths [18, 19]. The U-Net architecture is a major DNN in biomedi-

cal image segmentation [20] and has seen widespread adaptation. A plethora of U-Net-derived

variants was proposed [21–23]. However, it has been shown that the base U-Net with appro-

priate hyperparameter selection is outperforming largely more specialized variants [24].

In terms of glottis segmentation, U-Net-derived DNNs were also optimized towards clinical

applicability with barely sacrificing segmentation accuracy [9]. Together with the recent devel-

opment of an open-source HSV system, namely OpenHSV, the latest hardware and software

components were introduced [25] that features these lean optimized DNNs for potential clini-

cal use. However, there is no record of how these DNNs perform actually on a broad spectrum

of unseen data, as they have been validated on limited and selected data.

In this work, we report the performance of the AI-powered OpenHSV system together with

the DNN in a two-year clinical environment. Our main contributions are summarized as fol-

lows: (1) we describe for the first time the overall image quality distribution during a two-year

period of clinical use, and if lossy data compression is suitable for data storage and subsequent

data analysis, (2) give an unbiased performance evaluation of previously proposed optimized

DNNs for clinical use for different data origins and (3) employ a continual learning and fine-

tuning strategy to allow continuous integration of novel data into the DNN. Taken together,

we strongly believe that our study provides trust and shows the reliability of the OpenHSV sys-

tem, positively impacting future clinical adaptation.

2 Methods

2.1 OpenHSV system

We are using the OpenHSV platform introduced in [25]. Subjects are typically examined using

a rigid endoscope equipped with a high-speed camera (IDT CCmini-1540) running at 4,000

Fig 1. Data acquisition and analysis workflow. Each examination yields video and audio data, where the video data is stored

either lossy or lossless compressed. In this study, we evaluate which data source and if cropping the video data to an ROI is

sufficient for reliable glottis segmentation using previously proposed clinically optimized segmentation networks. The glottal area is

computed for each video frame and plotted across time yielding the glottal area waveform (GAW), which is crucial for computing

clinically relevant parameters. We investigate in this study how collected data can be used to allow constant fine-tuning of the

segmentation network using continual learning schemes.

https://doi.org/10.1371/journal.pone.0266989.g001
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fps. Illumination is granted by a high-power LED light source (Storz 300 W LED). Each

recording is at least 1,000 frames long and contains synchronously acquired video and audio

data. We further record patient metadata consisting of the patient’s age, gender, and condition.

For each video, we save two files encoded with the h.264 codec: (1) lossy compression using

common settings for video and (2) lossless compressed data to recover the original recorded

raw data. For lossy compression, we use the libx264 codec, the yuv420p pixel format and set

the quality to 5 resulting in a varying bitrate. For lossless compression, we used the libx264rgb

codec, the rgb24 pixel format, set the ‘-crf’ flag to 0 and used the ultrafast preset.

2.2 Subjects

We assessed a total of 583 recordings acquired between November 2019 and November 2021.

All recordings were acquired in line with local regulations (Ethikkommission Medizinische

Fakultät, Friedrich-Alexander-University Erlangen-Nürnberg, #290_15). All data was analyzed

retrospectively. We first selected only those recordings that featured a complete set of data,

such that 295 recordings remained. Next, we manually investigated the data quality. We

ranked each video on an ordinary scale: 0 (insufficient), 1 (okay), 2 (excellent). Videos ranked

0 were showing insufficient data quality, such as non-visible glottis or foggy videos, and were

discarded. Finally, 267 recordings from 202 unique patients remained and were subjected to

further analyses (Fig 2A). We report the frequency of recordings across the last two years in

Fig 2B. Additionally, COVID-19 cases for Germany were provided as a reference for how data

generation was affected by lock-downs. The number of recordings were higher before the first

lock-down, but their fluctuation remained constant when the general clinical activity was

restored. The age distribution of the patients was largely spread (Fig 2C), where the mean age

is 47.2 ± 20.2 (std) years. The reported gender for the analyzed subjects is 31.2% male, 66.8%

female and 2.0% had no further specified gender. The average file size for lossless and lossy

recordings was 2.06 ± 1.27 GB and 8.97 ± 5.16 MB, respectively (see Fig 2D). As the lossy files

Fig 2. Acquired OpenHSV data overview. A: From initial 583 recordings, we excluded datasets that are missing any kind of data.

From these, we excluded ones with insufficient data quality, such as occluded glottis. B: Frequency of recordings across the two year

time frame is shown in black. Each bin corresponds to the recordings acquired in this week, denoted as year/calender week. The

Germany COVID-19 cases are shown as a 7-day-average in gray. C: Age distribution across selected recordings from A. D:

Comparison of file size between lossy and lossless compression.

https://doi.org/10.1371/journal.pone.0266989.g002
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have an around 235-times lower file size than the lossless compressed counterparts, we investi-

gated in this study if the lossy compression has an impact on the segmentation performance.

2.3 Image quality assessment

As we saved the data in two different compression modes, namely lossy and lossless, we evalu-

ated if there are any compression artifacts. First, we investigated the dynamic range of the

image, where 0 is no dynamic range and 1 is full dynamic range by computing the normalized

absolute difference of the minimum and maximum pixel value. We determined the no-refer-

ence, completely blind image quality score “Natural Image Quality Evaluator” (NIQE) [26] to

provide an unbiased score for objective image quality assessment. We further assessed full ref-

erence metrics, such as peak signal to noise ratio (PSNR) and structural similarity index metric

(SSIM) [27] to compare lossy compression against the lossless stored data. PSNR can be

described as follows:

PSNR ¼ 10 � log
10

maxðIÞ2

MSE

� �

ð1Þ

where max(I) is the maximum value corresponding to the highest pixel value with respect to

images, and MSE is the mean squared error between two images I and K, defined as follows:

MSE ¼
1

mn

Xm� 1

i¼1

Xn� 1

j¼0
½Iði; jÞ � Kði; jÞ�2 ð2Þ

SSIM is defined as follows:

SSIMðI;KÞ ¼ ½lðI;KÞ�a � ½cðI;KÞ�b � ½sðI;KÞ�g ð3Þ

where l(I, K) is a luminance comparison function, c(I, K) is a contrast comparison function

and s(I, K) is a structure comparison function between image I and image K. α> 0, β> 0 and

γ> 0 are weighting factors of each of the metrics. The respective details are described else-

where [27].

We use respective implementations of the metrics in scikit-video (NIQE) and scikit-image

(PSNR, SSIM).

2.4 Deep neural network

The OpenHSV system is shipped with a deep neural network (DNN) based on the U-Net

architecture [20], that was optimized for clinical use as described previously [9]. The used

DNN is openly available on the OpenHSV Github account at https://github.com/anki-xyz/

openhsv. The training process is described in [25]. Briefly, the DNN is setup in TensorFlow 2.2

and the high-level Keras package. The DNN was pretrained in a supervised fashion on the full

training dataset (55,750 images) of the open benchmark for automatic glottis segmentation

(BAGLS, [10]). The pretrained network has never been exposed to OpenHSV data during

training.

2.4.1 Region of interest. A rectangular region of interest (ROI) was drawn manually for

each recording. We saved the ROI coordinates for further use in JSON format. Each ROI was

adjusted as such that the width and height is divisible by 32 to ensure proper DNN

propagation.

2.4.2 Segmentation. Lossy or lossless compressed endoscopic frames were first converted

to grayscale by extracting the luminance channel using standard procedures, as it has been

shown that color information is not essential for glottis segmentation [10]. In some
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experiments, only an ROI around the vocal folds was used for inference. The input image

intensity was normalized between -1 and 1. The segmentation mask gained from the DNN

provides values in the range of 0 (background) and 1 (glottis) by a sigmoid function in the out-

put layer. For further use and due to memory limitations, we multiplied the predicted segmen-

tation masks by 255 in order to save the data in uint8 data format. The glottal area waveform

(GAW) is computed by summing the segmented pixels in each frame for every timepoint of a

given recording (see Fig 1).

2.4.3 Continual training. We performed retrospective continual training on the original

OpenHSV segmentation DNN. We preprocessed new images as described above and used two

continual learning strategies: We either selected a fixed time period for data collection (7, 14,

30 days) or a fixed video quantity (every 10, 20 or 40 videos, see also Fig 5A) starting from

November 2019. At each continual learning point, we trained the model for ten epochs using

the previously predicted segmentation masks as ground truth for the training process. We

chose a low learning rate of 10−6 combined with the Adam optimizer to fine-tune the model.

After each continual training step, we evaluated the occurrence of artifacts by visual assess-

ment (number of artifacts, shown in Fig 5B and S1 File) and computed the achieved Intersec-

tion over Union (IoU, [28]) score (Fig 5C and 5D) among others. The IoU score, also referred

to mask IoU score in terms of image segmentation, is a measure how well the prediction seg-

mentation mask overlaps with the ground-truth segmentation mask and ranges between 0 (no

overlap) and 1 (perfect overlap). It can be described as follows:

IoU ¼
jG \ Pj
jG [ Pj

ð4Þ

where G is the ground-truth segmentation mask and P is the predicted segmentation mask.

For the purpose of evaluation, we calculated several other metrics, namely boundary IoU [29],

pixel accuracy, and Dice coefficient.

3 Results

3.1 Recording quality is consistent across time

To evaluate the performance of the segmentation DNN, we first assessed the overall image

quality for both, lossless and lossy recordings, as this is a major confounding source for seg-

mentation success. First, we determined the maximum dynamic range of each given image.

We found that the maximum dynamic range is constantly high for both, lossless and lossy

recordings (Fig 3A, left panel), however, the dynamic range is significantly lower for lossy

recordings as for lossless recordings (paired Student’s t-test, p<0.01, Fig 3A, right panel).

Using a complete blind, non-reference metric, the NIQE score [26], we could show that loss-

less recordings have lower, therefore better NIQE scores until beginning of 2021 (Fig 3B),

afterwards the NIQE scores were highly overlapping. In [25], a mean NIQE for the OpenHSV

system of 13.19 was reported, showing that image quality has been consistent since the intro-

duction of the system.

To compare images retrieved from lossy recordings to their lossless counterparts, we relied

on two reference metrics, peak-signal-to-noise-ratio (PSNR) and structural similarity index

measure (SSIM). PSNR has a constant high value above 90 dB, suggesting a high-quality com-

pression (Fig 3C). In contrast to PSNR, SSIM also takes the perceptual change in structural

information into account. In Fig 3D we show that the lossy compressed videos nevertheless

are in almost perfect agreement with the lossless reference.
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In summary, we found that the image quality has single outliers, but overall is highly consis-

tent across time. Further, high PSNR and SSIM values indicate an overall accurate conversion

from lossless to lossy image content and high quality in lossy compressed videos.

3.2 Segmentation performance is not affected by lossy data compression

To further evaluate the performance of the segmentation DNN, we manually annotated the

glottal area in the first one hundred frames of ten randomly selected videos, which were manu-

ally rated as quality 2 (excellent). Using this ground truth and the predicted segmentation

masks by the DNN, we computed the Intersection over Union (IoU) for each frame across all

videos. We found that lossy and lossless saved videos achieve a similar performance with a

median IoU of 0.756/0.742 and 0.770/0.768 for segmentation masks computed with and with-

out ROI, respectively (Fig 4B). These IoU values are comparable to other works [9], where IoU

scores between 0.741 and 0.769 were achieved, and are sufficient for clinical reliability. The use

of an ROI enhances the segmentation speed as smaller images are used, however, this leads to

worse results. We hypothesize that this is caused due to the loss of global spatial information.

We further mined the computed IoU scores to determine why very low IoU scores are

obtained. Fig 4C shows that the low IoU scores emerge with a small segmented area, i.e. when

the glottis is closed. This is in line with previous reports [10], and has a negligible effect on the

data analysis. We next investigated if any configuration has an impact on the clinically relevant

glottal area waveform (GAW) signal. We were able to confirm that all combinations despite

their deviation in the IoU score have little to no effect on the GAW, as they do not deviate

(S1A Fig in S1 File) and almost perfectly correlate with each other (S1B Fig in S1 File), which is

important for downstream computation of quantitative parameters.

Fig 3. Image quality is relatively stable across time. A: Dynamic range per recording. Lossless compressed data in blue, lossy in orange. Boxplots show

the 95-percentile of the data. B: NIQE score for lossy (orange) and lossless (blue) compressed videos across time. C: Peak-Signal-To-Noise-Ratio

(PSNR) across time. D: Structural Similarity Index Measure (SSIM) across time.

https://doi.org/10.1371/journal.pone.0266989.g003
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To further emphasize the practical relevance of our model, we measured the inference time

on a CPU (Intel Xeon Silver 4110) and a GPU (NVIDIA GeForce RTX 2080 Ti) with and with-

out ROI. For this, we calculated the average ROI size of all annotated ROIs, resulting in an

input image size of 224x160 px. Predicting 100 images with an image size of 1024x1024 px on

CPU and GPU takes 38.55 ± 0.35 seconds and 1.73 ± 0.08 seconds, respectively. Using the

average ROI frame size on CPU and GPU results in a reduction of the inference time to

1.79 ± 0.23 seconds and 0.12 ± 0.009 seconds, respectively. Even on a CPU the inference is

quite fast when using ROIs instead of full frames. This underpins the possibility of using our

model in a clinical environment where computing resources are limited.

3.3 Continual training for DNN fine-tuning improves performance

Despite the fact that we gained mostly successful and accurate segmentations, we manually

reviewed all segmentation masks and found two common issues in a minority of videos (9%):

(1) artifacts in the segmentation masks and (2) empty segmentation masks (S2A Fig in S1

File). We hypothesized that continuous integration of new, system-specific data using contin-

ual training [30, 31] is increasing the DNN performance. Here, we evaluated two strategies for

integrating new data (Fig 5A). We either used a fixed time period or fixed quantities of videos.

We used artifact-free, full-frame, lossy compressed videos for continual training, as full frames

resulted in higher IoU scores (Fig 4A). We found that all strategies were able to reduce the

number of artifacts after only the first iteration of continual training and removed artifacts on

average by 38–48% (Fig 5B). Additionally, the more data is used for each training step, the

higher the impact on artifact removal, and that a fixed quantity is preferable to a fixed time

period (Fig 5B). In particular, when determining the median, i.e. what is the reduction in 50%

of all cases, we found that the fixed amount of 40 videos has the best overall performance of

reducing the artifacts of by 48%. In general, we can confirm that a fixed data amount seems to

Fig 4. Lossy compression does not affect segmentation performance. A: Input data for DNN inference. Either full-frame (magenta) or ROI-

constrained (green) image data were used for inference. Image data were stored either lossless or lossy compressed as .mp4-files (see Methods).

B: Intersection over Union (IoU) score per configuration shown in A. C: Dependency of IoU scores on the segmented glottal area. D:

Exemplary glottal area waveform for full frame (w/o ROI) and ROI-based (w/ ROI) segmentations. Lossy and lossless compressed data are

plotted in orange and blue, respectively.

https://doi.org/10.1371/journal.pone.0266989.g004
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be preferable to a fixed time frame, as the latter also shows an unstable performance behavior

across continual learning epochs (S1 File). To further quantify this effect more objectively, we

annotated the first 30 frames of each artifact video to compute IoU scores after each continual

learning step (Fig 5C and 5D). Each strategy was able to increase the IoU score already after

the first continual learning iteration, whereas a fixed data amount has a more stable and con-

stant performance (Fig 5C) compared to a fixed time interval (Fig 5D), similar to our observa-

tions with manually scored artifacts (S1 File). In addition, we determined the performance of

several other image segmentation metrics after each continual learning iteration. We found

consistent results across assessed metrics compared to the IoU score reported in Fig 5C,

strengthening our continual learning scheme (S1 File). In contrast, the fixed-time-period strat-

egy shows no apparent during the first COVID-19 wave, which again suggests that the use of

fixed quantities is preferable to fixed time periods. Taken together, our data shows that the seg-

mentation DNN is not only able to quickly adapt to new data, but also that continual learning

is an important feature in using DNNs in a clinical context.

4 Discussion

Laryngeal high-speed videoendoscopy is a major tool in quantifying laryngeal physiology. In

this study, we show that clinically optimized DNNs have an overall high performance due to a

constantly high data quality and a well-pre-trained, generalized DNN. Although the DNN has

never be trained on this system’s data, we still gain in most (91%) cases satisfactory results. The

remaining videos (i.e. 9%) show segmentation artifacts or have completely empty

Fig 5. Continual training alleviates segmentation artifacts. A: Continual training strategies. B: Reduction of artifacts depending on continual

learning strategy. C: IoU score of the first ten frames of the evaluated data after continual learning with a fixed amount of videos. D: Same as in

C, but with a fixed time interval.

https://doi.org/10.1371/journal.pone.0266989.g005
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segmentations while there is an open glottis in the endoscopic images. We further show that

lossy compressed videos are on par with lossless compressed videos in terms of segmentation

performance (Fig 4). Using continuous integration of novel data, we can also show that the

DNN is able to adapt such that previously identified artifacts are reduced and ensure a con-

stantly improving segmentation environment (Fig 5).

4.1 Acquisition circumstances as potential confounders

We could show that the analyzed data has a relatively high image quality throughout the ana-

lyzed time frame (Fig 3). However, other systems have been shown to suffer from low lighting,

which can be rescued with Deep Learning methods [32]. As the data acquisition is a manual

procedure, the motion of the patient or the examiner can be a confounder. Motion correction

techniques were proposed [33, 34] that can be used as a pre-processing step that have not been

employed in this analysis.

4.2 Comparison to other glottis segmentation platforms

In this study, we investigated the performance of a single DNN. Offline image analysis plat-

forms, such as the Glottis Analysis Tools [34] (GAT), can further serve as a reference for seg-

mentation performance and may allow segmentations of higher quality. In comparison, the

analyzed OpenHSV DNN has similar performance as the smallest GAT neural network, how-

ever, larger and more elaborate networks have superior performance (S1 File). Notably, this

effect is largely compensated by our continual training scheme (Fig 5). Nevertheless, the aver-

age IoUs obtained in this study are in an acceptable range (0.742–0.770) that do not impact the

clinical soundness of downstream quantitative parameter computation as shown previously

[9, 25].

4.3 Continual learning strategies

Our proposed continuous integration of more data is straightforward and effortless. We have

seen that using a fixed data mount is beneficial to a fixed time interval, which is maybe due to

the irregular patient stream (Fig 2). We further observe a decline in IoU scores across data and

time (Fig 5C and 5D) and a tendency to more artifacts after integrating a large amount of data

(Fig 5B, S1 File). To counteract catastrophic forgetting [30], a common problem in continual

learning schemes, additional precautions can be introduced, such as integrating the BAGLS

dataset [10] in the continual learning training dataset or testing on previous artifact-free

images if the current model performs better than before. Combining both aforementioned

examples would incorporate external and internal regularization factors that are maybe benefi-

cial in a more elaborate continual learning paradigm. In addition, we have not investigated

how more sophisticated human-in-the-loop strategies [35], such as manual segmentation and

retraining, perform. With wider adoption of OpenHSV, we also believe that federated learning

techniques [36] will further boost the DNN segmentation performance.

5 Conclusion

In this work, we evaluated a collection of videos recorded over a two-year period by an AI-

powered laryngeal high-speed videoendoscopy imaging system. The videos were stored in loss-

less and lossy formats. First, we examined recording quality over time, which we show is con-

sistent throughout the two-year period by calculating the reference metrics PSNR and SSIM.

We found that both, lossless and lossy compressed videos achieve high scores illustrating the

high image quality even for lossy compressed videos. To further investigate the effect of
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compression in storing laryngeal high-speed videoendoscopy data, we performed the glottis

segmentation task with a previously trained and openly available DNN based on the U-Net

architecture. Our results show that lossy compression does not affect the DNNs segmentation

performance. Determining the ROI (the glottal area) prior to the segmentation task enhances

the segmentation speed, however, affects IoU scores. We found two common segmentation

artifacts that we could improve using a continual learning scheme using a fixed data mount

across evaluation metrics. Future research should investigate human-in-the-loop strategies

combined with continual learning strategies to provide a constantly high segmentation

quality.
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34. Kist AM, Gómez P, Dubrovskiy D, Schlegel P, Kunduk M, Echternach M, et al. A deep learning

enhanced novel software tool for laryngeal dynamics analysis. Journal of Speech, Language, and Hear-

ing Research. 2021; 64(6):1889–1903. https://doi.org/10.1044/2021_JSLHR-20-00498 PMID:

34000199

35. Budd S, Robinson EC, Kainz B. A survey on active learning and human-in-the-loop deep learning for

medical image analysis. Medical Image Analysis. 2021; 71:102062. https://doi.org/10.1016/j.media.

2021.102062 PMID: 33901992

36. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated learning for healthcare informatics.

Journal of Healthcare Informatics Research. 2021; 5(1):1–19. https://doi.org/10.1007/s41666-020-

00082-4 PMID: 33204939

PLOS ONE Long-term glottis segmentation performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0266989 September 21, 2022 12 / 12

https://doi.org/10.1038/s41598-021-93149-0
http://www.ncbi.nlm.nih.gov/pubmed/34215788
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
https://arxiv.org/abs/2103.16562
https://doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
https://doi.org/10.1016/S2589-7500(20)30102-3
http://www.ncbi.nlm.nih.gov/pubmed/33328120
https://doi.org/10.1007/s11517-019-01965-4
http://www.ncbi.nlm.nih.gov/pubmed/30900057
https://doi.org/10.1016/j.jvoice.2004.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16102674
https://doi.org/10.1044/2021_JSLHR-20-00498
http://www.ncbi.nlm.nih.gov/pubmed/34000199
https://doi.org/10.1016/j.media.2021.102062
https://doi.org/10.1016/j.media.2021.102062
http://www.ncbi.nlm.nih.gov/pubmed/33901992
https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1007/s41666-020-00082-4
http://www.ncbi.nlm.nih.gov/pubmed/33204939
https://doi.org/10.1371/journal.pone.0266989

