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ABSTRACT

Right ventricular (RV) function is a strong independent predictor of outcome in a number of distinct cardiopulmonary diseases. 
The RV has a remarkable ability to sustain damage and recover function which may be related to unique anatomic, physiologic, 
and genetic factors that differentiate it from the left ventricle. This capacity has been described in patients with RV myocardial 
infarction, pulmonary arterial hypertension, and chronic thromboembolic disease as well as post‑lung transplant and post‑left 
ventricular assist device implantation. Various echocardiographic and magnetic resonance imaging parameters of RV function 
contribute to the clinical assessment and predict outcomes in these patients; however, limitations remain with these techniques. 
Early diagnosis of RV function and better insight into the mechanisms of RV recovery could improve patient outcomes. Further 
refinement of established and emerging imaging techniques is necessary to aid subclinical diagnosis and inform treatment 
decisions.
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The importance of the right ventricle (RV) in global 
cardiopulmonary function remains imperfectly understood 
and historically underappreciated despite increasingly 
detailed investigations of RV function as it applies to 
long‑term outcomes and clinical trial endpoints.[1,2] 
This is highlighted by a recognized disconnect between 
therapeutic improvement in pulmonary pressures and 
long‑term outcomes. In patients with pulmonary arterial 
hypertension (PAH), for example, long‑term outcomes 
more closely follow RV function and reverse remodeling 
than reversal of pulmonary hypertension and vascular 
pathology.[1] In light of these findings, some have called for 
clinical trial endpoints to be more focused on measures 
of global RV function. Therefore, urgency exists for the 
development of clinically useful and universal definitions 
of RV function derived from both invasive and noninvasive 
means.

The RV is understudied in relation to its hemodynamic 
and prognostic importance in a number of distinct cardiac 
and pulmonary diseases. As we learn more about RV 
function, it is clear that it exhibits remarkable plasticity 
in its ability to recover after injury (for example, after 
RV myocardial infarction (RVMI), left ventricular assist 

device (LVAD) placement, and lung transplantation). 
This may reflect a combination of the unique physiology 
of the RV and genetic and neurohormonal modifiers of 
RV function. With the expansion of LVAD implantation 
and lung transplantation, there is an exigent need to 
reliably measure the functional reserve of the RV to help 
determine a patient’s suitability for these procedures. 
A  more reliable measure of the recovery capacity, or 
plasticity, of a dysfunctional RV would help clinicians 
predict which patients will have improved function 
after being “unloaded.” Although noninvasive imaging 
and invasive hemodynamic assessment are helpful, they 
are limited by the complexity of RV anatomy and the 
often dramatic load dependence of many indices of RV 
function as well as lack of widespread availability. Here 
we review the prognostic significance of RV function, its 
plasticity in the face of injury, and the unique physiology 
which contributes to those features. We also discuss 
the current noninvasive assessment of RV function, 
the limitations therein, and future directions for  
research.

Address correspondence to:
Dr. Evan L. Brittain
1215 21st Avenue
MCE 5th Floor, South Tower
Nashville, TN 37232‑8802, USA
Email: evan.brittain@vanderbilt.edu

Access this article online
Quick Response Code: Website: www.pulmonarycirculation.org

DOI: 10.4103/2045-8932.101407

How to cite this article: Brittain EL, Hemnes 
AR, Keebler M, Lawson M, Byrd BF, DiSalvo 
T. Right ventricular plasticity and functional 
imaging. Pulm Circ 2012;2:309-26.



Pulmonary Circulation | July-September 2012 | Vol 2 | No 3 310

Brittain et al.: RV plasticity and functional imaging

Development, Genetics, and 
Anatomy

Unlike the other three chambers of the heart (derived from the 
primary heart field), the RV and both outflow tracts are derived 
from the anterior heart field with its own unique genetic 
pathways and chamber‑specific transcription factors.[3,4]

The macroscopic anatomy of the RV includes three 
parts: the inlet, which includes the tricuspid valve and 
papillary attachments; the trabeculated apex; and the 
infundibulum. This arrangement results in a crescentic 
shape which contracts with a peristaltic “bellows” action. 
This contraction pattern is the result of muscle fibers 
arranged mostly longitudinally with lesser contributions 
from circumferential fibers and LV attachments to the 
RV free wall.[5,6] The complex shape of the RV has led to 
historical difficulty in creating models to determine RV 
volume, a necessary component of measuring function. 
Using contrast angiography and different derivations of 
the area‑length method, the RV has been modeled as a 
parallelepiped, ellipsoid of revolution, triangular prism, 
and pyramid, all of which are less accurate than modern 
methods using cardiac magnetic resonance imaging (CMR) 
or three‑dimensional echocardiography (3DE).[7,8]

During fetal development, the wall thickness and force 
generated by the RV and LV are equal. In the first year 
after birth, RV thickness regresses, increasing compliance. 
These changes, in concert with a low impedance pulmonary 
bed, allow the RV to produce the same cardiac output as 
the LV with one‑fourth the stroke work and one‑sixth the 
muscle mass.[1,9] This regression is not observed in patients 
with congenital heart disease associated with pulmonary 
hypertension, which may contribute to their relatively good 
outcome compared to patients with PAH.[10‑12] Some have 
postulated, improved outcomes which may also be due 
to persistence of the fetal gene program (for example, a 
decrease in α‑myosin heavy chain and an increase in fetal 
β‑myosin heavy chain gene expression).[13]

The RV is subject to unique neurohormonal signaling as 
indicated by increased RV gene expression of endothelin‑1 
and endothelin receptors in RV tissue in a rat model of 
PAH.[14] This observation may explain in part why endothelin 
receptors lead to improved exercise capacity and reverse 
RV remodeling in PAH patients but no such improvements 
in patients with left heart failure.[15,16] In addition, patients 
with RVH of disparate etiologies show upregulation of 
phosphodiesterase type  5  mRNA and protein in the RV 
myocardium which is not present in the normal RV.[17]

The unique embryological, genetic, and neurohormonal 
processes that occur in the RV serve as the basis for the 

development of RV‑specific therapies. It has also led to the 
hypothesis that there exists a “permissive genotype” that 
leads to early failure of some RVs while others tolerate 
the same hemodynamic conditions with impunity. One 
piece of supporting evidence for this hypothesis lies in the 
angiotensin‑converting enzyme DD polymorphism. Among 
patients with PAH and equal PA pressures, those with DD 
polymorphism had normal RAP pressure and cardiac output 
whereas non‑DD patients had elevated RAP and decreased 
cardiac output;[18] however, these findings have not been 
replicated to date.

RV Physiology and Plasticity

Global RV function is determined by a dynamic combination 
of preload, afterload, and contractility. Preload is 
determined by volume status, tricuspid valve (TV) 
gradient, and return from the vena cava. RV afterload is 
a combination of resistance at the level of the pulmonary 
valve (usually negligible), pulsatile flow reflected from 
the main pulmonary arteries (PAs) and early bifurcations, 
impedance of the proximal PAs, and arterioles (pulmonary 
vascular resistance, PVR). Using PVR as a surrogate for 
total RV afterload, therefore, may be inaccurate, especially 
in patients with non‑compliant pulmonary vasculature 
(as in PAH) or proximal disease involvement such as 
with chronic thromboembolic pulmonary hypertension 
(CTEPH). In clinical practice, contractility of the RV, 
theoretically independent of loading conditions, reflects 
dynamic changes in preload and afterload, calcium loading, 
heart rate, adrenergic state, pharmacologic milieu, and 
ventricular interdependence.

It is important to make a distinction between RV dysfunction 
and RV failure. RV dysfunction may occur in the absence 
of clinical signs or symptoms. RV failure implies clinical 
sequelae as a result of RV dysfunction. This distinction is 
critical because one of the goals of RV imaging is to detect 
RV dysfunction before irreparable damage develops.

Under resting conditions, metabolic demand is low 
compared to supply. Compared to the LV, the RV has a lower 
mass as well as lower preload and afterload, resulting in 
lower overall oxygen demand.[9] These circumstances allow 
the RV to produce the same cardiac output as the LV with 
one‑fourth the stroke work and one‑sixth the muscle mass.[9] 
As a result, at times of stress, the RV is better prepared for 
increasing oxygen extraction.[19,20] RV physiology creates a 
favorable situation to maintain RV perfusion. As much as 
one‑third of the RV free wall is partially perfused by left 
coronary artery branches creating a dual blood supply.[21] 
The thin RV wall results in lower intramyocardial and 
intracavitary pressures allowing coronary flow throughout 
the cardiac cycle. Further, a transcoronary gradient from 
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left to right favors the formation of acute collateral vessels 
during RV ischemia.[22] This may explain why patients with 
isolated RV infarcts often do not experience angina.[23]

Like the LV, the RV tolerates volume overload better than 
pressure overload. Isolated volume‑overload states such 
as tricuspid regurgitation or an atrial septal defect can 
be sustained for years without a measureable decrement 
in RV function, though emerging evidence suggests an 
increase in morbidity and mortality with untreated 
tricuspid regurgitation.[24] The RV exhibits greater 
sensitivity to increases in afterload. While acute pressure 
overload (as in massive pulmonary embolism) results in 
failure of RV compensation and cardiovascular collapse, 
chronic pressure overload leads to RV dilation, a decrease 
in cardiomyocyte density, and an increase in connective 
tissue.[25,26] In the setting of normal pulmonary resistance, 
RV failure rarely occurs. In the unconditioned RV, small 
increases in pulmonary pressure result in dramatic 
decreases in systemic pressure and cardiac output.[27] 
Modest increases in right atrial pressure can generate an 
adequate transpulmonary gradient to maintain cardiac 
output.[28] In the unconditioned RV, small increases in 
pulmonary pressure result in dramatic decreases in system 
pressure and cardiac output.

Ventricular interdependence (VI) has critical hemodynamic 
implications in patients with right heart failure, particularly 
due to pressure overload or RV infarction. The septum is 
shared by both ventricles and normally bows toward the 
RV. When the RV dilates, the septum moves toward the 
LV and can dramatically affect LV filling compromising 
cardiac output (Fig. 1). Up to one‑third of RV stroke work is 
performed by septal contraction, and when RV dysfunction 
is severe LV septal contraction into the RV can compensate 
by providing pulmonary perfusion.[29] RV contractility 
improves with increased systemic mean arterial pressure 
(and thus peak‑developed LV pressure), likely due to 
increased coronary perfusion pressure. Inactivation of 
septal contraction decreases peak‑developed RV pressure 
by one‑half, indicating the important contribution of 
LV septal contraction to RV function.[30] RV enlargement 
decreases pericardial compliance, placing constraint on 
diastolic filling of both ventricles. Decreasing RV afterload 
or improving RV systolic function can result in the 
movement of the septum back toward the RV and resolution 
of deranged hemodynamics.

NonInvasive Assessment of RV 
Function and Hemodynamics

Invasive and noninvasive assessment of RV function and 
pulmonary hemodynamics provides a wealth of information 
but is limited by inherent characteristics of the RV 

including retrosternal position, complex geometry, and load 
dependence of many measurements. Invasive measurements 
are more accurate by virtue of direct measurement but 
come with the attendant risks of catheter‑based procedures. 
Due to morphological considerations discussed above, 
multiple tomographic views are necessary to obtain a 
complete appraisal of RV structure and function. Unlike 
the LV in which the biplane Simpson’s method is generally 
accepted as a global assessment of systolic function, no 
single parameter is considered a sufficient global measure 
of RV function. Cardiac MRI is emerging as a valuable tool 
in the assessment of RV and pulmonary vascular function 
and is considered the gold standard for measurement of RV 
volume.[31] A proposed algorithm for the assessment of RV 
function is found in Table 1.

Echocardiography
Echocardiography is favored as a screening test for RV 
dysfunction and pulmonary hypertension due to ease of 
acquisition and reproducibility. Technical aspects of the RV 
echocardiographic assessment, including normal values, 
acquisition tips, and limitations are found in Table  2. 
Examples of important parameters of RV function are found 
in Figure 2. Representative echocardiographic findings in 
RV dysfunction are found in Figure 3.

The accuracy of echo‑derived PASP is variable when 
referenced to right‑heart catheterization.[32] This variability 
precludes the use of echo as a sole diagnostic modality, and, 
as such, all patients with suspected PH should undergo 
invasive testing if such a diagnosis will change the patient’s 
management.

In patients without intrinsic lung disease, Doppler 
estimation of PASP has a fair correlation with invasive 
measurements.[33,34] In patients with intrinsic lung 

Figure  1: Reproduced with permission from Voelkel et al.[1] RV dilation 
changes LV geometry decreasing LV preload and worsening diastolic function. 
If acute, RV dilation may contribute to pericardial constraint, limiting filling of 
both ventricles. IPAH = idiopathic pulmonary arterial hypertension; LV = left 
ventricle; RV = right ventricle.

RV

Normal IPAH
(A) (B)

LV
RV LV
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disease, however, the accuracy of DE estimation was 
found to correlate poorly.[35,36] This discrepancy may be 
explained by sub‑optimal visualization of the TR jet in 
patients with lung disease whose chests are hyperinflated 
and whose hearts are rotated rightward. In a study of 

65 patients with various forms of PH, Fisher et al. found 
that DE estimated PASP accurately in only 48% of patients, 
over‑ and under‑estimating PASP in the remaining patients 
equally.[37] The mean pulmonary artery systolic pressure can 
be estimated by Doppler as well and used to corroborate 
the Doppler estimate of PASP. The time to peak velocity 
of PW Doppler in the RV outflow tract (RVOT; pulmonary 
acceleration time, PAC) of <70 ms indicates a high likelihood 
of mPAP > 40 mmHg whereas PAC > 100 ms indicated that 
PH is unlikely.[38] The presence or absence of PH should 
not be diagnosed based on sub‑optimal TR signals, and 
PASP should not be used in isolation to make a diagnosis 
of pulmonary hypertension (PH) or guide management 
decisions.

The interaction between RV function and pulmonary 
hemodynamics and the concept of RV‑PA coupling is 
becoming increasingly important to our understanding of 
RV dysfunction. As discussed above, PVR is an imperfect 
surrogate for total RV afterload but the gold standard, 
pulmonary input impedance, cannot currently be assessed 
noninvasively. PVR can be qualitatively estimated by the 
formula ([TR velocity/RV outflow tract velocity ‑   time 
integral] × 10 + 0.16) which accurately stratifies patients 
with high‑ and low‑PVR. A cutoff value of 0.175 predicts 
PVR > 2WU with a sensitivity and specificity of 77% and 
81%, respectively,[39] but is less accurate at PVR > 8WU.[40]

While echocardiographic measurement of RV ejection 
fraction is unreliable and not recommended by the American 
Society of Echocardiography, there are a number of other 
ways to assess RV systolic function.[41] The most basic is 
the fractional area change (FAC) in which endocardial 
borders are traced at end‑systole and end‑diastole and a 
per cent area change is calculated. FAC correlates with RV 
ejection fraction (EF) measured by MRI and predicts heart 
failure and stroke in patients with pulmonary embolism 
and MI.[42‑44]

The RV index of myocardial performance (RIMP) or Tei 
index is a Doppler or tissue Doppler‑derived measure of 
global function defined as the sum of isovolumic relaxation 
and contraction times divided by the ejection time. A normal 
RV has essentially no isovolumic contraction time (IVCT). 
Equations for pulse Doppler and tissue Doppler‑derived 
RIMP are in Table  2. RIMP is thought to be preload 
independent and accurate across most physiologic heart 
rates but may be falsely low when RA pressure is elevated 
due to shortening of the isovolumic contraction time.[45] 
RIMP is prognostically valuable in patients with PH, RVMI, 
and congenital heart disease.[46‑48]

One of the most widely studied indices of RV function is 
the tricuspid annular plane systolic excursion (TAPSE), 
an M‑mode measurement that takes advantage of the fact 

Table 1: Proposed algorithm for the assessment of RV 
function
Echocardiography
• � Recommended screening test for known/suspected RV 

dysfunction
• � Useful for serial assessment, response to therapy
• � Parameters assessed

 � Dimensions
 � RV size
 � Right atrial size

 � ASE recommended for assessment of RV function (at least 
one)[41]:
 � Fractional area change
 � TAPSE
 � S’ (PW TDI)
 � RV index of myocardial performance

 � Consider in patients with RV dysfunction
 � dP/dT
 � Isovolumic acceleration
 � Diastolic function (E/A, E/E’)

 � RV/pulmonary hemodynamics
 � PASP
 � Right atrial pressure estimate (from IVC dimensions)

 � Consider
 � PADP
 � Pulmonary vascular resistance

 � Additional parameters: RV free wall and septal strain, 
pulmonary acceleration time

MRI
• � Consider if

 � Echo is technically difficult or discrepancy exists among echo 
parameters

 � Discrepancy between echo results and clinical impression
 � MRI is indicated for assessment of biventricular failure, 

RV‑specific etiology (ARVD), pericardial disease, unexplained 
syncope

• � Parameters assessed
 � Dimensions

 � RV size, volume
 � RV mass
 � Right atrial size

 � RV ejection fraction
 � Volume and severity of tricuspid regurgitation, pulmonary 

regurgitation
 � Late gadolinium enhancement
 � Pulmonary vascular assessment

 � Pulmonary transit time
 � Pulmonary blood volume
 � Capacitance

 � Additional parameters: Myocardial strain
Radionuclide ventriculography
• � Consider if echo inconclusive and MRI contraindicated
• � Parameters assessed

 � RVEF
 � Pulmonary transit time
 � Diastolic function

dP/dT: change in pressure/change in time; E/A: ratio of early to late 
tricuspid inflow velocity; E/E’: early tricuspid inflow velocity/early lateral 
tricuspid annular velocity; IVC: inferior vena cava; PADP: pulmonary artery 
diastolic pressure; PASP: pulmonary artery systolic pressure; RV: right 
ventricle; S’: systolic tissue velocity; TAPSE: tricuspid annular plane systolic 
excursion; TDI: tissue Doppler imaging



Pulmonary Circulation | July-September 2012 | Vol 2 | No 3 313

Brittain et al.: RV plasticity and functional imaging

that most of the RV output is produced by longitudinal 
(base to apex) contraction. Thus, low TAPSE indicates 
low contractile motion within the RV. It is easily and 
reproducibly measured on M mode and is prognostic in a 
number of cardiac and pulmonary diseases in 46 different 
studies.[41,49] Limitations include angle dependence and the 
assumption that basal RV function reflects global function.

Tissue Doppler imaging (TDI) of the RV measures regional 
myocardial velocity. Pulsed TDI can be used to measure 
the velocity of myocardial excursion (S’) at the tricuspid 

annulus or lateral RV basal segment. It has been validated 
in a population‑based study with a wide age range and 
discriminates normal and abnormal EFs well when 
compared to radionuclide angiography.[41,50] Like TAPSE, 
TDI is angle‑dependent and extrapolates basal RV function 
to assume global function.

Myocardial acceleration during isovolumic contraction 
(IVA) is considered the least load‑dependent index of RV 
contractility by echocardiography. It is derived by dividing 
the peak isovolumic velocity by the time to reach peak 

Table 2: Right ventricular morphology and function: Echo parameters[41,169]

Parameter View Acquisition tips Normal value Limitations

RV thickness • � Parasternal long or 
subcostal

• � m‑Mode or 2D

• � Move focus and 
decrease depth

• � Zoom to measure
• � Measure at end‑diastole

• � <5 mm • � Lack of prognostic 
information

RV dimensions • � Apical four‑chamber • � “RV‑focused view”: 
maximize RV width 
while keeping LV 
long‑axis in view

• � If RV enlargement, 
measure basal RV width

• � Base: <42 mm
• � Mid: <35 mm
• � Longitudinal: <86 mm

• � Dimensions highly 
dependent on probe 
rotation

RV fractional area 
change

• � Apical four‑chamber • � Trace cavity at 
end‑diastole and 
end‑systole

• � Trace beneath 
trabeculations and 
papillary muscles

• � >35% • � Requires clear 
endocardial borders

Tricuspid annular 
plane systolic 
excursion (TAPSE)

• � Apical four‑chamber
• � m‑mode of lateral 

tricuspid annulus

• � Align annular motion 
with m‑mode cursor

• � Measure difference of 
max and min excursion

• � <16 mm • � Influenced by regional 
dysfunction

• � Load dependent

dP/dT • � TR jet in apical 
four‑chamber

• � Maximize jet borders
• � Increase sweep to 

100 mm/s
• � Measure interval from 

1 m/s to 2 m/s

• � <400 mmHg/s • � Limited normative data
• � Load dependent
• � Inaccurate with severe 

TR

RIMP/Tei Index • � Pulse Doppler of TR jet 
(apical four‑chamber) 
and RVOT (PSAX)

• � Tissue Doppler of lateral 
TV annulus (apical 
four‑hamber)

• � If pulse Doppler 
method, use same R‑R 
interval

• � If TDI, increase sweep 
speed to improve 
resolution

• � Doppler: <0.4
• � TDI: <0.55

• � Load dependent
• � Influenced by regional 

dysfunction
• � Inaccurate in atrial 

fibrillation, acute MI

TDI (S’) • � Apical four‑chamber
• � TDI of lateral TV annulus 

or basal RV free wall

• � Measure max systolic 
velocity (S’)

• � >10 cm/s • � Limited normative data
• � Influenced by regional 

dysfunction
• � Angle dependent

Isovolumic 
acceleration (IVA)

• � Apical four‑chamber
• � Lateral TV annulus

• � Align TV excursion with 
cursor

• � 1.4‑3.0 m/s2 • � Limited normative data
• � Angle‑ and heart 

rate‑dependent
RV diastolic 
function

• � Apical four‑chamber
• � PW of TV inflow
• � TDI of lateral TV annulus
• � Subcostal PW of hepatic 

veins
• � Single‑plane Simpsons 

for RAVI (apical 
four‑chamber)

• � Record with breath held 
at end‑expiration

• � Measure ≥3 times if R‑R 
intervals vary

• � E/E’ > 4 predicts 
RAP >10 mmHg

• � E/A < 0.8: impaired 
relaxation

• � E/A 0.8‑2.1 and diastolic 
predominance in hepatic 
veins: Pseudonormal filling

• � E/A > 2.1 and DT <120: 
Restrictive filling

• � RAVI ≥ 19 ml/m2 predicts 
adverse outcome

• � Sensitive to changes in 
respiration, heart rate

• � Further studies needed 
to validate sensitivity 
and specificity

A: late diastolic mitral inflow velocity; dP/dT: change in pressure/change in time; E: early diastolic mitral inflow velocity; E’: early diastolic mitral annular velocity; 
IVA: isovolumic acceleration; LV: left ventricle; PSAX: parasternal short axis; PW: pulsed wave; RIMP: right ventricular index of myocardial performance; 
RV: right ventricle; RVOT: right ventricular outflow tract; TR: tricuspid regurgitation; TDI: tissue Doppler imaging; TV: tricuspid valve
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velocity as measured by TDI at the lateral tricuspid annulus. 
IVA is a prognostic marker in patients with OSA, mitral 
stenosis, and congenital heart disease.[51‑53] The normal 
value for IVA varies with age and is unaffected by wide 
changes in preload and afterload.[54]

Strain and strain rate are emerging echocardiographic 
technologies which quantify myocardial deformation. 
These techniques are relatively load independent and 
can provide both regional and global assessment of RV 

function.[55] The utility of strain analysis to detect subclinical 
RV dysfunction and predict outcomes in patients with PH 
has recently been demonstrated.[56,57] Current limitations 
include lack of normal values and the requirement of offline 
software for analysis; however, when further refined, these 
techniques hold promise for the routine detection of early 
and subclinical RV systolic dysfunction.

Three‑dimensional echocardiography to measure 
RV volumes and function correlates well with MRI 

Figure 2: Reproduced with permission from Mertens and Friedberg.[180] (A) %FAC, calculated from measures of the apical four‑chamber view. The importance of 
longitudinal shortening can be appreciated in this image. (B) MPI, calculated by measuring the ejection time on the pulmonary artery tracing and the time between 
closure and opening of the tricuspid valve on the tricuspid inflow tracing. MPI = (TCOT ‑ ET)/ET. In this patient, the MPI was normal after tetralogy of Fallot 
repair. (C) TAPSE. An M‑mode echocardiogram through the tricuspid annulus is obtained and the excursion of the tricuspid annulus is measured as illustrated. 
This index enables assessment of longitudinal RV function. (D) Tissue Doppler velocities of the tricuspid annulus. Pulse tissue Doppler measurements can be 
used to calculate tissue velocities. Systolic velocities can be used as a parameter for systolic longitudinal RV function. (E) Longitudinal strain measurements 
of the right ventricle, made using speckle tracking technology. By convention, systolic longitudinal shortening is represented as a negative value and can be 
measured in six different segments. The mean values of these segments are used to trace a mean longitudinal strain curve (white dotted line). The value at 
end‑systole is then measured. (F) Color tissue Doppler echocardiogram at the lateral tricuspid valve annulus and measurement of IVA. Aortic valve opening 
and closure are depicted by green lines for event timing. The timing of these events may be taken as that of pulmonary valve opening and closure. The slope 
of IVA is shown. Note that IVA occurs within the QRS complex and peaks before pulmonary valve opening in the isovolumic period. A’= late‑diastolic tissue 
velocity; AVC = aortic valve closure; AVO = aortic valve opening; E’ = early‑diastolic tissue velocity; ET = ejection time; %FAC = percentage fraction area 
change; IVA = isovolumic acceleration; MPI = myocardial performance index; S’ = systolic tissue velocity; TAPSE = tricuspid annular systolic plane excursion; 
TCOT = tricuspid valve closure‑opening time.[179]
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measurements in a number of studies, particularly those 
using semi‑automated border detection,[58‑62] but recent 
studies found systemic under‑estimation of RV volumes and 
EF on 3DE.[63,64] ASE recommendations currently limit the 
use of 3DE to serial measurements, but as normative data 
accumulate and analysis software improves 3DE will become 
a practical tool for assessment of RV size and function.[41]

RV diastolic function is increasingly recognized as 
having a significant hemodynamic influence in a number 
of cardiopulmonary diseases.[41] It is easily assessed 
using pulsed Doppler of TV inflow, TDI of the lateral 
tricuspid annulus, and Simpson’s method of RA volume. 
Measurements should be taken at end‑expiration and 
may be inaccurate in patient with atrial fibrillation. Given 
the load dependence of RV function, diastolic parameters 
may be affected by heart rate, respiration, and loading 
conditions.[65‑67] In a multivariate model, RA volume index 

strongly predicted a composite of death, transplant, or heart 
failure admission.[68] RV E/E’ predicts elevated RA pressure 
with high sensitivity and is a prognostic marker in patients 
with secondary pulmonary hypertension.[69,70] Notably, RV 
diastolic function has repeatedly been shown to predate 
clinical RV systolic dysfunction. With further refinement 
of RV diastolic parameters, this may represent a screening 
tool in patients at risk of developing RV dysfunction.

Cardiac MRI
With advances in image acquisition protocols, cardiac 
MRI (CMR) is emerging as the technique of choice in 
the assessment of RV structure and function (Table  3). 
Representative CMR findings in RV dysfunction are found in 
Figure 4. Volumes are usually obtained and images oriented 
in short‑axis stacks from which endomyocardial contours 
are traced at end‑diastole and end‑systole. Because up to 
30% of the RV volume is contained in the infundibulum, 

Figure 3: (A) RV enlargement and hypertrophy in patient with CTEPH. (B) Normal RV size 6 months after PTE in the same patient as in A. (C) Parasternal 
short‑axis view demonstrating RV dilation and hypertrophy and displacement of septum. (D) Tricuspid regurgitation jet demonstrating severe PH in patient 
with PAH. (E) Peak systolic velocity of tricuspid annulus borderline depressed at 10 cm/s. (F) TAPSE in patient with PAH measured at 14 mm consistent with 
RV hypokinesis.
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this structure should be included in volume measurements. 
Myocardial mass is calculated from tracing epicardial 
and endocardial borders and multiplying by myocardial 
density. Because of its good spatial and temporal resolution, 
CMR‑derived volumes and EF are increasingly considered 
the gold standard against which other imaging modalities 
are compared.[71] The MESA‑RV study recently demonstrated 
significant differences among age, race, and sex in values 
of RV mass, RV volume, and RVEF; the clinical implications 
of these differences is unknown.[72] Intra‑observer and 

inter‑observer variability in RV measurements ranges 
from 3% to 6% and 4% to 9%, respectively.[73,74] Valvular 
regurgitant volumes and shunt severity can be calculated 
with precision using velocity‑encoded cine images.[75]

Tissue characterization is another advantage of CMR over 
echocardiography. In arrhythmogenic RV cardiomyopathy 
(AVRC), MRI can detect dysplastic areas of myocardial thinning, 
wall motion abnormalities, and fibrofatty replacement; 
however, fatty infiltration is seen in normal adults and can 

Table 3: RV morphology and functional MRI parameters
Parameter Acquisition sequence Normal value Clinical comment

RVEF (%) Conventional breathhold cine MRI 61±7[170] >40‑45 used in clinical practice
RV mass (g/m2) Conventional breathhold cine MRI 26±5[170]

RVEDV (ml/m2) Conventional breathhold cine MRI 75±13[170]

TR/PR volume/
severity

Velocity‑encoded cine MRI None or 
physiological

Mild: <20 cc
Moderate: 20‑50 cc
Severe: >50 cc

Shunt fraction Velocity‑encoded cine MRI Absent Qp/Qs < 1.5 hemodynamically insignificant
Myocardial 
delayed 
enhancement

Contrast‑enhanced inversion recovery 
gradient echo

Absent • � Predicts arrhythmia and exercise tolerance in TOF 
patients[170]

• � Correlates with RV WMA in patients with RVMI[79]

Pulmonary transit 
time (s)

Dynamic first‑pass contrast‑enhanced 
saturation‑recovery gradient echo

6±1.4[171]

7.2±1.2[172]

• � Limited normative data
• � Prolongation correlates with degree of LVEF, PH[173]

CHD: congenital heart disease; LVEF: left ventricular ejection fraction; MRI: magnetic resonance imaging; PH: pulmonary hypertension; Qp/Qs: pulmonary flow/
systemic flow; TOF: tetralogy of Fallot; RV: right ventricle; RVMI: right ventricular myocardial infarction; WMA: wall motion abnormality

Figure 4: (A) Mild RV and RA dilation with RV hypertrophy and prominent hypertrophy of moderator band. (B) Severe RV and RA dilation with RVH and 
compression of left‑sided chambers by septal deviation. (C) End‑stage RV failure with marked RV and RA dilation and thinned out RV free wall. (D) Late 
gadolinium‑enhanced short‑axis image demonstrating fibrosis at the RV septal insertion point.
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be obscured by epicardial fat, limiting the utility of MRI 
in this aspect of diagnosis.[76] Gadolinium enhancement of 
myocardial fibrosis may be more sensitive than Task Force 
Criteria for the detection of AVRC carrier‑gene status, but is 
not currently a diagnostic criterion.[77,78] The identification of 
RV fibrosis on MRI is also of value in patients after Tetralogy 
of Fallot repair in whom the degree of fibrosis correlates with 
global RV function and risk of ventricular arrhythmias.[79] The 
extent of myocardial fibrosis also correlates with RVEF in 
PAH and survival after RVMI.[80,81] Cardiac MRI is particularly 
valuable in assessing diseases which involve the RV including 
arrhythmogenic RV dysplasia, response to therapy in PAH, 
congenital heart disease with shunt lesions, differentiating 
constrictive and restrictive physiology, and diagnosing RVMI 
by late gadolinium enhancement.[78,81‑83] Evolving clinical 
applications include strain analysis using myocardial tagging 
and diastology assessment using phase‑contrast CMR to 
measure deceleration time and IVRT.[84,85]

Metabolic imaging
Just as tomographic imaging techniques have improved our 
understanding of RV function, so has molecular imaging 
advanced the concepts of a metabolic phenotype and 
metabolic remodeling. PET imaging allows measurement 
of the relative use of glucose (FDG) and fatty acids (C‑11 
palmitate as surrogate) as myocardial energy substrates. 
In the RV in PAH, there is a well‑described switch from 
predominant fatty‑acid oxidation to glycolysis as a source 
of fuel,[86] which, although less efficient, may produce a 
cellular survival advantage similar to cancer cells.[87] In 
patients with PAH, FDG accumulation in the RV free wall 
correlates with PVR and mean PAP.[88,89] After three months 
of epoprostenol, FDG uptake decreased significantly in 
responders in proportion to reduction in PVR.[88] Increased 
RV FDG uptake correlates with RV dysfunction in patients 
with left heart failure,[90] though the response to treatment 
is unknown. PET may thus allow assessment of RV‑specific 
metabolic therapies.

Magnetic resonance spectroscopy is an emerging tool which 
can quantify intracellular triglyceride content. Myocardial 
lipid accumulation has been observed in diabetics and 
patients with dilated cardiomyopathy.[91,92] In diabetics, 
the degree of triglyceride content strongly correlates with 
RV systolic and diastolic dysfunction as assessed by strain 
and strain rate.[92]

Assessment and Prognostic 
Implications of RV Function in 
Specific Disease States

In many cardiopulmonary diseases, RV function is an 
independent prognostic predictor (Table 4). Right heart 

dysfunction is associated with poor outcomes in patients 
with valve disease, congenital heart disease, ischemic 
and dilated cardiomyopathy, pulmonary embolism, 
post‑cardiac transplantation, post‑LVAD implantation, and 
post‑valve surgery.[93‑102] In patients with PAH, outcomes 
parallel RV function more so than PA pressure, in part 
because PA pressure falls as RV dysfunction becomes 
severe (Fig.  5).[103,104] Conversely, preserved RV function 
even in the setting of elevated PA pressure is associated 
with improved survival, decreased hospitalization, and 
improved exercise capacity in patients with chronic heart 
failure.[94,105]

Evidence for RV Plasticity and 
Imaging

In a number of diseases, the RV can sustain damage and 
recover to a remarkable degree. This plasticity should 
serve as the impetus to better understand RV physiology 
and pathology and to develop clinical techniques to help 
predict whether or not an individual RV will recover from 
insult. With this knowledge, for example, clinicians could 
exercise more parsimony in referral for LVAD or lung 
transplantation and better prognosticate after RVMI. 
In the absence of a tool to predict RV recovery, early 
diagnosis of RV dysfunction and appropriate therapy 
remain paramount.

Table  5 describes useful functional and morphologic 
parameters assessed by echocardiography or CMR in each 
of the diseases discussed below.

Right ventricular MI
RV myocardium is involved in up to 50% of inferior myocardial 
infarctions (MI) and ischemic RV dysfunction is associated 
with increased morbidity and mortality.[106‑109] Despite 
this high prevalence, long‑term damage to RV function 
after RVMI is exceedingly rare.[106] Acute hemodynamic 

Figure  5: Reproduced with permission from Haddad et al.[181] A  decrease 
in pulmonary arterial pressure in patients with PH may indicate low 
cardiac output and severe right ventricular failure. CO = cardiac output; 
MPAP = mean pulmonary artery pressure; PAP = pulmonary artery pressure; 
PCWP = pulmonary artery capillary wedge pressure; PVR = pulmonary 
vascular resistance.[180]
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compromise may result during RV ischemia due to 
cavity dilation, diastolic and systolic dysfunction, 
ventricular interactions, and arrhythmia.[22,27,29,110]  
Even if revascularization is not performed, hemodynamic 
improvement usually manifests within 3‑10 days and RV 
function returns to normal within several weeks.[111‑114] If 
culprit artery revascularization is achieved expeditiously, 
short‑term dysfunction is infrequent and the detrimental 
effects of RV dilation on left ventricular diastolic filling 
can be mitigated.[22,115] Laster and colleagues showed in 
a canine model that preservation of RV function after 
RCA occlusion is in part due to favorable development 
of collateral circulation to the RCA territory.[22] In some 
patients with chronic RCA occlusion, RV function may 
be preserved at rest but exhibit significant dysfunction 
on stress echocardiography.[116] Long‑term outcomes in 
patients with RVMI likely depend primarily on the degree 
of concomitant LV dysfunction.[117]

While echocardiography in acute MI is most informative 
for assessing LV function, evidence of RV dysfunction adds 
prognostic value and can inform treatment decisions. 
Visual assessment of RV free wall motion by experienced 
readers is a sensitive qualitative measure of RV function 

and can serve to confirm or provoke clinical suspicion 
of RV involvement.[112] RV dilation and septal bowing can 
be seen on echocardiography and the inter‑atrial septum 
may bow leftward due to increased right atrial pressure 
transmitted from the RV. As outlined in Table 5, a number 
of quantitative measures of RV function have been shown 
to be diagnostic or predictive of adverse outcomes. More 
quantitative measures of RV function such as decreased 
TAPSE and lateral tricuspid annular velocity on TDI indicate 
RV involvement in acute MI.[118,119] Antoni et  al. studied 
621 patients within 48 hours of acute MI and found that 
RV FAC (≤32%), TAPSE (≤15 mm), and RV strain (≤‑22.1%) 
independently predicted mortality, reinfarction, and 
hospitalization at 2 years follow‑up.[120] RIMP was found 
to have a sensitivity and specificity of 94% and 80%, 
respectively, for the diagnosis of RVMI.[121]

Advanced techniques such as strain imaging and 3D 
echocardiography may eventually prove more accurate 
than current 2D methods at detecting RV dysfunction. 
CMR has evolved as the gold standard for assessing RVEF 
and morphology; however, in the setting of acute MI it is 
currently limited to post-reperfusion assessment of systolic 
function and scar burden.

Table 4: Prognostic importance of right ventricular function in various cardiopulmonary diseases
Disease state Study Population N Definition of RVD Findings

Ischemic and 
non‑ischemic 
cardiomyopathy

Polak et al.,[174] CAD, NYHA II‑IV 34 RVEF < 35% 23% survival vs. 71% survival at 2 years
de Groote 
et al.,[95]

CAD, IDC, NYHA II‑III 205 RVEF < 35% 59% survival (RVEF < 35%) vs. 93% 
survival (RVEF > 35%) at 2 years

Ghio et al.,[94] CAD, IDC, NYHA III‑IV 377 RVEF < 35% Combination of RVD and PAP predicting 
survival

Meluzin 
et al.,[175]

CAD, IDC, NYHA II‑IV 140 RIMP >1.20, 
IVA <2.52 cm/s, 
TAPSE <10.8 cm/s

RIMP and TDI indexes were predictive of 
mortality or event‑free survival

Meyer et al.,[93] CAD, IDC, NYHA III‑IV 2708 RVEF < 20% Associated with mortality and heart 
failure hospitalization

Acute pulmonary 
embolism

Goldhaber 
et al.[98]

Acute pulmonary 
embolism

1135 Visual hypokinesis RV hypokinesis conferred HR of 2.0 at 
3 months

Valve disease Hochreiter 
et al., 1986[102]

Mitral regurgitation 
(unoperated)

53 RVEF <30% > 50% mortality at 2 years

Messika‑Zeitoun 
et al., 2004[24]

TR with flail leaflets 60 Severe RV 
enlargement

86% (present) vs. 39% (absent) event 
rate (HF, new atrial fibrillation, cardiac 
surgery, or death)

Haddad et al., 
2007[176]

Mitral or aortic surgery 50 RIMP > 0.49 OR 25.2 (CI 5.24‑121.15) for 
perioperative mortality and heart failure

Post‑LVAD Dang et al., 
2006[100]

Post‑LVAD implantation 108 Need for 
RVAD, ≥ 14 days of 
inotrope/pulmonary 
vasodilator

30‑day post‑LVAD mortality right heart 
failure vs. non‑right heart failure 19% 
vs. 6.2%; bridge‑to‑transplantation 65% 
vs. 89.9%

PAH van Wolferen 
et al., 2007[166]

PAH 64 RVEDVI ≥ 84 ml/m2 Predicted mortality at 1 year (HR 4.2, CI 
1.31‑8.3)

PAH Forfia et al., 
2006[49]

PAH and non‑PAH 
pulmonary hypertension

63 TAPSE 2‑year survival with TAPSE > 1.8 cm 
vs. < 1.8 cm, 88% vs. 50%

Yeo et al., 
1998[162]

PAH 53 RIMP 5‑year survival free of cardiac 
death or lung transplant with 
RIMP < 0.83 vs. ≥ 0.83, 74% vs. 4%

Congenital heart 
disease

Rutledge et al., 
2002[182]

ccTGA 121 Visual dysfunction 
(moderate or severe)

Moderate or severe RV dysfunction 
predicted mortality (RR 5.9; CI 4.8‑7.0)

CAD: coronary artery disease; ccTGA: congenitally corrected transposition of the great arteries; CI: confidence interval; HR: hazard ratio; IDC: idiopathic 
dilated cardiomyopathy; IVA: isovolumic acceleration; LVAD: left ventricular assist device; NYHA: New York Heart Association; OR: odds ratio; PAP: pulmonary 
artery pressure; RIMP: right ventricular index of myocardial performance; RV: right ventricle; RVAD: right ventricular assist device; RVEDVI: right ventricular 
end‑diastolic volume index; RVEF: right ventricular ejection fraction; TDI: tissue Doppler imaging; TR: tricuspid regurgitation.
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Table 5: Imaging in specific disease states
Disease Study Parameter Assessed Population Outcome

MI Engstrom, et al[118] TAPSE, S’ STEMI patients with 
cardiogenic shock

TAPSE ≤ 14 had HR of 2.1 for death 
S’= 7.8 vs. 10 in IMI with and 
without RV involved

Antoni, et al[120] TAPSE, RVFAC, RV 
Strain 

Inferior MI TAPSE ≤ 1.5, RVFAC < 32%, and 
RV Strain < -22.1% predicted 
death/MI/HF readmission

Ozdemir, et. al[121] RIMP Acute MI RIMP > 0.70 has sensitivity and 
specificity of 94% and 80% for 
RVMI

Kumar et al[81] RV-LGE on CMR STEMI RV-LGE outperformed exam, ECG, 
and echocardiogram for detection 
of RVMI

PAH Forfia et al[49] TAPSE All forms of PH One year survival with TAPSE > 
1.8cm of 94% versus 60% for 
TAPSE < 1.8cm

Yeo et al[162] RIMP IPAH 5 year survival free of cardiac death 
or lung transplant with RIMP < 0.83 
vs. ≥ 0.83, 74% vs. 4%

Sachdev et al[56] RV Strain WHO Group 1 PAH RV free wall strain worse than 
-12.5% predicted 1-4 year 
mortality

McGann et al and 
Shehata et al[80,164]

RV LGE on MRI All forms of PH Extent of RV LGE correlated directly 
with RV mass index and inversely 
with RVEF

van Wolferen  
et al[166,177]

RVEDVI, SVI on CMR IPAH •	 RVEDVI ≥ 84mL/m2 and SVI ≤ 
25mL/m2 predict mortality

•	 SV increase of 10ml after 
treatment considered clinically 
relevant

van Wolferen[155,166]  
et al and Wilkins et al

RV mass after therapy WHO Group 1 PAH Significant decrease in RV mass, 
increase in CI on sildenafil/
bosentan combination but not 
bosentan alone

CTEPH and 
post-lung 
transplant

Menzel et al[137] RV volume and EF by 
3DE

CTEPH RVEDV decreased from 121ml to 80 
and RVEF increased from 25% to 
36% post-PTE

Menzel et al[138] RIMP CTEPH RIMP decreased from 0.55 to 0.37 
post-PTE

Reesink et al[139] RV volume and mass 
by CMR

CTEPH RV volume normalized and RV mass 
decreased significantly post- PTE

Katz et al[125] RV volume and FAC Post-lung transplant RV volume decreased significantly 
but FAC did not improve 
immediately post-transplant

Kramer et al[128] RVEF by radionuclide 
angiography

Post-lung transplant RVEF increased from 23% to 48% 
at 3-6 months 

Frist et al[131] RVEF and RV mass by 
CMR

Post-lung transplant RVEF near-normal at 3 months, RV 
mass normalized by 1 year

LVAD Topilsky et al[147] FAC Pre-LVAD Implant FAC < 20% predicts post-operative 
RV failure

Puwanant et al[153] TAPSE Pre-LVAD Implant TAPSE < 7.5mm predicts RV failure 
(sensitivity 91%, specificity 46%)

Topilsky et al[178] Corrected TR Duration 
(TRDc)

Pre-LVAD Implant TRDc ≤ 461ms is associated with 
decreased 1 and 2 year survival

Kukucka et al[151] RV-to-LV end-diastolic 
diameter ratio

Pre-LVAD or BiVAD 
implant

R/L > 0.72 predicted RV failure (OR 
11.4)

Topilsky et al[152] S’ and septal deviation 30 days post-LVAD 
implant

Decreased S’ (OR 0.70) and 
septal deviation to left (OR 3.0) 
associated with 90 day mortality, 
HF readmission, or NYHA ≥ 3

3DE: tridimensional echocardiography; BiVAD: biventricular assist device; CI: cardiac index; CMR: cardiac magnetic resonance imaging; CTEPH: chronic 
thromboembolic pulmonary hypertension; ECG: electrocardiogram; HF: heart failure; HR: hazard ratio; IDC: idiopathic dilated cardiomyopathy; IPAH: idiopathic 
pulmonary arterial hypertension; IVA: isovolumic acceleration; LGE: late gadolinium enhancement; LVAD: left ventricular assist device; MI: myocardial 
infarction; NYHA: New York Heart Association; OR: odds ratio; PASP: pulmonary artery systolic pressure; PH: pulmonary hypertension; PTE: pulmonary 
thromboendarterectomy; RIMP: right ventricular index of myocardial performance; RV: right ventricle; RVAD: right ventricular assist device; RVEDVI: right 
ventricular end‑diastolic volume index; RVEF: right ventricular ejection fraction; RVFAC: right ventricular fractional area change; S’: myocardial velocity at the 
lateral tricuspid annulus; STEMI: ST‑segment myocardial infarction; SVI: stroke volume index; TAPSE: tricuspid annular plane systolic excursion; TDI: tissue 
Doppler imaging; TR: tricuspid regurgitation; TRDc: tricuspid regurgitation duration (corrected for heart rate); WHO: World Health Organization
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Post‑lung transplantation and post-
thromboendarterectomy
There are two interesting experiments of nature that 
demonstrate the plasticity of the RV in response to correction 
of pulmonary vascular disease: lung transplantation and 
pulmonary thromboendarterectomy (PTE) for chronic 
thromboembolic pulmonary hypertension (CTEPH). In both 
cases, the cause of elevated PVR is removed and thus load 
stress is essentially eliminated.

In patients with end‑stage pulmonary hypertension, 
heart‑lung transplantation was initially felt to be the only 
viable surgical option due to profound RV dilation and 
dysfunction.[122] Based on observations of significant RV 
functional recovery in patients with chronic thromboembolic 
disease who underwent thromboendarterectomy, lung 
transplantation alone has been pursued with success.[123,124]

In the immediate post‑operative period, RV function may 
not improve,[125] but RVEF and PA systolic pressure (PASP) 
normalize within two to three months post‑lung transplant; 
however, LV recovery may take up to a year.[126,127] Toyooka 
et  al. showed similar results in 33  patients in whom RV 
function normalized within  two  months but LV functional 
recovery was delayed for 6‑12 months after living‑donor 
lobar lung transplantation.[127] Echocardiography in 
post‑lung transplant patients frequently demonstrates 
evidence of marked RV reverse remodeling: RV and right 
atrial (RA) size decrease, the tricuspid valve annulus shrinks 
with a decrease in TR, and the interventricular septum 
resumes its normal position.[25,128‑130] Residual elevation in 
pulmonary vascular resistance with a single lung transplant 
is frequent and may be accompanied by some degree of 
post‑operative RV dysfunction.[25,128,130] Magnetic resonance 
imaging (MRI) in post‑lung transplant patients indicates 
that while RV performance is improved in the short term, 
reduction in RV mass can take up to one year, demonstrating 
the utility of MRI as a complementary tool for assessing RV 
remodeling.[131]

CTEPH causes increased RV afterload, RV hypertrophy, 
and dilation as well as a shift of the IVS toward the left 
decreasing LV filling and cardiac output.[132,133] Preoperative 
findings on CMR or echocardiography are virtually 
indistinguishable from other forms of elevated pulmonary 
vascular disease.[132,134] Successful PTE results in dramatic 
improvements in mean pulmonary pressure, PVR, and 
cardiac output.[135] Reverse remodeling can be seen on 
echocardiography and MRI as evidenced by reduction in 
RV chamber size and mass, improvement of RV systolic 
and diastolic function to near normal, and a decrease in 
tricuspid regurgitation (Fig. 3).[136‑140]

Post‑ LVAD implantation
RV dysfunction is both an obstacle to LVAD placement and 

an independent prognostic indicator. Right heart failure 
occurs in 15‑20% of patients after LVAD implantation and 
confers a worse outcome.[141,142] In the largest randomized 
trial to date, post‑operative RV failure was less frequent 
with a continuous‑flow device (Heart Mate II) compared 
to a pulsatile device (Heart Mate I).[143]

LV unloading may favorably alter RV function through 
decreased RV afterload and normalization of the 
neurohormonal milieu characteristic of heart failure.[144‑146] 
LV unloading can adversely affect RV function as well. 
A leftward shift of the interventricular septum distorts RV 
geometry and leads to depressed RV contractile efficiency 
as well as increased tricuspid regurgitation. RV preload also 
increases following LVAD implantation, which may further 
exacerbate RV failure.[147]

Despite significant unloading, the degree of RV remodeling 
post‑LVAD implant is unclear. Explanted hearts of patients 
with pulsatile LVAD support showed no evidence of RV 
remodeling as measured by volume reduction, myocyte 
diameter, force‑frequency relationship, and SERCA2a 
content.[148] However, improvement in RV mass, myocyte 
size, and RV end‑diastolic pressure‑volume relationship 
was observed with biventricular devices compared to no or 
left ventricle only support.[149] In a series of continuous‑flow 
LVADs, pre‑existing RV dysfunction remained stable over 
4.5 months despite a decrease in right‑sided pressures and 
chamber size.[150] These findings suggest that reduction in 
RV afterload must be coupled with preload reduction for 
RV reverse remodeling to occur.

Accurate assessment of RV function with echocardiographic 
and hemodynamic assessment prior to LVAD implantation 
is crucial. Qualitative assessment of RV contractility in 
the apical four‑chamber and RV inflow views provides a 
general sense of RV function. Quantitatively, preimplant 
FAC, RV‑to‑LV end‑diastolic diameter ratio (R/L), 
and TAPSE predict post‑implant RV failure.[151] The 
duration of TR corrected for heart rate (TDRc = TR flow 
time/√RR‑interval) predicts RV failure and mortality in 
patients with a Heart Mate II LVAD. In a study of 83 patients 
from the Mayo Clinic implanted with the Heart Mate II 
LVAD demonstrated that the TDRc predicted right heart 
failure and mortality. Patients with a TDRc ≤ 461 ms had 
a significantly lower 1‑ and 2‑year survival compared with 
patients with TDRc ≥ 461 ms.[147] Recently, S’ and leftward 
deviation of the septum at 30‑day post‑implant were 
associated with adverse outcomes.[152] RVFAC < 20% has 
been shown to predict right heart failure following LVAD 
implant.[147] Puwanant et al. reported that tricuspid annular 
motion < 7.5 mm predicts RV failure following LVAD with 
a sensitivity of 91% and specificity of 46%.[153] Finally, it is 
important to assess the severity of tricuspid regurgitation 
as valves with more than moderate regurgitation require 
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operative repair or replacement at the time of LVAD 
implant.

The same protocol and parameters to determine RV function 
pre‑implant should be utilized and assessed post‑implant. 
Right atrial and inferior vena cava size can be used to 
estimate right atrial pressure, and the estimated RVSP 
can be monitored in patients with pre‑implant pulmonary 
hypertension. Ramped speed studies are useful to optimize 
LVAD rotor speed by determining the speed with optimal 
LV unloading while maintaining a midline interventricular 
septum.[147]

Pulmonary arterial hypertension
Evidence of RV plasticity in the surgical management 
of PAH is discussed in the post‑lung transplantation. In 
regard to medical therapy, the addition of sildenafil to 
bosentan therapy in PAH resulted in a significant decrease 
in RV mass and increase in cardiac index compared to 
bosentan alone.[154,155] Other studies have confirmed that 
RV hypertrophy can regress and RV function can improve 
acutely on sildenafil.[156,157]

Although echocardiography is the most commonly used 
modality for assessment of the RV in PAH, superior 
quantitative abilities of CMR with respect to the RV have 
driven interest in this technique both for the diagnosis 
of PAH and for the determination of response to therapy. 
Nevertheless, because of widespread availability and 
challenges with pumps associated with prostacyclin 
delivery and cost, echocardiography remains most widely 
used. Familiarity with both techniques is essential in the 
assessment of PAH.

The primary role of imaging in suspected pulmonary 
hypertension is determination of the severity of RV 
compromise, not subcategorization of pulmonary 
hypertension (e.g., PAH vs. pulmonary venous hypertension 
[PVH] vs. CTEPH).[158,159] Conformational changes in the 
RV include RV and RA dilation,[2] RV wall and moderator 
band hypertrophy, reduced RV fractional area change,[160] 
and septal bowing to the left ventricle.[161] As functional 
assessments, TAPSE and RIMP are broadly useful in all 
forms of PH and have been shown in PAH specifically to 
correlate with survival.[49,162] RV strain imaging has recently 
been shown to correlate with survival and RVEF measured 
by CMR in PAH patients and will likely become more 
clinically useful as normative data emerge.[56,57]

The shape of the RV outflow tract Doppler envelope has 
been demonstrated to discriminate patients with high 
pulmonary vascular resistance from those without,[163] with 
mid‑systolic notching indicating high PVR and uncoupling 
between the RV and PA. As described earlier, PVR can be 
estimated as greater or less than 2WU based on the ratio of 

the peak TR velocity to velocity‑time integral of the RVOT.[39]

CMR allows accurate assessment of RV mass, volume, and EF 
which have been shown to correlate with disease severity 
and death in various types of PAH.[82] CMR has also allowed 
more specific determination of regional abnormalities in 
PH including patterns of myocardial delayed enhancement. 
The degree of late gadolinium enhancement (LGE) at the RV 
septal insertions, thought to be due to local fibrosis,[80,164] 
has been observed in patients with scleroderma‑associated 
PAH and IPAH to correlate inversely with RVEF.[165] RV mass 
strongly predicts the presence or absence of PAH in patients 
with scleroderma, while increased RV volume and decreased 
LV volume predicts death in IPAH.[165,166] Recent evidence 
using adenosine stress CMR demonstrated that reduced 
biventricular myocardial perfusion reserve correlates with 
RVEF in PAH, suggesting role of ischemia in RV dysfunction 
in these patients.[167] In both conditions, RV mass has been 
studied as a predictor of death. While in idiopathic PAH RV 
mass was not found to predict death, it is a strong predictor 
of death in scleroderma‑associated PAH. In idiopathic PAH, 
the primary CMR predictors of death are large RV volume, low 
stroke volume, and reduced LV volume. In echocardiographic 
analysis, TAPSE remains an important marker of poor 
prognosis in both idiopathic and scleroderma‑associated PAH.

Unfortunately, there are few imaging techniques for 
diagnosis of PH subtype, particularly discerning PAH from 
PVH. Recently, the shape of the RV Doppler envelope has 
been demonstrated to discriminate patients with high 
pulmonary vascular resistance from those without.[163] The 
flow velocity envelope of the RV outflow tract is altered 
in response to pathologic wave reflection in the setting 
of increased pulmonary arterial impedance; mid‑systolic 
wave reflection is present in elevated pulmonary vascular 
resistance while normal notching pattern or late systolic 
notching is present in lower PVR patients.[39] The primary 
limitation of both echocardiography and CMR is their 
inability to accurately measure pulmonary arterial 
pressures, cardiac output, or pulmonary artery occlusion 
pressure, essential features in the diagnosis and assessment 
of pulmonary vascular disease.[32,37,134] Until better 
diagnostic modalities or techniques are available, current 
recommendations are to obtain right heart catheterization 
in order to confirm etiology of pulmonary hypertension as 
this cannot be reliably discerned through echocardiography, 
CMR, or other noninvasive imaging techniques[134,168]

Once PAH is confirmed, little is known about differences 
in RV imaging between the various subtypes, including 
heritable, idiopathic, connective‑tissue disease‑associated, 
or associated with congenital left‑to‑right shunt. There is a 
clear indication for CMR in the diagnosis of congenital heart 
disease‑associated PAH, but the utility of echocardiography 
or CMR for the other subtypes is under investigation. Since 
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idiopathic and scleroderma‑associated PAH make up the 
bulk of patients, these are the primary subgroups studied, 
though rarely compared.

Conclusion and Future 
Directions

RV dysfunction is a strong contributor to poor outcomes 
across a broad range of cardiopulmonary diseases, and 
clinical appreciation of this fact is widening. The RV 
displays remarkable resiliency in the face of insult, at least 
in part due to its unique physiology. The development 
of noninvasive imaging techniques to assess RV function 
is growing apace with investigation into genetic and 
neurohormonal modifiers. A biomarker profile diagnostic 
or predictive of RV failure would also be valuable as a 
routine part of clinical assessment. Given the dynamic 
beat‑to‑beat changes in RV loading conditions, imaging 
techniques that are load independent should be the focus 
of future advances. Development of exercise imaging 
protocols may also shed light on RV functional reserve and 
help predict response to therapy.
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