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Abstract: An electrical resistance sensor-based atmospheric corrosion monitor was employed to study
the carbon steel corrosion in outdoor atmospheric environments by recording dynamic corrosion
data in real-time. Data mining of collected data contributes to uncovering the underlying mechanism
of atmospheric corrosion. In this study, it was found that most statistical correlation coefficients
do not adapt to outdoor coupled corrosion data. In order to deal with online coupled data, a new
machine learning model is proposed from the viewpoint of information fusion. It aims to quantify
the contribution of different environmental factors to atmospheric corrosion in different exposure
periods. Compared to the commonly used machine learning models of artificial neural networks and
support vector machines in the corrosion research field, the experimental results demonstrated the
efficiency and superiority of the proposed model on online corrosion data in terms of measuring the
importance of atmospheric factors and corrosion prediction accuracy.
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1. Introduction

Atmospheric corrosion, which may cause enormous economic and human life losses,
has occurred in many industries such as infrastructure, energy, and transportation [1–3].
Nowadays, variant atmospheric corrosion monitor (ACM) sensors are developed to moni-
tor the real-time corrosion behavior of materials in outdoor dynamic environments [4,5].
The collected big corrosion data contribute to further corrosion science research.

It is generally believed that the mutual behaviors of key environmental factors, in-
cluding temperature (T), relative humidity (RH), and atmospheric contaminants, lead
to atmospheric corrosion [6–8]. In order to better understand the atmospheric corrosion
process, the real-time variations in the corrosion rate and environmental factors with time
should be analyzed. There exist some related works, as summarized in Table 1. Some
studies have been carried out in indoor atmosphere environments. By using ACM sensors,
the influence of some important factors on the corrosion rate have been verified, such as
wet–dry cycles [9] and short-chain volatile carboxylic acids [4]. Considering the complex-
ity of natural atmosphere environments, indoor corrosion tests are now gradually being
extended to outdoor environments. Some empirical relationships between corrosion rates
and some atmospheric factors have been found out. The long-term atmospheric corrosion
of weathering steel bridges has been monitored by an electrochemical impedance-based
ACM, finding that the corrosion rate increases gradually with an increasing RH under
80% [10]. The function between the daily charge of ACM sensors and the corrosion rate has
been obtained, identifying that the mutual behaviors of driving history, T, and RH cause
the corrosion of automobile parts [11]. In another automation corrosion test, the role of salt
spray in metal corrosion was confirmed [12]. The obtained data suggested that 75% of zinc
corroded in the salt spray phase [12]. The atmospheric corrosion of carbon steel has been
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monitored by ACM, and the impacts of relative humidity, temperature, and rainfall have
been identified to be higher than pollution on initial atmospheric corrosion [13]. Exposure
tests with ACM have found that rainfall precipitation is the strongest parameter influencing
the initial atmospheric corrosion rate in rainy regions, with RH taking the first place in
low-precipitation environments and non-rainfall periods [14]. Recently, some statistical
correlation coefficients have been employed to measure the influence of key atmospheric
factors in the outdoor atmospheric corrosion process. The maximal information coefficient
(MIC) well measures the relationship between some factors (RH, T, and pollutants) and
the voltage ratio data [5]. Similarly, Pearson’s correlation coefficient has been employed to
identify the effect of important atmospheric parameters [15].

Table 1. Summary of some related works with ACM data.

Papers Condition Environment Atmospheric Factors Year

[9] Indoor Atmosphere Wet–dry cycles 2014
[4] Indoor Atmosphere T, RH, and formic and acetic acid 2014
[10] Outdoor Atmosphere T, RH 2014
[11] Outdoor Automobile T, RH, and salt particles 2014
[12] Outdoor Automobile T, RH, salt spray, and freeze 2014
[15] Outdoor Atmosphere T, RH, SO2, NO2, PM2.5, and PM10 2018
[5] Outdoor Atmosphere T, RH, SO2, NO2, PM2.5, and PM10 2019
[13] Outdoor Atmosphere T, RH, Rainfall, SO2, NO2, PM2.5, PM10, O3, and CO 2020
[14] Outdoor Atmosphere T, RH, and rainfall 2021

Despite the aforementioned outstanding studies, there still exist some gaps: (1) Con-
cerning the influence of environmental factors on outdoor atmospheric corrosion, most
of the existing studies focus on qualitative empirical analysis. Although some statistical
correlation coefficients have been used to quantify the influence, unreasonable results may
occur. Statistical correlation coefficients can accurately measure the correlation of two
variables only when all of the other related variables remain unchanged. However, online
ACM corrosion rate data are mutually influenced by many atmospheric factors. Actually, it
has been demonstrated that there exist hidden relationships between environmental factors
and atmospheric corrosion by a hidden Markov model, which could not be well measured
by Pearson’s correlation coefficient [15]. Therefore, how to accurately quantify such under-
lying relationships is still a challenge. (2) With the development of artificial intelligence,
some machine learning models, including artificial neural networks (ANNs) and support
vector machines (SVMs), have been widely used in corrosion science [16–19]. However,
these models are not suitable for visually measuring the relationships between key factors
and atmospheric corrosion because of their incapable interpretability. They just focus on
predicting the corrosion rate by end-to-end model frameworks. Further work to fill the
above gaps will contribute to better understanding the atmospheric corrosion mechanism.

Evidence theory [20,21] is a generalization of the traditional probability framework.
Given the advantages of information fusion and uncertainty representation, it has been
widely used in various tasks [20–22]. The main mechanism of evidence theory is to
measure and fuse the information provided by multiple evidence. Therefore, evidence
theory provides an effective mathematical framework to deal with coupled data because of
its information fusion viewpoint.

The corrosion resistance of different materials in the same environment varies greatly,
such as carbon steels, alloy steels, and nanostructured materials [23,24]. This study mainly
focuses on the real-time atmospheric corrosion of commonly used Q235 steel. Considering
that most statistical correlation coefficients do not adapt to outdoor coupled corrosion
data, a new evidence fusion-based model is proposed in order to deal with the collected
real-time corrosion data of Q235 steel in an outdoor atmospheric environment. It quantifies
the different contributions of key environmental factors to the short-term atmospheric
corrosion process.
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2. Mathematical and Experimental Methods
2.1. Mathematical Methods

In this subsection, some necessary basics of evidence theory are introduced. Evidence
theory, also called Dempster–Shafer theory or belief functions theory, is a generalization
of probability framework [20,21]. It is known for the advantages of information fusion
and uncertainty representation. Let Hq(q = 1, 2, . . . , c) denote c mutually exclusive and
exhaustive solutions for an investigated problem. Then Ω= {H1, H2, . . . , Hc} is called the
frame of discernment for this problem. All of the subsets of Ω compose the power set 2Ω.
It is important to note that evidence theory is established on the power set. Assume that n
pieces of evidence measuring the possible solutions can be obtained. The main framework
of evidence theory can be briefly summarized as shown in Figure 1. There exist four steps,
and the related definitions are detailed as follows.

1 
 

 
Figure 1. The main framework of evidence theory.

Step 1: A basic probability assignment (BPA) function is defined to measure the
uncertain information provided by the evidence. The BPA of evidence i is defined as a
mapping function mi from 2Ω to the interval [0, 1], such that mi(φ) = 0 and:

∑
A∈2Ω

mi(A) = 1 (1)

The subset A satisfying mi(A) > 0 is called a focal element. Here, mi(A) measures
the degree of support of evidence i to the possible solution A. Moreover, mi(Ω) indicates
the ignorance degree of evidence i to the investigated problem. Obviously, a BPA will
degenerate to a probability measure when it only has singleton focal elements.

Step 2: Considering the incomplete reliability of the evidence, a discounting operation
is necessary. Let wi(0 ≤ wi ≤ 1) denote the reliability coefficient of evidence i. Then the
discounting operation leads to a completely reliable BPA wi m i. For ∀A ∈ 2Ω:

wi mi(A) =

{
wimi(A) A 6= Ω
wimi(A) + 1− wi A = Ω

(2)

Step 3: In order to fuse the multi-source information, different combinations rules have
been proposed. Among them, Dempster’s rule [20] is widely used because of its associative
and commutative properties. For n discounted BPAs wi mi(i = 1, 2, . . . , n) provided by n

distinct and independent evidence, the fused BPA m =
n
⊕

i=1
wi mi satisfies that m(φ) = 0 and

for ∀A, Ai ∈ 2Ω:

m(A) =
1

1− K ∑
n
∩

i=1
Ai=A

n

∏
i=1

wi m i(Ai) (3)
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where K = ∑
n
∩

i=1
Ai=φ

n
∏
i=1

wi mi(Ai) measures the degree of conflict among n discounted pieces

of evidence and takes a value in the interval [0, 1]. Dempster’s rule proportionally redis-
tributes the conflicts among all focal elements when K 6= 1. If K = 1, it should be noted
that Dempster’s rule will be out of operation and another combination rule could be used.

Step 4: After evidence fusion, the most possible solution for the investigated problem
can be determined based on the Pignistic probability BetP related to the BPA m. In order to
obtain a solution without ambiguity, this paper just considers BetP = [BetP1, BetP2, . . . , BetPc].
For Hi(i = 1, 2, . . . , c):

BetP(Hi) = ∑
Hi∈B,B∈2Ω

m(B)
|B| (4)

where |B| is the cardinality of subset B and
c
∑

i=1
BetP(Hi) = 1.

2.2. Field Exposure Test

The atmospheric corrosion monitoring tests in this study were conducted at Qingdao
(36.07 degrees north latitude and 120.44 degrees east longitude), eastern China, which has
a costal humid temperature climate [25]. The principle and availability of the employed
Internet of Things Atmospheric Corrosion Monitor (IoTACM) were detailed in our pre-
vious research [5]. Following the related instructions [5], the real-time corrosion rate of
specimen can be calculated based on the real-time voltage ratio and initial height of the
specimen. In this study, three Q235 steel specimens were tested from 25 September 2017 to
24 December 2017, lasting for three months. The sizes (length × width × height) of the
A1, A2, and A3 specimens were 70 mm × 70 mm× 0.15 mm, 70 mm × 70 mm × 0.4 mm,
and 70 mm× 70 mm × 0.4 mm, respectively. Figure 2 shows some details of the field test.
The specimens were installed in an exposure shelf toward the south with a 45-degree angle
to the ground. The IoTACM was placed approximately 10 m from the shelf. In addition,
humidity and temperature sensors were also placed next to the shelf to record the real-time
RH and T of the current environment.
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Figure 2. The field corrosion tests at Qingdao, China. (a) Three Q235 steel specimens; (b) ACM.

2.3. Field Corrosion Data

In this study, the real-time corrosion rates of three Q235 steel specimens and RH
and T data were recorded hourly by IoTACM. There were 2200 data samples without
missing values. Although only small errors existed among the corrosion rate data of three
specimens, the average real-time corrosion rate of A1, A2, and A3 specimens was evaluated
so as to improve the reliability of the data. Figure 3a draws the variations of the real-time
corrosion rate (y-axis) with exposure time. Similarly, Figure 3b draws the variations of



Materials 2021, 14, 6954 5 of 13

cumulative corrosion loss (y-axis) with exposure time. Apparently, the corrosion rate
significantly fluctuated in a large range and the fluctuation gradually flattened out over
time. This is consistent with the power law that the specimens were seriously corroded in
the early period, while the corrosion gradually turned slightly with time [26]. In this study,
the test period was divided into two stages in order to reveal their underlying different
corrosion mechanisms. We took the moment with 50% of the total cumulative corrosion loss
as the separation of two stages. Accordingly, as shown in Figure 3a, the corrosion process
in test period [0, 550] is defined as Stage 1 (23 days, nearly one month), and the subsequent
period [550, 2200] refers to Stage 2. In this case, above 50% of the total cumulative corrosion
loss was caused in Stage 1 within only 25% of the total test time. The mean corrosion rate
in Stage 1 was 0.021 µm/h, which is 3.5 times that in Stage 2 (0.006 µm/h). It is reasonable
to take Stages 1 and 2 as the fast and slow corrosion periods, respectively.
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Furthermore, four typical air pollutants—SO2, NO2, PM2.5, and PM10—and the air
quality index (AQI), which are generally regarded as important corrosive agents [5,15],
were taken into consideration in this study. The corresponding pollutant data at Qingdao
during the same test period were collected from the National Urban Air Quality Real-time
Publishing Platform. Moreover the distance between the selected meteorological station
and the corrosion test area was 5.4 km. It should be noted that the chloride deposition rate
was not included in this work, given the following reasons. First, the impact of chloride
is cumulative and becomes more dominant for long-term corrosion under marine atmo-
spheres, while it shows little difference to corrosion losses of carbon steel coupons despite
the very different chloride deposition rates in short-term exposure tests [27–29]. This study
mainly focused on short-term corrosion tests lasting for three months. Second, the average
chloride deposition rates in October, November, and December 2017 in the experimental
site were 15.38 mgm−2d−1, 15.91 mgm−2d−1, and 4.45 mgm−2d−1, respectively. Com-
pared to the chloride deposition rates ranging from 0∼2000 mgm−2d−1 reported in related
studies [27,28], the above values reflect low chloride concentrations during the exposure
tests, which have less effect on the corrosion of Q235 steels in service. Third, the chloride
deposition rate is typically recorded at least monthly following ISO 9225 standard [30].
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To the best of authors’ knowledge, there is no technique that can precisely record the hourly
chloride deposition in field atmospheric environments, especially for our case where the
deposition is low and the test duration is short. Last but not the least, the corrosion tests in
the same site as this study indicate that the formation of non-protective akageneite induced
by chloride enrichment was not found in the corrosion product layer of the specimens
after one month of exposure [31]. Additionally, the average chloride deposition rate in
reference [31] was 71.03 mgm−2d−1, which is much higher than the chloride deposition
rate during the whole exposure tests in this study. To sum up, it is reasonable to consider
that chlorides also did not play a major role in this present study.

Table 2 summarizes the characteristics of the collected field data in each stage. It shows
a wide gap in the corrosion rate between Stages 1 and 2. Although the RH in both stages
shared similar maximum and standard deviation values, the mean RH in Stage 1 exceeded
that in Stage 2. Because of the coming of winter, the T gradually decreased with time.
Accordingly, Table 2 shows an obvious lower T in Stage 2 than in Stage 1. According to
the data of the contaminators (SO2, NO2, PM2.5, and PM10), wider variation ranges and
bigger average values of pollutants were found in Stage 2. This means that the air pollution
in Stage 2 was significantly more serious than in Stage 1.

Table 2. Characteristics of the field data in Stage 1 (Stage 2).

Index Rt RH T AQI SO2 NO2 PM2.5 PM10

Max 0.065 (0.023) 84 (79) 26 (19) 97 (289) 45 (163) 112 (412) 28 (98) 131 (135)
Min 0 (0) 25 (17) 17 (1) 20 (5) 1 (1) 8 (1) 1 (1) 1 (4)
Mean 0.021 (0.006) 58 (42) 21 (10) 44 (76) 13 (37) 45 (97) 6 (15) 29 (51)
Standard Deviation 0.017 (0.006) 16 (14) 2 (5) 14 (32) 10 (31) 21 (51) 5 (11) 22 (28)

Notes: Rt is the corrosion rate at time t. The units of Rt, RH, and T are µm/h, %, and ◦C, respectively. The units of SO2, NO2, PM2.5, and
PM10 are all µg/m3.

3. Results and Discussion

In this section, the impact of different atmospheric factors on the corrosion rate is
analyzed from the viewpoints of qualitative analysis, statistical quantitative analysis, and
information fusion-based quantitative analysis.

3.1. Qualitative Analysis

In order to visually show the impact of different atmospheric factors on the corrosion
rate, the curves of four illustrative cases marked in Figure 3a are drawn. The left y-axis in
Figure 4 measures the real-time corrosion rate. Meanwhile, the right y-axes in different
colors measure the concentrations of corresponding envrionmental factors. As shown in
Figure 4b, the decreasing corrosion rate was associated with the gradual reduction in RH
and T, while the concentrations of the pollutants remained stable in this period. The period
of Figure 4c met with relatively stable values of T and AQI. Moreover, the rise in the
corrosion rate with time was significantly influenced by the rapid increase in RH. In the
above two cases, the variances of RH and T resulted in thickness variations of the thin
electrolyte layer, which directly affected the corrosion rate. Similarly, the RH and T in the
periods of Figure 4a,d basically remained stable. However, the air pollutions gradually
increased as a whole, especially in the period of Figure 4a. Accordingly, there was a rapid
increase in the corresponding real-time corrosion rate. The corrosive components of the
pollutants might be dissolved on the surface of specimens, which accelerated the corrosion
behavior. The above analyses lead to the conclusion that the RH, T, and these contaminants
are positively correlated with the corrosion rate.
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3.2. Statistical Quantitative Analysis

In order to quantify the influence of atmospheric factors on corrosion rate, the four
commonly used statistical correlation indexes of Pearson’s correlation coefficient (PCC) [15],
Kendall’s rank correlation coefficient (KRCC) [32], Spearman’s correlation coefficient
(SCC) [32], and the maximal information coefficient (MIC) [14] were employed in this
subsection. PCC applies to measuring the linear relationship between two variables, SCC
and KRCC, focusing on monotonic correlation, while the MIC is capable of measuring
nonlinear relationships. The ranges of PCC, SCC, and KRCC are all [−1, 1], where a
negative value indicates a negative correlation and vice versa. The MIC takes a value in
the [0, 1] range, where a larger value means a stronger correlation between two variables.
The results of Stages 1 and 2 are summarized in Tables 3 and 4, respectively. Given the
complexity of corrosion behavior, there exist nonlinear relationships between atmospheric
factors and corrosion rate. According to the values of the MIC index in Tables 3 and 4,
the RH and T have stronger correlations with the corrosion rate in both Stages 1 and 2.
Compared to Stage 1, the smaller MIC values of the RH and T in Stage 2 indicate their
decreased impact. However, the results of the statistical correlation analysis also lead to
the following problems:

(1) In terms of the influence of the atmospheric factor on the corrosion rate, four statistical
indexes derive inconsistent ranks of atmospheric factors in Stage 1. The same thing
also occurs in Stage 2. They do not even agree on the most important factor in Stage 2.
This indicates that selecting one certain statistical index to evaluate the influences of
different atmospheric factors is subjective.

(2) In Stage 1, the negative values of T and four contaminators by PCC, KRCC, and SCC
indicate their negative correlations with the corrosion rate. However, this is inconsis-
tent with the qualitative analysis results in Section 3.1. Similar things also happen
in Stage 2. A possible reason is that statistical correlation coefficients can exactly
measure the correlation between two variables only when all of the other related
variables remain unchanged. The online corrosion rate data were the interactions of
multiple atmospheric variables; therefore, unreasonable statistical results occurred.

(3) Regardless of the linear and nonlinear indexes, none of the factors had a correlation
value above 0.5. This means low correlations between all factors and the corrosion rate.
The possible reason is that the coupled corrosion rate data hinder the statistical indexes
from accurately quantifying true correlations. Actually, a hidden relationship between
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atmospheric factors and the corrosion rate has been demonstrated by a hidden Markov
model [15]. How to accurately quantify the hidden influence remains challenging.

Table 3. Statistical correlations of atmospheric factors and corrosion rate in Stage 1.

Index RH T AQI SO2 NO2 PM2.5 PM10

PCC 0.4765 −0.2801 −0.2347 −0.1932 −0.2584 −0.3026 −0.2150
KRCC 0.3350 −0.1661 −0.1568 −0.1055 −0.1792 −0.2374 −0.1724
SCC 0.4789 −0.2060 −0.2453 −0.1593 −0.2695 −0.3300 −0.2582
MIC 0.4225 0.3373 0.2889 0.3079 0.2685 0.3191 0.2876

Table 4. Statistical correlations of atmospheric factors and corrosion rate in Stage 2.

Index RH T AQI SO2 NO2 PM2.5 PM10

PCC 0.3113 0.2812 0.1188 0.1059 0.1308 −0.0285 −0.2019
KRCC 0.2222 0.1471 0.0937 0.0786 0.0855 −0.0052 −0.1545
SCC 0.3271 0.2265 0.1344 0.1229 0.1220 −0.0067 −0.2250
MIC 0.2108 0.2493 0.1475 0.1661 0.1476 0.1327 0.1827

3.3. Evidence Fusion-Based Quantitative Analysis

From the viewpoint of evidence fusion, a new machine learning model to quantify
the hidden influence of atmospheric factors is developed in this subsection. The following
model construction process is established in Stage 1, and the results of the proposed model
of Stage 2 are directly given.

The corrosion rate data in Stage 1 were classified into the three corrosion degrees of
fast, medium, and slow. A commonly used unsupervised K-means method (the function
K Means in the Python package of Sklearn) [33] was used to avoid the subjectivity of manual
classification. The results are shown in Figure 5. For the real-time corrosion rate Rt

at exposure time t, the corresponding corrosion degree yt =
[
y f , ym, ys

]
was defined

as follows:

yt =


[0, 0, 1] Rt ∈ [0, 0.018]
[0, 1, 0] Rt ∈ (0.018, 0.041]
[1, 0, 0] Rt ∈ (0.041, 0.066]
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Figure 5. The classification of the corrosion rate on Stage 1.

Considering that the combined behaviors of multiple factors lead to atmospheric
corrosion, the factors of RH, T, SO2, NO2, PM2.5, and PM10 can be regarded as different
independent pieces of evidence providing support information to the current degree of
corrosion. It should be noted that AQI is not an independent evidence because it is a
synthetic index related to other investigated pollutants. The framework of the proposed
model is shown in Figure 6.
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Step 1: Evidence construction. Let xi = [xRH
i , xT

i , xSO2
i , xNO2

i , xPM2.5
i , xPM10

i ] denote the

atmospheric factor data sample whose label of the degree of corrosion is yt =
[
y f , ym, ys

]
.

The atmospheric factor dataset on Stage 1 is X= {xi}550
i=1. The frame of discernment in this

degree of corrosion classification problem is Ω = { f , m, s}. Let Xtrain and Xtest denote
the training and test sets, respectively. Let xjk denote the data of the atmospheric factor
j(j ∈ [RH, T, SO2, NO2, PM2.5, PM10]) belonging to the degree of corrosion k(k ∈ Ω).
Moreover, UBjk and LBjk denote the maximum and minimum value of xjk in the training
set, respectively. Considering of the universality of Gaussian distribution in the natural
world, the Gaussian kernel density estimator [34] was employed to calculate the probability
density function (PDF) f jk in the training set:

f jk(x) =


1

ntrain
∑

xjk∈Xtrain

1√
2πh

exp−(x−xjk)
2
/2h if x ∈ [LBjk, UBjk]

δ0 otherwise
(6)

where h = (4σ/3ntrain)
2, σ is the standard deviation of xjk in the training set and ntrain is

the total number of samples in the training set [34]. It should be noted that δ0 is a positive
value close to zero so as to avoid generating completely conflicting evidence. In this study,
let δ0 = 0.001.

As shown in Figure 6, the support information for the degree of corrosion k provided
by evidence j is proportional to its intersection f jk(xj

i) with the PDF model f jk [35]. Accord-

ingly, the basic probability assignment function mj
i of evidence j can be calculated by two

rules in reference [35].
Step 2: Evidence discount. Considering the different levels of importance of different

pieces of evidence, the evidence discounting operation is necessary to obtain reasonable
fusion results. Let wj(0 ≤ wj ≤ 1) denote the importance coefficient of evidence j whose

initial value equals 1 before training. For evidence mj
i , the discounted evidence wj m j

i can be
calculated as follows. For ∀A ⊂ Ω:

wj m j
i(A) =

{
wj ·m

j
i(A) if A 6= Ω

wj ·m
j
i(A) + 1− wj otherwise

(7)
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Steps 3 and 4: Evidence fusion and corrosion prediction. The different pieces of
discounted evidence can be fused by Dempster’s rule [20].

mi =
6
⊕

j=1

wj m j
i (8)

Then, the predicted degree of corrosion BetPi = [BetP f
i , BetPm

i , BetPs
i ] can be derived

by the Pignistic probability transformation [36]. For ∀k ∈ Ω:

BetPk
i = ∑

k∈B, B⊂Ω

mi(B)
|B| (9)

where |B| is the cardinality of set B.
In order to determine the correct importance w(w = [w1, w2, . . . , w6]) of atmospheric

factor evidence, the vector w was optimized on the training set. The objective function fcost
is devoted to minimizing the error between the predicted degree of corrosion and the true
degree of corrosion on the training set.

fcost = min
w

ntrain

∑
i=1
‖BetPi − yi‖2

2 (10)

By the commonly used simulated annealing optimization method [37], the optimal
importance vector w∗ was derived and used to verify the proposed model on the test set.

In this study, 80% of the data in each stage was randomly selected as the training set
and the remainder as the test set. The widely used models of ANN and SVM were also
tested. The average prediction precision of these three models on the test set in five random
experiments was compared. The importance w∗ of each atmospheric factor given by our
model is reported.

The experimental results of Stage 1 are given in Tables 5 and 6. The corresponding
analyses are as follows: (1) According to Table 5, from the viewpoint of evidence fusion,
T is the greatest contributor to atmospheric corrosion in Stage 1, followed by RH and SO2.
(2) Comparing RH and T, the contaminators of SO2, NO2, PM10, and PM2.5 have less
influence in the interactions on atmospheric corrosion in the initial atmospheric corrosion
process. (3) Comparing the statistical correlation coefficients in Table 3, the proposed
model found higher correlations between the atmospheric factors and corrosion rate.
(4) According to Table 6, comparing ANN and SVM, the proposed model performed best
in predicting the degree of corrosion of Q235 steel.

Table 5. The importance of each atmospheric factor in Stage 1 (after 550 hours of exposure).

Factor RH T SO2 NO2 PM2.5 PM10

w∗ 0.9031 0.9881 0.8910 0.4491 0.1175 0.4208

Table 6. The average prediction precision in Stage 1 (after 550 hours of exposure).

Algorithm SVM ANN Ours

Accuracy 62.00% 75.63% 75.63%

Similarly, the experimental results of Stage 2 are summarized in Tables 7 and 8. The
corresponding analyses are as follows: (1) According to Table 7, in Stage 2, T still contributes
most to atmospheric corrosion among all of the investigated factors, followed by NO2 and
SO2. (2) According to Table 2, the mean RH in Stage 2 is obviously lower than in Stage 1.
Accordingly, the proposed model derived a lower impact of RH in Stage 2 than in Stage 1.
(3) As introduced in Table 2, the test period of Stage 2 suffered more serious air pollution.
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Accordingly, compared to Stage 1, the proposed model found higher correlations between
the corrosion rate and contaminators of NO2, PM2.5, and PM10 in Stage 2. (4) According to
Table 7, the contaminators of SO2 and NO2 have more influence on atmospheric corrosion
than RH. Following Figure 3b, the corrosion behavior in Stage 2 gradually weakened over
time. The possible reason is that Stage 1 generated corrosion products. They isolated
the metal surface from the atmosphere such that the adhesion of water droplets on the
metal surface was affected. Therefore, the impact of RH was weakened in Stage 2, while
some contaminators contributed more to the specimen’s corrosion because of the ability of
damaging the existing corrosion products. (5) According to Table 8, the proposed model
outperformed SVM and ANN in terms of corrosion predication.

Table 7. The importance of each atmospheric factor in Stage 2 (after 2200 hours of exposure).

Factor RH T SO2 NO2 PM2.5 PM10

w∗ 0.7821 0.9601 0.8547 0.9464 0.7146 0.6385

Table 8. The average prediction precision in Stage 2 (after 2200 hours of exposure).

Algorithm SVM ANN Ours

Accuracy 74.44% 72.57% 80.88%

To sum up, according to the results of the qualitative analysis and the statistical
quantitative analysis on the exposure test data of Q235 steel at Qingdao, China, it was
found that most statistical correlation coefficients did not adapt to the outdoor coupled
corrosion data. Therefore, a new evidence fusion-based model was proposed. According
to the results of the evidence fusion-based quantitative analysis, the proposed model
can discover the influence of different environmental factors on carbon steel corrosion in
different exposure test periods, and can accurately predict the corrosion rate.

4. Conclusions

Based on the exposure tests of Q235 steel at Qingdao, China, the main findings and
novelty of this work are as follows:

(1) It was found that most statistical correlation coefficients do not adapt to coupled data
analysis. They can accurately measure the correlation between two variables only
when all of the other related variables remain unchanged, while the outdoor online
ACM corrosion data are mutually influenced by many atmospheric factors.

(2) A new evidence fusion-based machine learning model was proposed, which adapts
to deal with coupled corrosion data because of the advantage of information fusion.
Processing online corrosion data from the viewpoint of evidence theory initiates a
new field of corrosion research.

(3) The proposed model can not only measure the influence of different environmental
factors on atmospheric corrosion, but can also predict the corrosion rate.

(4) Comparing the commonly used machine learning models of ANN and SVM in
corrosion research field, the proposed model can obtain more accurate corrosion
prediction results.

(5) According to the proposed model, relative humidity, temperature, and SO2 are the
main factors affecting atmospheric corrosion among the investigated environmen-
tal factors.

(6) According to the proposed model, because of the ability of damaging the corrosion
products generated in initial corrosion process, SO2 and NO2 showed greater impact
on atmospheric corrosion than relative humidity in the later corrosion period.

Our future work will focus on the atmospheric corrosion analysis on different climatic
conditions and long-term corrosion tests.
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