
Her2 Activates NF-κB and Induces Invasion Through the 
Canonical Pathway Involving IKKα

Evan C Merkhofer1,2, Patricia Cogswell, M.S.1, and Albert S Baldwin, Ph.D.1,2,3,*

1Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599

2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599

3Department of Biology, University of North Carolina, Chapel Hill, 27599

Abstract

The membrane bound receptor tyrosine kinase Her2 is overexpressed in approximately 30% of 

human breast cancers which correlates with poor prognosis. Her2-induced signaling pathways 

include MAPK and PI3K/Akt, of which the latter has been shown to be critical for Her2+ breast 

cancer cell growth and survival. Additionally, the NF-κB pathway has been shown to be activated 

downstream of Her2 overexpression, however the mechanisms leading to this activation are not 

currently clear. Using Her2+/ER- breast cancer cells, we show that Her2 activates NF-κB through 

the canonical pathway which, surprisingly, involves IKKα. Knockdown of IKKα led to a 

significant decrease in transcription levels of multiple NF-κB-regulated cytokine and chemokine 

genes. siRNA-mediated knockdown of IKKα resulted in a decrease in cancer cell invasion, but 

had no effect on cell proliferation. Inhibition of the PI3K/Akt pathway had no effect on NF-κB 

activation, but significantly inhibited cell proliferation. Our study suggests different roles for the 

NF-κB and PI3K pathways downstream of Her2, leading to changes in invasion and proliferation 

of breast cancer cells. Additionally this work indicates the importance of IKKα as a mediator of 

Her2-induced tumor progression.
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Introduction

The epidermal growth factor receptor Her2 is amplified in 20-30% of breast cancers, which 

typically do not express estrogen receptor, and are often correlated with poor prognosis 

and/or chemoresistance, making Her2 an important therapeutic target (Hynes & Stern, 1994; 

Klapper et al., 2000; Slamon et al., 1987; Slamon et al., 1989). The Her2-specific antibody 

trastuzumab and the dual EGFR/Her2 inhibitor lapatinib have been shown to decrease 

growth of Her2-overexpressing tumors (Baselga et al., 1999; Pegram et al., 1998), however 
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a majority of patients treated with trastuzamab develop resistance (Slamon et al., 2001), 

indicating the importance of elucidating alternative therapeutic targets in this disease. Her2-

overexpression was first shown to activate NF-κB over a decade ago (Galang et al., 1996), 

however, the role NF-κB plays in development and progression of Her2-overexpressing 

breast cancer is still poorly understood. Additionally, the pathway leading to NF-κB 

activation downstream of Her2 is not well characterized.

NF-κB is an important transcription factor that has been shown to be involved in expression 

of genes involved in key cellular processes including innate and adaptive immunity (Bonizzi 

& Karin, 2004), cell proliferation and survival (Papa et al., 2006), lymphoid organ 

development (Weih & Caamano, 2003), as well as being activated in a variety different 

cancers, including breast cancer (Basseres & Baldwin, 2006; Belguise & Sonenshein, 2007; 

Cogswell et al., 2000). The NF-κB family of transcription factors consists of five subunits: 

RelA (p65), RelB, c-Rel, p105/p50 and p100/p52. These subunits are evolutionarily 

conserved and exist as hetero- or homodimers (Hayden & Ghosh, 2004). The p65/p50 

heterodimer is the most abundant NF-κB complex in the cell and is regulated by the so-

called canonical pathway. Following stimulation with activators such as TNF, IκB is 

phosphorylated by the Inhibitor of KappaB Kinase (IKK) complex. The IKK complex 

consists of two catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ (NEMO), 

which binds both catalytic subunits at their NEMO-binding domains (NBD)(Gilmore, 2006). 

In the canonical pathway, IKKβ phosphorylates IκBα leading to its degradation and NF-κB 

nuclear accumulation (Ghosh & Karin, 2002). Furthermore, the p65 subunit of NF-κB can 

be phosphorylated on multiple residues, including serine 536, which is important for 

transactivation potential (Sakurai et al., 1999). NF-κB activation can also occur via the 

alternative, or non-canonical pathway. Activation of NF-κB in the non-canonical pathway, 

most common in B cells, involves Inhibitor of KappaB Kinase α (IKKα) and is IκBα-

independent (Solt & May, 2008). Thus most current models place IKKβ as the dominant 

IKK subunit in the canonical pathway with IKKα functioning in the non-canonical system. 

Few studies have addressed the individual roles of IKKα and IKKβ downstream of 

oncoprotein-dependent signaling.

Using an siRNA approach, we set out to determine how NF-κB is activated downstream of 

Her2, and what role the IKK complex plays in this signaling cascade, as well as how the 

activation of the IKK kinases may lead to a malignant state. While the classical pathway has 

long been thought to require IKKβ, here we show that IKKα plays a larger role than IKKβ in 

the activation of NF-κB in Her2+ breast cancer cells, including the phosphorylation of the 

p65 subunit at serine 536. Using siRNA to the IKK kinases, we show that knockdown of 

IKKα leads to a change in the gene expression profile in Her2+ cells, including a notable 

cytokine and chemokine gene expression signature. Furthermore, knockdown of IKKα by 

siRNA led to a marked decrease in invasive ability in SKBr3 cells, yet had no effect on cell 

proliferation. Taken together, our data suggests that Her2 can activate NF-κB through the 

canonical pathway. Surprisingly, this activation occurs primarily through IKKα, a subunit 

typically not thought to be involved in the canonical pathway. Interestingly, we have 

discovered differential roles for the IKK kinases with IKKα specifically involved in an 

invasive oncogenic phenotype in Her2+ breast cancer cells.
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Materials and Methods

Cell culture and reagents

The tumor-derived SKBr3 cell lines were maintained in McCoy’s 5A medium (Mediatech) 

supplemented with 10% fetal bovine serum (FBS) and 100 units/mL penicillin/streptomycin. 

The tumor-derived MCF7, MDA-MB-453 and MDA-MB-231 cell lines, as well as Mouse 

Embryonic Fibroblast (MEF) cell lines, were maintained in Dulbecco’s Modified Eagle 

Medium (Gibco) supplemented with 10% FBS and 100 units/mL penicillin/streptomycin. 

The human mammary epithelial cell lines (H16N2-pTP and H16N2-Her2) were maintained 

as previously described (Ethier et al., 1993). The stable 3x-κB luciferase SKBr3 cell line 

was established by transfection of a luciferase reporter construct containing tandem NF-κB 

binding sites from the MHC class I promoter region into SKBr3 cells with Fugene (Roche) 

and maintained under selection with G418 (Geneticin, Live Technologies). The Her2 wild-

type and mutant (V654E) plasmids were constructed previously (Li et al., 2004) (Addgene 

plasmid 16257 and Addgene plasmid 16259). The Her2 coding sequences were subcloned 

into retroviral pLHCX vector (Stratagene) and virus was produced in 293T cells with 

cotransfection of AmphoPAK. MEFs were transduced with virus with polybrene and lysed 

48 hours later. The following antibodies were purchased from commercial sources: 

antibodies against phospho-p65 (Ser536), phospho-Akt (Ser473), Akt, phospho-IκBα 

(Ser32/36) and IκBα from Cell Signaling Technology; antibodies against Her2, IKKα clone 

14A231 and IKKβ clone10AG2 and p100/p52 from Millipore, antibodies against p65 and 

p50 (supershift), β-tubulin and IKKγ from Santa Cruz Biotechnology, antibody against total 

p65 from Rockland (PA, USA). LY294002 and Wortmannin were purchased from Cell 

Signaling Technology. Lapatinib (GW572016; Tykerb) was a gift from Dr. H. Shelton Earp 

(University of North Carolina at Chapel Hill).

Immunoblots

Whole cell extracts were prepared on ice with Mammalian Protein Extraction Reagent 

(Thermo Scientific) according to manafacturer’s instructions supplemented with protease 

inhibitor mix (Roche, IN, USA) and phosphotase inhibitor mix (Sigma, MO, USA). Nuclear 

and cytoplasmic extracts were prepared as previously described (Mayo et al., 1997). Protein 

concentrations were determined by Bradford assay (Biorad Laboratories) and SDS-PAGE 

analysis was performed as previously described (Steinbrecher et al., 2005).

Small RNA interference

The following small interfering RNAs (siRNA; siGenome SMARTpool) were obtained from 

Dharmacon as a pool of four annealed double-stranded RNA oligonucleotides: IKKα 

(M-003473-02), IKKβ (M-003503-03), NEMO (M-003767-02), RelA (p65) (M-003533-02) 

and nontargeting control #3 (D001201-03). Cells were grown to approximately 50% 

confluency and transfected with 100 nmol/L siRNA with Dharmafect 1 reagent according to 

manafacturer’s instructions.
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Quantitative Real-time PCR

Total RNA extracts were obtained from cells approximately 72 hours post-transfection by 

Trizol (Invitrogen) extraction. Two micrograms of RNA was reverse transcribed using 

random primers and MMLV-reverse transcriptase (Invitrogen). Real-time PCR was 

performed and analyzed as previously described (Steinbrecher et al., 2005) using Taqman 

Gene Expression Assay primer-probe sets IL-6 (Hs00174131_m1), IL-8 

(Hs001741103_m1), CCL2 (Hs00234140_m1), TNF (Hs99999043_m1), and uPA 

(Hs00170182_m1).

Electorphoretic Mobility Shift Assay

Electrophoretic mobility shift assay (EMSA) and NF-κB supershift analysis were done on 

nuclear extracts as previously described (Steinbrecher et al., 2005) using 32P-labeled 

oligonucleotide probe corresponding to an NF-κB site within the MHC class I promoter 

region.

IKK Kinase Assay

Whole cell lysates were prepared on ice for 45 minutes in lysis buffer containing 20 mmol/L 

Tris (pH 8.0), 500 mmol/L NaCl, 0.25% Triton X-100, 1 mmol/L EDTA, 1 mmol/L EGTA, 

1 mmol/L DTT, 1x protease inhibitor (Roche Applied Science), and 1x phosphatase 

inhibitor cocktail (Sigma-Aldrich). IKK complexes were immunoprecipitated from 500-μg 

total protein extract using IKKγ antibody (Santa Cruz Biotechnology). An in vitro kinase 

assay was done and analyzed as previously described (Steinbrecher et al., 2005) using GST-

IκBα as a substrate.

Luciferase Assay

SKBr3 cells stably expressing the 3x-κB plasmid were plated in equal number in triplicate 

in 24-well plates and transfected with siRNA for 72 hours or treated overnight with 

LY294002. Cells were lysed in MPER and luciferase activity was measured with Promega 

Luciferase Assay System (Promega). Luciferase levels were normalized by protein 

concentration using a Bradford assay. H16N2-Her2 and MDA-MB-453 cells were 

transfected with siRNA 72 hours before lysates were obtained, and were transfected with 

3x-κB reporter plasmid and pRL-CMV (Promega) renilla plasmid 24 hours prior to lysate 

collection. Lysates were collected as mentioned above and luciferase levels were normalized 

to renilla.

Cell invasion assay

Innocyte™ Cell Invasion Assay Kit was purchased from Calbiochem (San Diego, 

California). Cells were transfected with siRNA for 48 hours before seeding. Invasion assay 

was performed as per manafacturer’s protocol for 48 hours. The number of invading cells 

was measured fluorometrically with Calcein AM.
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Cell Proliferation Assay

Cell proliferation assay was performed as previously described (Wilson & Baldwin, 2008). 

Cells were cultured in the presence or absence of inhibitors, or transiently transfected with 

siRNA to IKK subunits and measured at the indicated timepoints post-transfection.

Results

Lapatinib inhibits Her2 activation of NF-κB and Akt

It has previously been shown that Her2-overexpression leads to activation of NF-κB family 

members involved in the canonical pathway, specifically the p65/p50 heterodimeric 

complex (Biswas et al., 2004; Galang et al., 1996). Given this result, we investigated 

whether the dual EGFR/Her2 inhibitor Lapatinib (Tykerb, GW572016) could block Her2-

induced p65 phosphorylation at serine 536, a marker of increased NF-κB transcriptional 

activity (Sakurai et al., 1999). Five breast cancer cell lines were treated with 1 μM of 

lapatinib for 12 hours and whole cell extracts were analyzed for expression of 

phosphorylated p65. A marked decrease in p65 phosphorylation was observed in Her2-

ovexpressing tumor cell lines (SKBr3 and MDA-MB-453) upon treatment with lapatinib, 

while non Her2-overexpresing tumor cell lines (MCF7 and MDA-MB-231) showed no 

change (Fig. 1A). The H16N2-Her2 cell line also showed a decrease in p65 phosphorylation 

upon lapatinib treatment. Overexpression of Her2 in this cell line results in NF-κB 

activation, as the parental cell line, H16N2-pTP, has very little basal p65 phosphorylation 

(Supplemental Figure 1). In order to further investigate how Her2 signals to NF-κB, we 

chose to use the tumor-derived SKBr3 cell line, as it has previously proven to be an 

excellent in vitro model for Her2+/ER- breast cancer (Singh et al., 2007). SKBr3 cells were 

treated with 1 μM lapatinib or vehicle control over a course of 24 hours and whole cell 

extracts were analyzed for levels of phosphorylated IκBα. Phosphorylation of IκBα at 

serines 32 and 36 was inhibited within 3 hours of lapatinib treatment (Fig. 1B). Stabilization 

of IκBα was also observed, consistent with loss of phosphorylated IκBα. It has previously 

been shown that Her2-overexpression activates the PI3K/Akt pathway and that lapatinib can 

inhibit Akt phosphorylation in lapatinib-sensitive Her2 overexpressing breast cancer cell 

lines (Hegde et al., 2007). Similarly, we observe a decrease in phosphorylation of Akt at 

serine 473 in the lapatinib-sensitive SKBr3 cell line upon treatment with lapatinib (Fig. 1C). 

This indicates that Her2 can activate both the NF-κB and the PI3K/Akt pathways, and that 

pharmacological inhibition of Her2 leads to subsequent inhibition of these survival 

pathways.

Her2 activates the NF-κB canonical pathway through IKKα and IKKβ

We next examined the role of the IKK complex in the activation of NF-κB downstream of 

Her2. siRNA targeting the catalytic subunits of the IKK complex (IKKα and IKKβ) was 

transfected into Her2-overexpressing breast cancer cells and whole cell extracts were 

analyzed for markers of NF-κB activation. In the Her2-ovexpressing SKBr3, H16N2-Her2 

and MDA-MB-453 cells, knockdown of IKKα led to a greater decrease in p65 

phosphorylation than knockdown of IKKβ (Fig. 2A). Mouse embryonic fibroblasts (MEFs) 

lacking IKKα, as well as wild-type cells, were transduced with Her2 wild-type and 

constitutively active constructs. Transduction of these constructs resulted in increased p65 
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phosphorylation in wild-type MEFs, however, no increase in phosphorylation was seen in 

IKKα -/- cells (Supplemental Figure 2). A similar result was obtained using IKKβ -/- cells 

(data not shown), indicating that both IKKα and IKKβ are important for Her2 to activate 

NF-κB in murine fibroblasts. In order to further investigate the role IKKα may play in the 

activation of classical NF-κB complexes downstream of Her2, siRNA was again used to 

target IKK in SKBr3 cells stably expressing a 3x-κB luciferase reporter construct, as well as 

in H16N2-Her2 and MDA-MB-453 transiently transfected with the 3x-κB reporter plasmid. 

Knockdown of IKKα or a combination of IKKα and IKKβ led to a significant decrease in 

luciferase reporter activity (student’s T-test *<0.05 and **<0.001 respectively), while 

knockdown of IKKβ did not show a significant decrease in luciferase reporter activity in two 

of the three cell lines (Fig. 2B). An Electrophoretic Mobility Shift Assay (EMSA) was 

performed to further investigate the role of IKK in Her2 activation of NF-κB in SKBr3 cells. 

Knockdown of IKKα led to a greater decrease in NF-κB DNA binding activity than IKKβ 

knockdown (Fig. 2C). Supershift analysis indicated that loss of IKKα leads to a decrease in 

DNA binding of classical-pathway NF-κB heterodimers p65/p50. Phosphorylation of IκBα 

by the catalytic subunits of the IKK complex is a hallmark of activation of the canonical NF-

κB pathway, therefore we measured this kinase activity upon knockdown of IKKα or IKKβ. 

The IKK complex was immunoprecipitated with IKKγ, the scaffolding subunit of the IKK 

complex. Knockdown of IKKα led to a greater decrease of in vitro phosphorylation of IκBα 

than knockdown of IKKβ (Fig. 2D), further indicating IKKα plays a prominent role in the 

canonical pathway in Her2-overexpressing cells. Taken together, these results demonstrate 

that IKKα plays a more significant role than IKKβ in activation of the NF-κB canonical 

pathway in Her2-overexpressing breast cancer cells.

Knockdown of IKKα and IKKβ leads to distinct gene expression profiles

We next determined if knockdown of the two IKK catalytic subunits leads to differential 

changes in gene expression in Her2-overexpressing cells. A chemiluminescent oligo-based 

array was used to measure expression of 219 genes. Upon knockdown of IKKα or IKKβ, 

significant decrease in expression was seen in 14 genes (Supplementary Table 1). Genes that 

showed significant changes in expression upon siRNA transfection were validated by 

quantitative real-time PCR. Decrease in expression of pro-inflammatory cytokines and 

chemokines IL-6, IL-8, CCL-2, TNF, and the serine-protease uPA, was greater upon siRNA 

knockdown of IKKα than IKKβ in both SKBr3 and H16N2-Her2 breast cancer cell lines 

(Fig. 3A). In order to demonstrate that IKK dependent changes in gene expression were 

occurring through modulation of NF-κB transcriptional activity, we performed RNAi 

against the classic subunit p65 in SKBr3 and H16N2-Her2 cells and assayed expression of 

mRNA by quantitative real-time PCR. Gene expression analysis showed that knockdown of 

p65 by siRNA led to a significant decrease in gene transcription levels of IL-8, IL-6, TNF 

and uPA (Fig. 3B). This transcriptional profile mirrors that seen upon knockdown of IKK, 

specifically IKKα, suggesting that induction of chemokines and cytokines in Her2 breast 

cancer cells occurs through IKK activation of p65. We next measured changes in expression 

of these genes in SKBr3 cells following treatment with lapatinib to confirm this activation of 

NF-κB regulated genes was induced downstream of overexpression of Her2. Treatment of 

SKBr3 cells with 1 μM of lapatinib led to a significant decrease in gene expression of IL-6, 

IL-8, CCL-2, TNF and uPA at both 8 and 16 hours post treatment (Fig. 3C). Taken together, 
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this suggests that Her2 activates NF-κB through the canonical pathway involving IKKα and 

leading to an increase in multiple NF-κB regulated genes involved in tumor progression.

Activation of NF-κB in Her2-overexpressing cells requires NEMO

The scaffolding subunit of the IKK complex, IKKγ (NEMO), is required for activation of 

NF-κB canonical pathway involving IKKβ (Gilmore, 2006), and inhibition of the IKK 

signalsome with the Nemo Binding Domain (NBD) peptide can block NF-κB activation 

(Biswas et al., 2004). We used an siRNA approach to determine the importance of NEMO in 

NF-κB activation in Her2-overexpressing cell lines. siRNA knockdown of NEMO led to a 

marked decrease in p65 phosphorylation in all three Her2+ cell lines (Fig. 4A). NF-κB 

luciferase reporter activity was also significantly decreased in these cell lines upon siRNA 

knockdown of NEMO (Fig. 4B). We performed quantitative real-time PCR analysis in the 

SKBr3 cell line upon NEMO knockdown to determine if this resulted in a similar gene 

expression profile as IKKα knockdown. Consequently, IL-6, IL-8, TNF and CCL2 all 

showed a significant decrease in expression upon NEMO knockdown, though uPA 

expression levels did not change (Fig. 4C). In order to rule out any effect loss of IKKα could 

have on non-classical activation of NF-κB, we analyzed processing of the p100 subunit. 

Cleavage of the precursor NF-κB protein p100 to p52 is a hallmark of activation of the non-

canonical pathway. No significant effect was seen on p100 processing to p52 upon 

knockdown of either of the IKK subunits in Her2+ cells (Fig. 4D). These results suggest that 

NF-κB activation in Her2+ cells occurs through IKKα and this requires the NEMO subunit. 

Additionally, these results indicate that the non-canonical NF-κB signaling pathway is not 

activated in Her2+ breast cancer cells.

Activation of the NF-κB canonical pathway is independent of the PI3K pathway

It has previously been reported that expression of dominant-negative PI3K and Akt plasmids 

can block NF-κB DNA binding (Pianetti et al., 2001). Therefore, we investigated if NF-κB 

activation downstream of Her2 is dependent on the PI3K/Akt pathway. Upon treatment of 

SKBr3 cells with lapatinib, phosphorylation of Akt at Serine 473 decreases dramatically 

(Fig. 1A). Treatment with the PI3K inhibitor LY294002 also blocked phosphorylation of 

Akt at serine 473, however LY294002 had no effect on the phosphorylation status of p65 at 

serine 536 in SKBr3, H16N2-Her2, or MDA-MB-453 cells (Fig. 5A-C). Furthermore, 

treatment of SKBr3 cells stably expressing the 3x-κB luciferase reporter with LY294002 

had no effect on NF-κB transcriptional activity (Fig. 5D). These results demonstrate that 

Her2 activates Akt through PI3K, and that the Her2-induced activation of NF-κB is 

independent of this pathway.

IKKα induces cell invasion but not cell proliferation

Having determined that overexpression of Her2 leads to IKKα-dependent activation of the 

NF-κB classical pathway, we next sought to determine how this signaling may promote 

oncogenic phenotypes. We investigated the effect IKK activation may have on proliferation 

of Her2-overexpressing breast cancer cells. SKBr3 cells were transfected with siRNA to the 

IKK catalytic subunits and cell proliferation was measured by MTS assay. Knockdown of 

IKKα or IKKβ had no effect on cell proliferation (Fig. 6A). As a control, SKBr3 cells were 

treated with the PI3K-inhibitor LY294002, as well as lapatinib. Inhibition of PI3K/Akt or 
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Her2 led to a dramatic decrease in cell growth (Fig. 6B), consistent with what has been 

previously reported, suggesting that Her2 drives cell proliferation through the PI3K/Akt 

pathway. Our previous results have shown IKK/NF-κB dependent increases in 

proinflammatory cytokines downstream of Her2, and these genes have been shown to 

promote increased motility and invasiveness. Furthermore, overexpression of Her2 has been 

shown to lead to increase in invasiveness of breast cancer cells (Arora et al., 2008). We 

reasoned that NF-κB activity downstream of Her2 may contribute to increased invasiveness 

of Her2 breast cancer. To address this question, SKBr3 cells were transfected with siRNA to 

IKKα and IKKβ and the ability of the cells to invade through a basement membrane was 

measured. Knockdown of IKKα led to a significant decrease in invasiveness of SKBr3 cells 

while knockdown of IKKβ had no effect (Figure 6C). This suggests that Her2 

overexpression results in activation of at least two independent oncogenic signaling 

pathways, one involving PI3K/Akt and another involving NF-κB, which have two different 

but important roles in promoting tumorigenesis (Fig. 6D).

Discussion

While Her2-positive breast cancer is known to activate both NF-κB and PI3K/Akt pathways, 

(Biswas et al., 2004; Knuefermann et al., 2003; Pianetti et al., 2001; She et al., 2008), it has 

been unclear how Her2 induces NF-κB and whether PI3K is involved with this pathway. 

Additionally, potential roles for IKKα and IKKβ in controlling Her2-induced NF-κB have 

not been addressed. The latter point is of interest since IKKα and IKKβ have previously 

been associated with controlling distinct NF-κB pathways, with IKKβ controlling the so-

called canonical pathway and IKKα controlling the non-canonical pathway. These issues are 

potentially quite important in the therapeutic setting. Our data indicate the following: (i) 

IKKα plays an important role in controlling the ability of Her2 to activate NF-κB through 

the canonical pathway (including phosphorylation of IκBα, phosphorylation of RelA/p65, 

activation of IKK, and regulation of gene expression), (ii) IKKα controls invasion of Her2+ 

cells, with apparent little contribution of IKKβ in this process, and (iii) PI3K-dependent 

pathways do not contribute to the direct activation of NF-κB in these cells.

Previous experiments from several groups have shown that IKKβ plays a major role in 

controlling canonical NF-κB activation downstream of inflammatory cytokines such as TNF 

(Verma et al., 1995). The potential contribution of IKKα to NF-κB activation downstream 

of Her2-dependent signaling or to that induced by other oncoproteins has not been fully 

elucidated. Lapatinib has been shown to be effective in its inhibition of the Akt and Erk 

pathways in Her2 overexpressing breast cancer cell lines and human tumor xenografts, but 

there are no reports of it having an effect on the NF-κB pathway (Xia et al., 2002; Zhou et 

al., 2004), although Herceptin has been shown to inhibit NF-κB activation in SKBr3 cells 

(Biswas et al., 2004). In our studies, treatment of Her2-overexpressing cell lines with 1 μM 

lapatinib led to a marked decrease in phosphorylation of NF-κB subunit p65 at serine 536 

and of IκBα at serines 32 and 36 (Fig. 1A and B). Lapatinib also blocked NF-κB-induced 

gene transcription (Fig. 3C). Treatment of SKBr3 cells with lapatinib led to complete loss of 

phosphorylation of Akt at serine 473 (Fig. 1C), a marker for Akt activation.
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To address potential contributions of IKKα and IKKβ to NF-κB activation in Her2+ cells 

and to the oncogenic phenotype, we used an IKK knockdown approach in Her2-

overexpressing cells. Knockdown of IKKα led to a more dramatic reduction in p65 

phosphorylation at Ser536 than did knockdown of IKKβ (Fig. 2A). Furthermore, knockdown 

of IKKα strongly reduced NF-κB activation as measured through EMSA and NF-κB-

dependent reporter assays while IKKβ knockdown had less of an effect (Fig. 2B and 2C). 

Similarly, knockdown of IKKα was more effective at blocking IKK activity than 

knockdown of IKKβ (Fig. 2D). SKBr3 cells exhibit low levels of p52/NF-κB2, which is 

derived from IKKα-dependent processing of the p100/NF-κB2 precursor. Knockdown of 

IKKα had little effect on p52 levels in these cells, indicating that non-canonical pathway 

does not appear to be active in SKBr3 cells at a measurable level. Consistent with this, very 

low to undetectable levels of p52 or RelB are detected in the nuclei of SKBr3 cells (data not 

shown). It is important to note that inhibition of IKKβ can lead to a compensatory response 

whereby IKKα controls canonical NF-κB activation in some cell types (Lam et al., 2008). 

Our studies clearly indicate that loss of IKKα leads to reduced NF-κB activation 

downstream of Her2-induced signaling. A study showing that IKKα is necessary for self-

renewal of Her2-transformed mammary initiating tumor cells (Cao et al., 2007) is consistent 

with our results demonstrating the importance of IKKα in controlling NF-κB downstream of 

Her2. The way in which Her2 may selectively activate IKKα in breast cancer remains to be 

investigated. One possibility is selective activation of IKKα by the kinase NIK, as NIK has 

been shown to associate with ErbB2 family member EGFR (Habib et al., 2001), and has 

been shown to be recruited to EGF/heregulin receptor signaling complexes (Chen et al., 

2003).

The knockdown studies were extended to analysis of NF-κB-dependent target gene 

expression (Fig. 3A). Knockdown of IKKα lead to a more dramatic reduction in gene 

expression of IL-6, IL-8, CCL2, TNF and uPA than did knockdown of IKKβ. Decreased 

expression of these genes upon knockdown of the p65 subunit of NF-κB indicates that this 

activation is occurring through the canonical pathway. (Fig. 3B). To demonstrate that these 

genes are controlled through Her2, and not through Her2-independent pathways, lapatinib 

was shown to block target gene expression (Fig. 3C). This increase in chemokine and 

cytokine gene expression by Her2, as well as the increase in the expression of the serine 

protease uPA, shows a large similarity to Her2 induced gene expression signatures which 

have been previously reported, and this increase has been implicated in progression of 

multiple different cancers, including breast cancer (Arihiro et al., 2000; Chavey et al., 2007; 

Vazquez-Martin et al., 2008; Wang et al., 1999). Therefore, our gene expression data 

suggests that IKKα plays in important role in regulating genes involved in breast cancer 

progression, and this requires the scaffolding subunit NEMO (Fig. 4).

Some studies indicate that NF-κB can be activated downstream of PI3K/Akt (Dan et al., 

2008; Makino et al., 2004). However, experiments using the PI3K inhibitor LY294002 

indicate that NF-κB is not activated in Her2+ cells downstream of PI3K (Fig. 5). Thus, this 

pathway is not a link between Her2, IKKα and NF-κB activation. We cannot rule out a 

PI3K-independent Akt-controlled pathway in NF-κB activation. Additionally, we cannot 

rule out that PI3K and/or Akt have effects on NF-κB-target gene expression that function 

separately from the induction of NF-κB activation as assayed through experiments described 
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above. Future studies will address Her2-regulated pathways that lead to activation of IKK. 

Other studies (Dillon et al., 2007) as well as our own (Fig. 6B) show that activation of the 

PI3K pathway plays an important role in cell proliferation/viability. Interestingly, 

knockdown of IKKα or IKKβ subunits (individually or together) by siRNA has no 

measurable effect on cell proliferation (Fig. 6A).

In order to determine if IKKα or IKKβ controls other oncogenic phenotypes, we used 

siRNA treatment and measured cell invasion of SKBr3 cells. Her2 overexpression has been 

shown to induce cell invasion, consistent with its ability to promote upregulation of genes 

such as IL-8 and uPA (Gum et al., 1995; Vazquez-Martin et al., 2008). Knockdown of 

IKKα, but not knockdown of IKKβ, significantly blocks the invasive phenotype of SKBr3 

cells (Fig. 6C). This result is consistent with the regulation of target genes by IKKα that are 

associated with invasive phenotype. Interestingly, other factors have linked breast cancer 

invasion and NF-κB, including microRNAs (Ma et al., 2007). MicroRNAs have been shown 

to negatively regulate NF-κB activity and gene expression, such as microRNA-146, which 

can suppress expression of IL-6 and IL-8 through a reduction in levels of IRAK1 and 

TRAF6 in MDA-MB-231 cells, leading to the metastatic phenotype (Bhaumik et al., 2008).

This study shows that Her2 activation of NF-κB requires IKKα, and this PI3K-independent 

activation leads to an increase in cytokine and chemokine expression, as well as an increase 

in invasive phenotype (Fig. 6D). This data suggests that targeting multiple pathways in 

Her2+ breast cancer may be advantageous for effective therapy, and development of 

inhibitors of IKKα or the use of dual IKKα/IKKβ inhibitors may prove therapeutic in Her2+ 

cancer cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lapatinib treatment inhibits the NF-κB and PI3K pathways in Her2-overexpressing 
cells
A) Western blot of phospho-p65S536 in multiple breast cancer cell lines treated with 

lapatinib. Breast cancer cell lines were treated with 1 μM dual EGFR/Her2 inhibitor 

lapatinib or DMSO vehicle control for 12 hours. Western blots were performed with 25 μg 

protein from whole cell extracts. B) Western blot of phospho-IκBαS32/36 in SKBr3 cells 

treated with lapatinib. SKBr3 cells were treated with lapatinib (1 μM) or DMSO control over 

a course of 24 hours and levels of phospho-IκBαS32/36 were measured by western blot of 25 

μg total protein from whole cell extracts. C) Western blot of phospho-AktS473 in SKBr3 

cells treated with lapatinib. SKBr3 cells were treated for 12 hours with dual EGFR/Her2 

inhibitor lapatinib and levels of phospho-AktS473 were measured by western blot of 25 μg 

protein from whole cell extracts.
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Figure 2. Her2 activation of NF-κB via IKKα and IKKβ involves the canonical pathway
A) Western blot of phospho-p65S536 in Her2-overexpressing breast cancer cells transfected 

with siRNA to IKK catalytic subunits. SKBr3 (left), H16N2-Her2 (center) and MDA-

MB-453 (right) cells were were transfected with 100 nM siRNA to IKKα and IKKβ and 

whole cell extracts were prepared after 72 hours and western blot analysis performed. B) 

NF-κB luciferase reporter assay of SKBr3, H16N2-Her2 and MDA-MB-453 cells 

transfected with IKK siRNA. Whole cell extracts were prepared 72 hours post-siRNA 

transfection and luciferase levels were measured. Statistically significant differences were 

determined by students t-test (*<0.05 **<0.001). Fold change of reporter activity with IKK 

knockdown is shown relative to scrambled siRNA treated cells. Values are the average of at 

least 3 experiments. Error bars are ± 1 S.E. Samples are normalized by protein concentration 

(SKBr3) or renilla (H16N2-Her2 and MDA-MB-453). C) Electrophoretic mobility shift 

assay (EMSA) of SKBr3 cells transfected with IKK siRNA. Nuclear extracts were prepared 

after 72 hours. Identities of the bound complexes were determined by super-shift with 

antibodies to p65 and p50. Non-specific binding complexes are noted with as N.S. D) 

Kinase assay measuring IKK in vitro phosphorylation of IκBα. SKBr3 cells were 

transfected with IKK siRNA for 72 hours and IKKγ was immunoprecipitated from 500 μg 

whole cell extracts. Ability of immunoprecipitated complex to phosphorylate purified GST-

IκBα was measured (KA). Amount of IKKα and IKKβ in immunoprecipitated complex (IP) 

and whole cell extracts (lysate) were measured. Fold change in kinase activity was 

calculated using pixel densitometry and compared to scrambled siRNA transfected cells.
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Figure 3. Her2 induces NF-κB-regulated gene expression through IKKα and IKKβ

(A) Quantitative real-time PCR of multiple genes shows different gene expression profiles 

upon IKKα or IKKβ knockdown. qRT-PCR was performed on extracts from SKBr3 (black 

bars) and H16N2-Her2 (gray bars) cells transfected with 100 nM IKKα or IKKβ siRNA for 

72 hours. Gene expression levels were normalized to Gus or GAPDH and presented as fold 

change versus cells transfected with scrambled control siRNA. Values are the average of at 

least 3 experiments. Error bars are ± 1 S.E. (B) Quantitative real-time PCR of multiple genes 

upon knockdown of p65 by siRNA. SKBr3 and H16N2-Her2 cells were transfected with 

100 nM siRNA for 72 hours and gene expression levels were measured. Fold change of 

transcript levels is shown relative to scrambled siRNA treated cells. Values are the average 

of at least 3 experiments. Error bars are ± 1 S.E. C) Quantitative real-time PCR shows 

inhibition of Her2 by lapatinib blocks NF-κB regulated gene expression. SKBr3 cells were 

treated with 1 μM lapatinib for 8 or 16 hours and gene expression levels of uPA, IL-6, IL-8, 

TNF and CCL2 were compared to DMSO treated cells. Fold change of transcript levels is 

shown relative to scrambled siRNA treated cells. Error bars are ± 1 S.E.
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Figure 4. Knockdown of NEMO blocks NF-κB activation through the canonical pathway
A) Her2+ breast cancer cells were transfected with 100 nM NEMO siRNA and whole cell 

lysates were collected 72 hours post transfection and western blot analysis of 

phosphorylated p65 was performed using 25 μg total protein. B) Her2+ cell lines were 

transfected with 100 nM NEMO siRNA and whole cell extracts were prepared 72 hours 

post-siRNA transfection and luciferase levels were measured. Fold change of reporter 

activity with IKK knockdown is shown relative to scrambled siRNA treated cells. Values 

are the average of at least 3 experiments. Error bars are ± 1 S.E. Samples are normalized by 

protein concentration (SKBr3) or renilla (H16N2-Her2 and MDA-MB-453). C) SKBr3 cells 

were transfected with 100 nM NEMO siRNA and extracts were isolated after 72 hours and 

qRT-PCR was performed. Fold change of transcript levels is shown relative to scrambled 

siRNA treated cells. Error bars are ± 1 S.E. D) Her2-overexpressing breast cancer cells were 

transfected with 100 nM siRNA to IKKα or IKKβ and whole cell extracts were collected 72 

hours post transfection. Levels of p100 and p52 were measured by western blot analysis 

using 25 μg total protein.
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Figure 5. Inhibition of the PI3K-pathway does not block NF-κB activation
Western blot of phospho-p65 serine 536 from SKBr3 (A), H16N2-Her2 (B) and MDA-

MB-453 (C) cells treated with PI3K-inhibitor inhibitor LY294002 for 2 hours. Western blot 

analysis was performed with 25 μg whole cell extracts. D) Luciferase reporter assay of 

SKBr3 cells treated with LY294002 overnight. Fold change of reporter activity with PI3K-

inhibitor treatment is shown relative to vehicle treated cells. Values are the average of at 

least 3 experiments. Error bars are ± 1 S.E. Samples are normalized by protein 

concentration.
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Figure 6. Inhibition of PI3K blocks cell proliferation, knockdown of IKKα blocks cell invasion
A) Cell proliferation of SKBr3 cells transfected with siRNA to IKKα or IKKβ was 

measured to for 6 days post-transfection compared to scrambled siRNA treated cells using 

CellTiter cell viability reagent. Knockdown of IKK by siRNA led to a slight increase in cell 

proliferation. Error bars represent ± 1 S.D. (B) Cell proliferation of SKBr3 cells treated with 

PI3K inhibitors LY294002 (10 μM) or EGFR/Her2 inhibitor lapatinib (1 μM) was measured 

over 3 days. Both inhibitors showed a significant decrease in cell proliferation over a course 

of 3 days. Error bars represent ± 1 S.D. C) SKBr3 cells were transfected with 100 nM 

siRNA to IKKα or IKKβ and cell invasion was measured after 48 hours fluorometrically. 

Statistical significance was measured by student’s T-test (*<0.01, **<0.001). Error bars 

represent ± 1 S.D.
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