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A B S T R A C T   

Constraint-based genome-scale models (GEMs) of microorganisms provide a powerful tool for predicting and 
analyzing microbial phenotypes as well as for understanding how these are affected by genetic and environ-
mental perturbations. Recently, MATLAB and Python-based tools have been developed to incorporate enzymatic 
constraints into GEMs. These constraints enhance phenotype predictions by accounting for the enzyme cost of 
catalyzed modeĺs reactions, thereby reducing the space of possible metabolic flux distributions. In this study, 
enzymatic constraints were added to an existing GEM of Clostridium ljungdahlii, a model acetogenic bacterium, by 
including its enzyme turnover numbers (kcats) and molecular masses, using the Python-based AutoPACMEN 
approach. When compared to the metabolic model iHN637, the enzyme cost-constrained model (ec_iHN637) 
obtained in our study showed an improved predictive ability of growth rate and product profile. The model 
ec_iHN637 was then employed to perform in silico metabolic engineering of C. ljungdahlii, by using the OptKnock 
computational framework to identify knockouts to enhance the production of desired fermentation products. The 
in silico metabolic engineering was geared towards increasing the production of fermentation products by 
C. ljungdahlii, with a focus on the utilization of synthesis gas and CO2. This resulted in different engineering 
strategies for overproduction of valuable metabolites under different feeding conditions, without redundant 
knockouts for different products. Importantly, the results of the in silico engineering results indicated that the 
mixotrophic growth of C. ljungdahlii is a promising approach to coupling improved cell growth and acetate and 
ethanol productivity with net CO2 fixation.   

1. Introduction 

The widespread adverse impacts of human caused climate change 
has made necessary a global effort for accelerating the reduction of 
anthropogenic greenhouse gas emissions [1]. As the main greenhouse 
emitted gas, CO2 reduction is the main target of most of the strategies to 
counteract climate warming; the main processes for the capture of CO2 
typically are grouped as carbon capture and storage (CCS) and carbon 
capture and utilization (CCU) strategies, depending on the fate of the 
CO2 [2]. In CCU strategies hold great potential as recaptured CO2 is 
utilized as a feedstock for chemical, biochemical, and electrochemical 
processes to produce materials and chemicals. This approach can play a 
significant role in the development of a circular economy, allowing 
potential carbon-negative products. In biologically mediated CCU, 

biological systems are utilized to capture and utilize CO2 present at the 
emission source, or in the atmosphere, to be introduced in the meta-
bolism of autotrophic bacteria, algae, or archaea [3]. Among autotro-
phic microorganisms, acetogenic bacteria, or acetogens are particularly 
interesting for potential industrial applications, employing an energet-
ically efficient CO2 fixating pathway, the reductive acetyl-CoA pathway, 
or Wood-Ljungdahl pathway (WLP)[4], [5]. In this pathway, 2 moles of 
CO2 are converted to one mole of acetyl-CoA, utilizing H2 as an electron 
donor[6]. The acetyl-CoA is then typically converted to acetic acid 
through phosphotransacetylase and acetate kinase, allowing to recover 
one mole of ATP per mole of acetic acid produced by phosphorylation at 
the substrate level [6]. Despite the promising potential of these micro-
organisms for industrial applications, their use has been hindered by 
their slow growth and low productivity when grown autotrophically, 
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particularly without the presence of CO. Until now, Lanzatech has been 
the only company developing a gas fermentation process with acetogens 
reaching commercial scale, successfully producing ethanol from syngas 
fermentation [7]. However, CO-rich syngas fermentation results in CO2 
emissions, coming from the oxidation of CO to CO2; recently, a break-
through has been described in a publication reporting the development 
of a gas fermentation process by an engineered Clostridium autoethano-
genum strain, resulting in carbon-negative production of acetone and 
isopropanol [8]. 

Clostridium ljungdahlii is one of the most studied acetogen, known for 
its ability to convert different gaseous substrates, CO2, H2, and CO [9] 
through the Wood-Ljungdahl pathway, making it a promising candidate 
for conversion of synthesis gas into valuable chemicals. Moreover, 
C. ljungdahlii has been proven to be able to grow mixotrophically when 
fed with fructose, reconverting the CO2-produced glycolysis through the 
Wood-Ljungdahl pathway [10]. Supplementation of an organic carbon 
source, resulting in a mixotrophic growth, is an interesting approach to 
boost the growth and productivity of acetogens, typically low during 
autotrophic growth, particularly in the case of a syngas composition 
poor in CO [11], [12]. Moreover, if enough H2 is supplemented in the 
gas phase during mixotrophic growth, fixation of exogenous CO2, not 
produced in glycolysis, is possible [10,13]. 

Native products of C. ljungdahlii are mainly acetic acid (HAc) and 
ethanol (EtOH) with the possibility to also produce small amounts of 
2,3-butanediol (BDO) and lactic acid (LAc) [9,11,14]. Moreover, many 
attempts to broaden the product range of this specie have been per-
formed over the last years, by insertion of heterologous biosynthetic 
pathways [15], to produce acetone, isopropanol, butyrate, butanol, and 
many other valuable chemicals. Industrial utilization of strains engi-
neered for the production of longer chains and reduced chemicals may 
be strongly affected by the reduced growth rate caused by the energetic 
burden coming from the production of these products. 

Genome-scale models (GEM) are mathematical representations of a 
metabolic network of a microorganism, reconstructed from the genome 
annotation of the microbe, utilizing a gene-protein-reaction stoichiom-
etry association [16]. By utilizing computational tools such as Flux 
Balance Analysis (FBA), and Flux Variability Analysis (FVA), it is 
possible to constraint the uptake of nutrients and compute the outputs of 
the cell (growth rate and metabolites secretion) by maximizing an 
objective function, usually biomass production, under the hypothesis 
that this is the main biological objective of the microorganism [17]. The 
stoichiometries of the modeĺs reactions, ensuring to maintain closed 
mass balances, impose a constraint on the fluxes of metabolites in the 
celĺs metabolic network, allowing to identify a space of fluxes distribu-
tions allowing growth of the cell. Through optimization by FBA, the 
optimal flux distribution for maximization (or minimization) of the 
objective function is found [17]. Among the many utilizations of 
genome-scale models, there is the possibility to identify optimal genetic 
manipulations to produce a desired metabolite, by simulations of the 
growth of the strains in case of knock-out, additions of heterologous 
pathways, up- or down-regulation of gene expressions [18]. 

In the last decade, many strategies have been developed to improve 
the accuracy of metabolic models in the simulations of microbial 
growth. These strategies aim at including providing additional con-
straints to the model, such as thermodynamic, enzymatic, or kinetic 
constraints, in order to reduce the space of possible fluxes and improve 
the predictive ability of the model [19]. The introduction of additional 
constraints allows a better description of the microorganisms’ physi-
ology, accounting for other biological processes inside the cell, other 
than the sole network of metabolic reactions [19]. In the approach 
defined as Metabolic and gene Expression models (ME-models), 
genome-scale models are integrated with reactions accounting for 
macromolecular processes such as protein synthesis and transcriptional 
regulation, allowing to accurately predict gene expression levels and 
predict the maximum feasible growth rate without explicit constraining 
the substrate uptake rates [20,21]. Models constructed taking into 

account reaction kinetics can reach a very high fidelity of metabolic 
fluxes predictions, and successfully predict cell growth in a dynamic 
environment, accounting for the changes in nutrients and metabolite 
concentrations in complex environments [22,23]. A strong limitation in 
these approaches is the great amount of specific biological information 
needed for the parametrization of the models, which is not available for 
most microorganisms. Moreover, the computational effort required for 
the simulating growth of the microbe can be extremely challenging, due 
to the presence of non-linear expressions and processes taking place at 
radically different time scales [24]. 

The addition of constraints on the total amount of enzymes in the 
cell, following strategies such as MOMENT [25], short MOMENT [26], 
and GECKO [27] and ECMpy [28] has also the potential to increase the 
predictive ability of the simulated growth of the microorganism, uti-
lizing readily available data as turnover rates (kcat) and molecular 
weights (MW), without resulting in computationally demanding models, 
and allowing to utilize linear programming tools as for metabolic-only 
models. 

The use of computational tools for synthetic biology may offer the 
possibility to better understand acetogenś metabolism, and guide to-
wards possible metabolic engineering strategies to transform them into 
production hosts. A metabolic model was published in 2013 for 
C. ljungdahlii [29], represented the first genome-scale model available 
for an acetogenic bacterium, allowing to characterize the nitrate 
reduction pathway of this strain and clarify the role of flavin-based 
electron bifurcation. A ME model published in 2019 then allowed to 
describe the overflow metabolism of C. ljungdahlii, predicted gene 
expression of the bacterium in different conditions, and predicted the 
positive effect of Nickel availability on the growth rate [30]. 

The objective of the present study was to generate an enzyme- 
constrained model of C. ljungdahlii, by adding constraints on the total 
allocation of metabolic enzymes to the original model published by 
Nagarajan et al. [29], with the goal of improving its predictive capa-
bility. The performance of the model was evaluated using in vivo data 
sourced from both the existing literature and generated in our lab from 
the cultivation of the strain under mixotrophic conditions. Subse-
quently, the generated model was employed to predict optimal meta-
bolic engineering strategies for enhancing the production of metabolites 
of interest under two different growth scenarios. The first scenario 
considered was syngas fermentation, which has been the most explored 
application of the strain. The second scenario was mixotrophic growth, 
which has recently been proposed as a potential strategy to overcome 
the energetic limitations in the growth of acetogenic bacteria [31,32]. 

2. Materials and methods 

2.1. Addition of annotations to the original model 

The C. ljungdahlii DSM 13528 metabolic model iHN637 [29] was 
used as the initial model for the construction of the enzyme-constrained 
model of the acetogen following the AutoPACMEN method [26]. The 
SBML (XML) file of the model iHN637 was downloaded from the BiGG 
Models [33] database. The model iHN637 has 698 metabolites, 785 
reactions, and 637 genes; the report generated by the testing with 
MEMOTE [34] evidenced an overall high quality of the model, having a 
total score of 90%. The benchmark provided by MEMOTE is based on the 
consistency of the model and the quality of annotations. The very high 
consistency score (Fig. 1) indicates that mass and charge are well 
balanced, while the low score for gene annotations is because gene an-
notations are present only for the NCBI database. Before proceeding 
with the addition of the enzyme constraints, it was needed to update the 
model with the addition of UniProt IDs annotations and missing EC 
numbers, as these annotations are used in the AutoPACMEN workflow to 
retrieve the molecular weights of enzymes and the turnover numbers 
(kcat) of reactions. 

Gene annotations of UniProt IDs were added to the iHN637 model by 
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using the UniProt ID Mapping tool on the UniProt website [35]. The 670 
GI numbers (ncbigi gene annotation) provided in the original model 
were mapped to 1096 results, indicating a non-bijective correspondence 
between GI numbers and UniProt IDs, as some GI numbers were asso-
ciated to multiple UniProt IDs belonging to different strains. Addition of 
the Uniprot IDs annotations increased the score for gene annotations 
from 36.6% to 43%; the score remained low as it is calculated consid-
ering also gene annotations for other databases; for the scope of the 
study, addition of Uniprot IDs was sufficient for the successive steps of 
the workflow. 

The MEMOTE report indicated that 71% of the reactions in the model 
were assigned EC numbers (ec-code), while 228 reactions were not an-
notated. Most of these unannotated reactions were metabolite exchange 
reactions, typically not associated with EC numbers [36]. However, 
some of the reactions lacking the EC number were enzyme-catalyzed 
reactions, and for these, a manual search was conducted on the 
BRENDA Enzyme Database [37] to identify the corresponding EC 
number. The addition of the EC_numbers slightly increased the score for 
reaction annotations. 

The retrieved UniProt IDs and the missing EC numbers were added to 
the XML file, and the updated model was analyzed by MEMOTE, to have 
a comprehensive overview and compare with the original version. 

2.2. Background of short MOMENT (sMOMENT) model construction 

Standard metabolic models are defined by a stoichiometric matrix, 
where each column corresponds to a reaction and each row corresponds 
to a metabolite, and a flux vector under steady state mass balance [17]: 

Sv = 0 (1)  

where each flux is constrained by a lower and upper bound: 

αi ≤ vi ≤ βi (1) 

The short MOMENT method is characterized by the addition to the 
stoichiometric matrix of a pseudo metabolite (i.e. an additional row), 
containing the enzymatic cost (c) of each reaction, which for each re-
action i was calculated as: 

c i = −
MWi

kcat,i
(3) 

A pseudo reaction is also added as a new column of the matrix, whose 
coefficients are 0 for all the metabolites except for thepseudo metabolite 
pool, for which it is 1. 

The associated flux of this pseudo reaction was then constrained by 
an upper bond, the protein pool P, measuring the upper limit of meta-
bolic enzymes mass in the cell [26]. The model, thus, was constrained 
allowing only a limited maximum mass of enzymes in the cell, which 
could be directly determined experimentally or derived by fitting 
experimental growth data to simulation results. 

2.3. Generation of enzyme-constrained model 

After the model update, it was possible to proceed with application of 
AutoPACMEN workflow for the generation of the enzyme-constrained 
model [26]. The AutoPACMEN package was downloaded from GitHub 
and installed, then the steps indicated by the authors were followed with 
few modifications for the addition of enzyme constraints: 

1. The BiGG metabolite text file was downloaded from the BiGG web-
site [33] and converted to the JSON format.  

2. The BRENDA database text file was downloaded from the BRENDA 
Enzyme database website [37] and converted to the JSON format. 

3. The BRENDA JSON file was parsed to retrieve the EC numbers pre-
sent in the updated model; the associated kcat was then saved into a 
new JSON file.  

4. All the EC numbers in the model were searched in the SABIO-RK 
database [38] and saved into a JSON file.  

5. The JSON files from BRENDA and SABIO-RK were merged into a 
combined JSON database.  

6. The model reactions were mapped to their turnover numbers using 
the EC numbers.  

7. The molecular weights of model proteins were calculated from their 
aminoacidic sequence, and mapped to their Uniprot ID.  

8. The XLSX files for setting protein pool, enzyme concentrations, and 
enzyme stoichiometries were created [25]. The format of enzyme 

Fig. 1. Model scores by MEMOTE. Score for each model category evaluated by MEMOTE in the original model (iHN637) and the updated version (iHN637_v2).  
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stoichiometries was modified to make them available for the suc-
cessive step. 

9. The enzyme-constrained model was created using the “crea-
te_smoment_model_reaction_wise_with_sbml” function. 

2.4. Model calibration 

To improve their prediction capability, genome scale models need 
calibration of their parameters, in particular the upper limit of the 
protein pool and the turnover numbers. 

The initial value of the protein pool was set to 0.095 g/gCDW, which 

was the value used to constrain the Escherichia coli enzyme constrained 
model iJO1366 * [26]. Then it was iteratively adjusted, to improve 
model simulation agreement with experimentally determined growth 
rates. In this phase, however, it was not possible to obtain a univocal 
value of protein pool that could allow good predictions of both auto-
trophic and heterotrophic growth. In fact, different enzyme pools had to 
be used to simulate different growth modes, resulting either in over-
estimation of autotrophic growth rates or underestimation of hetero-
trophic growth rates, as can be seen in Fig. 2. Thus, it was needed to first 
adjust the turnover rates. 

The choice of the kcats to be adjusted has been carried out differently 

Fig. 2. Comparisons of model performance against experimental values at two different enzyme pool upper bounds, 0.03 g/gCDW (top figure) and 0.05 g/gCDW 
(bottom figure). Respectively, the first was giving a good fit for autotrophic growth with strong underestimation of the heterotrophic growth, the latter gave a good fit 
of growth rates on fructose with overestimation of autotrophic growth. 
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in previous studies, choosing reactions with high impact on simulation 
results [26] or reactions with high enzyme usage [28]. In this case, we 
chose to select for calibration the reaction’s main high fluxes carrying 
reactions for different conditions (Table 1). For this reason, FBA simu-
lations were performed using the EC model in different growth condi-
tions, autotrophic and heterotrophic, constraining the substrates (CO 
and fructose) uptake rates respectively to 40 mmol/gCDW/h and 
1.8 mmol/gCDW/h, which are fluxes close to experimental values 
measured for this strain. The main reactions identified were mainly 
glycolysis and WLP reactions. It has been previously demonstrated that 
in vivo determined kcats should be preferred, when available, to in vitro 
determined values, which are available on databases as BRENDA and 
SABIO-RK, used in autopacmen workflow [39]. In this case, it was 
possible to find in literature in vivo measured apparent turnover rates of 
Clostridium autoethanogenum, an acetogenic species closely related to 
C. ljungdahlii [40]. 

Thus, the selection of the turnover numbers to be adjusted was done 
by comparing, for the high fluxes carrying reactions, the kcats assigned 
by autopacmen with the in vivo values, and to in silico turnover numbers 
calculated using DLKcat, a Python-based deep learning tool able to 
predict the turnover rate of an enzyme based on its aminoacidic 
sequence and substrate [41]. Reactions selected for the calibration were 
those for which the previously assigned kcat had strong deviations from 
the in vivo and the in silico value; for each of them, the kcat was then 
substituted with the highest turnover number among the in silico and in 
vivo value. In Table 1 are indicated the reactions selected for kcat cali-
bration. In can be observed that in most cases, this step consisted in 
decreasing the turnover numbers of Wood-Ljungdahl Pathway related 
reaction. This may seem in contrast with what is usually observed during 
calibration of constrained models, in which the main issue is represented 
by avoiding over-constraining of the model [28,42]. However, this step 
allowed to reduce the overestimation of the strain metabolism during 
autotrophic growth, which characterized the original model and the first 
version of the updated model. 

Then, it was possible to find an optimal value of the protein pool. 
Initially, a manual adjustment was performed to identify a range around 
the optimal protein pool value, starting again from the value of 0.095 g/ 
gCDW. The optimal protein pool was then selected as the value mini-
mizing the error with respect to experimental values using [26]: 

Enorm =

⃦
⃦
⃦
⃦
⃦

μsim − μexp

μexp

⃦
⃦
⃦
⃦
⃦

(4)  

2.5. Evaluation of prediction accuracy 

The prediction accuracy of the generated enzyme-constrained model 
was evaluated by measuring the Pearson correlation coefficient, and by 
linear regression. 

The experimental product profiles in the different conditions were 
also compared to the predictions by iHN637 and ec_iHN637. 

2.6. Simulations 

Simulations of the bacterium steady-state growth, by Flux balance 
analysis (FBA), were carried out using Cobrapy [43]. For computational 
design of metabolic interventions, it was used the package StrainDesign 
[44]. 

2.7. Bacterial growth conditions 

C. ljungdahlii mixotrophic cultivations were carried out to retrieve 
data about growth rate, uptake, and secretion fluxes during simulta-
neous CO2, H2, and fructose consumption. This information is not 
available in the literature and was considered important for the deter-
mination of model performance. 

C. ljungdahlii (DSM 13528) was ordered from the Leibniz Institute 
DSMZ – German Collection of Microorganisms and Cell Cultures GmbH 
[45]. The bacterium was grown anaerobically in 125 mL serum bottles 
containing 42 mL of modified DSM 879 medium [46], at 37 ◦C. In all 
cultivation experiments, the use of NaHCO3 was avoided, and MES 
50 mM was used as buffer; Sodium sulfide nonahydrate (Na2S x 9 H2O) 
was substituted by doubling the amount of Cysteine hydrochloride 
monohydrate (L-Cys HCl x H2O) suggested in the medium recipe DSM 
879. The gas mixture of 80% N2: 20% CO2 indicated in the medium 
recipe was also substituted by a mixture of 80% H2: 20% CO2. All bottles 
were pressurized once, before the start of the fermentation experiments, 
to a pressure of 2.5 bar. Two different fructose concentrations were 
tested, 5 g/L and 10 g/L. All experiments were performed in triplicates 
and compared to negative controls. The bottles were inoculated using 
3 mL of inoculum from cultures in the mid-exponential growth phase 
(OD600 0.5–0.8) Samples were collected shortly after inoculation and 
then every 24 h of the culture for determination of OD600, pH, and 
metabolites concentrations. Before each sampling, the internal pressure 
of the bottles was measured, using a manometer connected to a needle, 
puncturing the butyl stopper of each bottle. 

2.8. Detection of metabolites by HPLC 

For the detection of metabolites of interest (fructose, acetic acid, 
ethanol), samples were centrifuged for 10 min at 4 ◦C, and filtrated with 
0.22 µm syringe filters. The filtrated samples were analyzed using a 
Dionex Ultimate 3000 high-performance liquid chromatograph 
UHPLC+ focused system (Dionex Softron GmbH, Germering, Germany) 
equipped with a Bio-Rad Aminex HPX 87-H column, at 60 ◦C, using mM 
H2SO4 as mobile phase at a flowrate of 0.6 mL/min. 

3. Results 

3.1. The enzyme-constrained model ec_iHN637 

The original model, iHN637, is characterized by a total of 785 re-
actions, and 698 metabolites [29]. In the enzyme-constrained model 
ec_iHN637, the number of reactions was increased to 956, due to the 
splitting of enzyme-catalyzed reversible reactions and the addition of 
the protein pool pseudo-reaction, while the number of metabolites was 
increased to 699 with the addition of the protein pool 
pseudo-metabolite. 

Starting from 0.095 g/gCDW, the protein pool was manually 
decreased and an ideal range between 0.072 and 0.080 g/gCDW was 
identified. The final value of the protein pool was then set to 0.078 g/ 
gCDW by minimizing the normalized error. 

3.2. Evaluation of model growth rate prediction performance 

The model performance was compared to the original metabolic 
model, iHN637, by evaluating the ability to predict growth rate, con-
straining the model with uptake rates obtained from the literature. Fig. 3 

Table 1 
Updated turnover rates.  

Reaction kcat assigned (s-1) New kcat (s-1) 

CODH4 1787.21  73.85 
CODH_ACS 250.79  70.71 
FTHFLi 286.36  29.45 
MTHFC_TG_reverse 896.68  48.16 
ACKr_TG_reverse 1536.86  43.88 
R_ALCD2x_TG_reverse 368.84  16.33 
PTAr_TG_forward 1661.54  19.91 
FRNDPR2r_TG_forward Not assigned  15.15 
MTHFR5_TG_forward Not assigned  24.39 
FDH7_TG_forward Not assigned  84.75  
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presents a comparison of the 2 models, showing that the prediction 
ability of growth rates was increased in the enzyme-constrained model. 
The plot was generated by comparing experimentally determined 
growth rates and simulated growth rates, from simulations in which 
only the uptake rates of substrates (CO2, H2, fructose, and CO) were used 
as constraints. 

The data in Table 2 were used as constraints for the FBA simulations. 
The mean normalized error decreased from 1.42 for the original model 
to 0.37 in the enzyme-constrained model, with standard deviations 
equal to 1.41 and 0.59, respectively. The good correlation of the EC 
model with the in vivo growth rates was also evidenced by the results of 
Pearson’s r, which was increased to 0.750 (p = 0.020), compared with 
the value of 0.096 (p = 0.803) for the original model. The result can be 
also compared to those obtained by the ME-model iJL965-ME, published 
in 2019, that had a Pearsońs r equal to 0.68 with a p value of 0.14 [30]. 

3.3. Effect of enzyme constraints and prediction of product fluxes 

To visualize the effects of enzymatic constraints on the predictions of 
the model, the growth rates and production rates of acetate and ethanol 
were plotted for both the original model and the enzyme-constrained 
model (Figs. 4 and 5). 

Growth on CO as substrate was simulated in the range 0–50 mmol/ 
gCDW/h, considering that the experimental uptake rates found in the 
literature were 38.5 and 35.9 mmol/gCDW/h for the cases of growth on 
sole CO, while for the case of syngas fermentation an average uptake flux 
of 40.132 was reported [11,12]. Moreover, the maximum specific up-
take rate of CO by C. ljungdahlii has been determined to be 
34.4 mmol/gCDW/h utilizing a kinetic model [47]. 

For the iHN637 model, a continuous linear correlation was observed 
between the CO-specific uptake and the predicted growth rate during 
growth on CO. On the contrary, the ec_iHN637 model predicted a critical 
point, occurring between 20 and 30 mmol/gCDW/h, at which the 
enzyme pool reached its upper limit, interrupting the linear relationship 
between growth rate and CO uptake. The behavior is an effect of the 
introduction of the enzyme constraint in the model. Consequently, the 
iHN637 model did not forecast the onset of ethanol production when the 
model was constrained solely with uptake fluxes. Instead, Flux Balance 
Analysis (FBA) simulation predicted a steadily increasing production of 
acetate. In metabolic models, indeed, alternative fermentation products 
are not predicted, unless additional constraints are provided, on the 
secretion fluxes or the redox fluxes [30]. In the ec_iHN637, when the 
critical CO uptake flux was reached, the beginning of ethanol production 
was predicted as an overflow metabolism strategy to balance reducing 
equivalents. Despite the prediction of ethanol as the main fermentation 
product, comparing the results to the experimental values, the pre-
dictions by the ec_iHN637 model was still underestimating the ethanol 
production rate in the case of CO growth, and overestimating it in the 
case of syngas fermentation. In one of the experimental sources, also 
BDO and lactate production were observed [11], but none of the models 
was able to predict their secretion. 

When the modes were used to simulate growth on syngas at different 
CO uptakes, leaving unconstrained the hydrogen uptake flux, the model 
iHN637 predicted a linear increase of growth rate at increasing uptake 
fluxes of CO (Fig. 5). In the enzyme constrained model, instead, a first 
interruption of the linear relationship was observed at 14 mmol/gCDW/ 
h. In correspondence of this point, the model predicted a decrease of 
ethanol productivity and the start of emissions of CO2. In the original 
model, instead, the absence of enzyme limitations allowed the model to 

Fig. 3. Models’ predictions accuracies. Comparison of accuracy of growth rate prediction between the original model iHN637 and the enzyme constrained 
ec_iHN637. When only one simulated value corresponds to an experimental one, the prediction by the original and the enzyme-constrained model were 
corresponding. 

Table 2 
Substrate fluxes constrained for FBA simulations for evaluation of the accuracy 
of growth rate prediction by the models.  

Constrained 
Fluxes 

Uptake rates [mmol/gCDW/ 
h] 

Growth rate 
[h-1] 

Source 

H2, CO -7.724, − 40.132  0.043 [11] 
H2 -79.5  0.033 [12] 
H2, CO2 -46.630, − 21.765  0.024 [11] 
CO -38.5  0.058 [12] 
CO -35.878  0.060 [11] 
Fructose -1.88  0.72 [29] 
Fructose, CO2 -0.672, − 15.861  0.110 [This study] 
Fructose, CO2 -0.615, − 16.480  0.102 [This study] 
Fructose, CO2 -0.507, − 8.785  0.064 [This study]  
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Fig. 4. Growth rate (a), acetate, and ethanol production (b) trends at increasing CO-specific uptake rates for growth on sole CO as substrate.  
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Fig. 5. Growth rate (a), acetate, and ethanol production (b), and CO2 emissions (c) trends at increasing CO-specific uptake rates for growth on syngas (CO+H2).  
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predict continuous increase of the growth and ethanol production, 
without emissions of CO2, as all the carbon was directed into the 
metabolic pathways for production of biomass and ethanol. At CO up-
take of 29 mmol/gCDW/h, the predictions by ec_iHN637 had showed 
another inflection point, corresponding to a decrease of growth rate and 
an increase of ethanol production. When compared to experimental 
points derived from literature [11,48], the enzyme constrained model 
showed again improved capability of predicting growth rate and ex-
change fluxes with respect to the original model. 

When the model was constrained with CO2 and fructose uptake, the 
range 25–80 mmol/gCDW/h of H2 uptake rates was analyzed to simu-
late the mixotrophic conditions, with a minimum CO2 uptake of 
15.861 mmol/gCDW/h (Fig. 6). 

In this scenario, the experimental values were not included in the 
graphs, since the experimental H2 uptake flux was not known. The 
outcomes indicated that in this case, the two models, ec_iHN637 and 
iHN637, demonstrated less divergence in their trends compared to the 
case with CO, particularly concerning acetate and ethanol production. A 
notable difference, however, was seen in the maximum growth rate 
predictions at different H2 uptake rates: the ec_iHN637 model predicted 
a maximum growth rate at 33.58 mmol/gCDW/h, while the iHN637 
model predicted it at 48.34 mmol/gCDW/h. Thus, when the model was 
constrained without specifying the (unknown) H2 uptake flux, the 
iHN637 model predicted a growth rate of 0.114 h-1 while in ec_iHN637 
it was limited by the additional constraint to 0.094 h-1, compared to an 
experimental value of 0.110. While the original iHN637 model’s pre-
diction was closer to the experimental value in this context, the diver-
gence in product secretion rates was significant. The enzyme- 
constrained model was able to predict that acetate was nearly the sole 
secreted product, with a flux equal to 7.67 mmol/gCDW/h, compared to 
an experimental value of 6.79 mmol/gCDW/h. The model iHN637 
predicted instead ethanol to be the only fermentation product, with a 
secretion rate equal to 7.47 mmol/gCDW/h, largely deviating from the 
experimental value of 0.0035 mmol/gCDW/h. The specific rate of 
ethanol production predicted by ec_iHN637 was equal to 0.245 mmol/ 
gCDW/h. 

3.4. In silico metabolic engineering 

The new model was then used to predict potential genetic engi-
neering to target and improve the secretion of metabolites of interest, 
from the perspective of an industrial application of the bacterium. The in 
silico engineering experiments were carried out constraining the model 
with substrate uptake fluxes simulating syngas fermentation and H2- 
enhanced mixotrophy scenarios, as these are of particular interest for 
future industrial applications of the microorganism. It was decided to 
focus only on native products of C. ljungdahlii, since introduction of 
heterologous pathway for production of other metabolites (butyrate, 
butanol, acetone) would result in a strong burden for the cell. Produc-
tion of native metabolites was thus considered a more feasible and 
realistic scenario. 

3.4.1. Metabolic engineering using syngas as substrate 
Syngas can be derived by the gasification of many different carbon- 

rich sources, including biomass [49], and its composition is influenced 
by feedstock characteristics and process conditions applied during 
gasification. In the present study, the model was constrained with the 
substrate fluxes from Hermann M. et al. [11] for syngas growth scenario, 
which were derived by the exponential growth of a batch culture 
C. ljungdahlii cultivated using a substrate with the following composi-
tion: 55% CO, 30% H2, 5% CO2, 10% Ar. A 25% possible variability of 
each constraint was also considered for the OptKnock simulations, in 
order to account for some variability of uptake rates when compared to 
other sources in literature [47,50] and possible minor adjustments of 
some fluxes. 

The growth rate predicted by the FBA simulation in this condition 

was 0.068 h-1, with an ethanol secretion flux of 4.83 mmol/gCDW/h, 
and CO2 emission of 17.48 mmol/gCDW/h. 

For OptFlux prediction of optimal knockouts, some parameters must 
be specified:  

• The minimum growth rate to be reached by the mutant strains 
generated was set to 0.034 h-1, half of the wild-type case.  

• The minimum secretion flux for the desired product was different for 
each product.  

• The maximum number of genetic interventions was limited to 3. 

For the case of syngas fermentation, acetate overproduction was not 
considered, as any attempt to overproduce acetate would result in low 
acetate flux and negatively affected growth rates. Since the wild-type 
C. ljungdahlii grown using syngas as substrate was already producing 
mainly ethanol, production of a less reduced end product, such as acetic 
acid, would have negative effects on the growth of the bacterium, 
because of the impossibility to keep the redox state of the cell. Therefore, 
it was chosen to focus only on ethanol, lactate, and BDO production. 

3.4.1.1. Ethanol production. For ethanol, the lower bound of ethanol 
secretion was set to 5.00 mmol/gCDW/h. The highest increase of 
ethanol secretion was reached when the number of knockouts was set to 
3: the deletion of the reactions ACALD, PTAr, and LDH resulted in a 
17.4% increase of the ethanol flux to 5.67 mmol/gCDW/h, with a 
growth rate reduced to 0.047 h-1. No other products were predicted in 
the simulations (Table 3). 

For all the predicted phenotypes displayed, there was an important 
trade-off between increased ethanol production and growth rate 
decrease which impacts the economy of such process when commer-
cialized in industry. This is particularly relevant also if compared with 
results from previous OptKnock simulations on the original model 
iHN637 [50], in which predicted engineering strategies for iHN637 
resulted in doubled ethanol flux compared to the wild-type, with a 
growth rate higher than 0.05 h-1. In the present case, considering 
enzyme constraints to the model strongly inhibited the redirection of 
carbon and reducing equivalents towards ethanol production. Consid-
ering the analysis, it could be inferred that the wild-type strain is already 
optimized for ethanol production in the chosen scenario, given that 
ethanol is its sole product. Consequently, any potential improvement in 
its performance would likely stem from engineering strategies that 
enable the strain to enhance its uptake fluxes. 

3.4.1.2. Lactate production. For lactate production, the minimum 
secretion rate was set to 5.00 mmol/gCDW/h. OptKnock was not able to 
predict any possible engineering strategy to increase the lactate secre-
tion over this threshold with only one knockout, so only the results for 
the cases of two and three deletions are shown. In both cases, lactate was 
the only product predicted (Table 3). 

In this case, the deletion strategies predicted by OptKnock resulted in 
lactate production not observed in the wild type, with a 33.8% decrease 
in growth rate for the case of 3 deletions, and a slightly lower decrease of 
29.4% in the case of 2 deletions. The suggested strategy aims at the 
interruption of the pathways responsible for acetate, by deletion of the 
Acetate kinase (ACKr) and ethanol production, by deletion of the acet-
aldehyde dehydrogenase (ACALD). The FBA simulations for the mutant 
strains also showed decreased CO2 emission fluxes, due to the increased 
need for carbon atoms for lactate production. 

3.4.1.3. BDO production. For 2,3-butanediol production a minimum 
secretion flux of 3 mmol/gCDW/h was considered, as no mutant with 
fewer than 3 knockouts could reach higher thresholds (Table 3). 

BDO production was predicted only for the case of 3 reaction 
knockouts, and as for other products, it was predicted to be the sole 
secretion by the cell, together with CO2, in the simulated phenotype. The 
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Fig. 6. Growth rates (a) and product fluxes (b) under mixotrophic growth. Growth rate, acetate, and ethanol production trend at increasing specific uptake rates 
of H2. 
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growth rate was strongly affected, with a 47.1% decrease, which brings 
the mutant growth rate very close to the threshold set for the strain. This 
was also the product for which the highest CO2 fluxes were produced, as 
a result of the higher number of reducing equivalents needed for its 
production. 

3.4.2. Metabolic engineering in mixotrophic growth 
To simulate mixotrophic growth in OptKnock, the uptake fluxes of 

fructose, hydrogen, and carbon dioxide were constrained using values 
obtained for one of the mixotrophic cultures utilized in this study: 
0.672 mmol/gCDW/h for fructose uptake, 33.6 mmol/gCDW/h for H2 
uptake, value that was obtained from previous FBA simulations. 

The CO2 flux was not constrained in order to be able to predict in-
creases in CO2 fixation that could result in some engineering strategies. 
The CO2 uptake, however, is strongly correlated to electron availability, 
limited by the constraint on the maximum uptake of H2, thus only 
moderate increases of CO2 fixation could be predicted. 

For the case of mixotrophic growth, only the overproduction of ac-
etate and ethanol was considered, since no metabolic engineering 
strategy predicted by OptFlux was able to predict significant production 
of lactate and BDO while simultaneously utilizing H2, CO2, and fructose 
at the specified substrate uptakes. 

The growth rate predicted by the FBA simulation in this condition 
was 0.093 h-1, with acetate as the main product (6.92 mmol/gCDW/h) 
and ethanol secretion flux of 0.76 mmol/gCDW/h; in this case, CO2 was 
consumed at a rate equal to 15.36 mmol/gCDW/h. 

The OptFlux simulations were carried out as for the previous case 
with syngas, only increasing the constraint of minimal growth rate to 
0.047 h-1, half of the wild type. 

3.4.2.1. Acetate production. For acetate overproduction, a minimum 
acetate secretion flux of 8 mmol/gCDW/h was used to constrain Opt-
Knock. Some possible engineering strategies were identified with 1, 2, or 
3 deletions, for increasing the specific flux of acetate, but in all cases, the 
increased secretion fluxes (22.3%, 25.6% and 29.9% respectively for 1, 
2, and 3 deletions) also corresponded to strongly decreased growth rates 
(19.3%, 26.9% and 49.5%). The CO2 fixation fluxes were also predicted 
to slightly increase, as a result of the increased availability of reducing 
equivalents generated by the reduced biomass formation (Table 4). 

3.4.2.2. Ethanol production. For ethanol overproduction, the minimum 
secretion flux was set to 6 mmol/gCDW/h (Table 4). Also, for ethanol 
production, it was possible to reach the desired minimum rate of pro-
duction considering only 1 deletion. The growth rate was strongly 
affected by the switch of production from acetogenic to solventogenic, 
for the reduced ATP gain caused by deletions of a key enzyme for acetate 
production, ACKr. Moreover, the CO2 fixation was also strongly 
decreased with respect to the wild-type and acetate-producing strains, as 
a result of the decreased availability of reducing equivalents, which 
were diverted towards ethanol formation. 

4. Discussion 

Inclusion of enzyme constraints in metabolic models of microor-
ganisms has been shown to strongly increase the ability to predict both 
wild-type and mutant phenotypes [24,26,42,51,52], thanks to the re-
striction of the flux distribution space. In the case of C. ljungdahlii 
introduction of enzyme constraints by sMOMENT workflow resulted in 
an improved performance in the prediction of growth rate and main 
secretion fluxes of the cell. In particular, the limitation in the maximum 
amount of metabolic enzyme present in the cells allowed to avoid 
overestimations of growth rates when compared to experimentally ob-
tained values, for all the conditions tested. Also, the prediction of the 
product profile was much closer to actual values, with prediction of 
overflow metabolism during growth on CO, and the secretion of acetate 
as the main end product in mixotrophic conditions, differently from the 
original metabolic model. Further improvements in the prediction 
ability of the model can be reached by improvement of the kcats data 
utilized for the calculation of the enzyme costs. Availability of 
high-quality turnover rates data is indeed the key parameter in the 
construction of enzyme-constrained models [39], but for most of the 
strains, it is not possible to retrieve publicly available specific data. In 
the present study, most of the utilized enzymes were taken from web 
databases, BRENDA and SABIO-RK, where mainly in vitro kcats are 
available. Generation of strain-specific in vivo turnover rates, by 
coupling of FBA and proteomics, could further increase the prediction 
ability of the model [53,54]. In vivo inferred values of turnover rates 
available for C. autoethanogenum [40] were already used in the cali-
bration of the present model. 

Tablee 3 
Knockout strategies for overproduction of Ethanol, Lactate and 2,3 Butanediol on syngas predicted by OptKnock with 1, 2, and 3 deletions, compared to wild type. In 
parenthesis is reported the % variation with respect to the wild type.  

Desired product Target reactions Growth rate (h-1) Product flux (mmol/gCDW/h) CO2 emission flux (mmol/gCDW/h) 

Ethanol Wild type 0.068 4.83 17.48 
KAS15 0.052 (− 23.5%) 5.07 (+5.0%) 17.62 (+0.8%) 
KAS15, RNDR1 0.050 (− 26.5%) 5.13 (+6.2%) 17.65 (+1.0%) 
ACALD, PTAr, LDH 0.047 (− 30.9%) 5.67 (+17.4%) 19.61 (+12.2%) 

Lactate Wild type 0.068 0 17.48 
ACALD, ACKr 0.048 (- 29.4%) 5.77 14.31 (− 18.1%) 
ACALD, ACKr, GLUDy 0.045 (− 33.8%) 5.91 14.59 (− 16.5%) 

2,3 Butanediol Wild type 0.068 0 17.48 
LDH, ACKr, ALCD2x 0.036 (− 47.1%) 3.50 20.82 (+19.1%)  

Table 4 
Knockout strategies for overproduction of acetate and ethanol in mixotrophic growth predicted by OptKnock with 1,2, and 3 deletions, compared to wild type. In 
parenthesis is reported the % variation with respect to the wild type.  

Desired product Target reactions Growth rate (h-1) Product flux (mmol/gCDW/h) CO2 fixation flux (mmol/gCDW/h) 

Acetate Wild type 0.093 6.92 15.36 
FRNDPR2r 0.075 (− 19.3%) 8.51 (+23.0%) 16.24 (+5.7%) 
FBA, FRNDPR2r 0.068 (− 26.9%) 8.69 (+25.6%) 16.30 (+6.1%) 
GHMT2r, ENO, FRNDPR2r 0.052 (− 49.5%) 8.99 (+29.9%) 16.27 (+6.9%) 

Ethanol Wild type 0.93 0.76 15.36 
ACKr 0.053 (− 43.0%) 6.04 (+695%) 10.36 (− 32.6%) 
GLUDy, ACKr 0.049 (− 47.3%) 6.11 (+704%) 10.32 (− 32.8%) 
PSP_L, GLUDy, ACKr 0.047 (− 49.7%) 6.14 (+708%) 10.30 (− 32.9%)  
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An important application of metabolic models is the prediction of 
metabolic engineering interventions to improve the production of a 
desired metabolite, under specified growth conditions. Utilization of 
OptKnock through the StrainDesign package available on GitHub [44, 
55] allowed to design in silico mutant strains for potential syngas 
fermentation to ethanol, lactate, and BDO, which are native products of 
C. ljungdahlii. Despite many attempts to genetically engineer this strain 
aimed at the production of non-native metabolites by the introduction of 
heterologous pathways [10,15], these products were not included in the 
analysis, as enzyme kinetics were not available, and, most importantly, 
the introduction of heterologous pathways may represent too great a 
burden for the growth of these bacteria. 

With respect to previous in silico analysis of possible mutant 
C. ljungdahlii strains, utilization of an enzyme constrained model did not 
result in redundant engineering strategies for overproduction of 
different metabolites [50]. The enzyme constrained model provided 
more reliable predictions of the growth rate and production fluxes with 
respect to the original model, and the performance of the generated 
overproducing mutants was negatively affected, due to the lower growth 
rates predicted by the enzyme-constrained model. In many cases, low 
increases in production fluxes corresponded to strong effects on the 
growth rate, which would discourage the application of the strain for 
industrial production. Mixotrophic metabolism of C. ljungdahlii, how-
ever, may offer some solutions to improve the metabolism of the strain, 
as already suggested in the literature [10,31,32]. In particular, when the 
model was constrained with experimental uptake fluxes, the mutants 
generated in mixotrophic conditions were able to produce acetate and 
ethanol while converting exogenous CO2. Moreover, comparing the 
ethanol overproducing strains in syngas fermentation and mixotrophy, 
the latter were able to secrete higher fluxes, at higher growth rates, and 
simultaneously converting CO2. 

5. Conclusions 

Recent developments in computational tools for synthetic biology 
may provide a great opportunity to improve the knowledge of aceto-
genic metabolism and to simulate potential metabolic engineering 
strategies to increase their industrial potential. An enzyme-constrained 
model for in silico simulation of C. ljungdahlii was generated utilizing 
the short MOMENT approach, resulting in a model with enhanced pre-
diction capacity for the microbial phenotype under all conditions where 
experimental values were either retrieved from literature or generated 
in the lab. This model was subsequently utilized to simulate knockout 
strategies aimed at increasing the production of valuable native me-
tabolites, using the OptKnock computational framework. In the context 
of syngas fermentation, strains engineered for overproduction of ethanol 
and BDO demonstrated a reduced growth rate and an increased CO2 
emission per gram of cell dry weight. For lactic acid production, growth 
rate was negatively affected but CO2 emissions were reduced with 
respect to the wild type. Simulated knockouts in the mixotrophic growth 
of C. ljungdahlii did not yield strains capable of producing lactic acid and 
BDO, given the parameters applied to OptKnock. However, this solution 
appears promising to produce acetic acid or ethanol, leading to higher 
growth rates and net uptake of CO2 instead of emission. The practical 
feasibility of these strategies will need to be validated in vivo. 
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