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ABSTRACT: This work represents the first example of a gold-catalyzed formation of 1,3-thiazine/1,3-thiazinane by means of a
catalytic approach and further uncommon isolation of the two tautomers. The developed protocol gives rise to a broad scope of 1,3-
thiazine derivatives with excellent yields in short reaction times. Interestingly, different isomers could be obtained depending on the
state of the compound, and in the crystal state the 1,3-thiazinane isomer is obtained, while in solution the 1,3-thiazine is the unique
isomer. This work represents an interesting approach for the synthesis of potential biologically relevant molecules and a crucial
precedent in tautomerism isolation and characterization.

■ INTRODUCTION
The development of new protocols for the efficient synthesis of
heterocyclic compounds1 has encouraged the efforts of chemists
as a continuous challenging aim in the discovery of new
strategies for diversity-oriented synthesis.2 Thiazines are
considered as a privileged structural core among the plethora
of heterocyclic scaffolds, existing in three different isomers
depending on the position of the nitrogen and the sulfur atom in
the six-membered ring. These species are important due to their
biological properties such as antifungal, anticonvulsant,
antitubercular, antibacterial, antimicrobial, antitumor, insectici-
dal, fungicidal, herbicidal agents, tranquilizers, and various
antiviral.3 Among these isomers, those focused on benzo-1,3-
thiazines have received major attention because they are the
structural core of many pharmaceutically active molecules.4 In
contrast, 1,3-thiazines or 1,3-thiazinanes have been less
explored.

Some methodologies have succeeded in synthesizing benzo-
1,3-thiazines by a tandem cyclization mainly using super-
stoichiometric amounts of the promoter,5 and there are only
scarce examples involving a metal catalyst in a tandem 6-exo-dig
cyclization.6 The addition reaction of internal alkynylaniline
derivatives substituted, with electron-withdrawing groups, to
aryl isothiocyanates affords the benzothiazine derivatives usually
as a mixture of the two isomers A and A′.5,6 Recently, we have
reported on the synthesis of benzothiazines mediated by gold
catalysis starting from thioureas containing terminal alkynyl

groups (Scheme 1). Interestingly, in our developed method,
only tautomer A′ was achieved.7

The importance of this family of compounds justifies the
continuous search for developing novel synthetic approaches
starting from simple and available substrates, as the known
methodologies are limited in structural diversification. In
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Scheme 1. Synthesis of Benzo-1,3-thiazines

Articlepubs.acs.org/joc

© 2022 The Authors. Published by
American Chemical Society

10747
https://doi.org/10.1021/acs.joc.2c00947

J. Org. Chem. 2022, 87, 10747−10754

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guillermo+Canudo-Barreras"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Salvador"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Raquel+P.+Herrera"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+Concepcio%CC%81n+Gimeno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.joc.2c00947&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=abs1&ref=pdf
https://pubs.acs.org/toc/joceah/87/16?ref=pdf
https://pubs.acs.org/toc/joceah/87/16?ref=pdf
https://pubs.acs.org/toc/joceah/87/16?ref=pdf
https://pubs.acs.org/toc/joceah/87/16?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c00947?fig=sch1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.joc.2c00947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/joc?ref=pdf
https://pubs.acs.org/joc?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


addition, the enhancement of catalysis makes this work a

pioneering approach to obtain these uncommon species.

It should be noted that none of the previous catalytic works
have succeeded to obtain 1,3-thiazines or 1,3-thiazinane
monocycles starting from alkynylamines, instead of using

Scheme 2. Use of Stoichiometric Amounts of I2 in the Synthesis of 1,3-Thiazinanes and Our Hypothesis of Work

Figure 1. Synthesized thioureas 1a-q.

Figure 2. Crystal structure of thiourea 1c and formation of dimers through hydrogen bonding.

Figure 3. Catalysts tested in the model reaction.
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Table 1. Screening of the Reaction Conditions to Obtain 1,3-Thiazinane 2a or 1,3-Thiazine 2a′a

entry cat. (%) solvent (mL) temp. (°C) time (h)b yield (%)c

1 IA (5) MeCN (0.5) r.t. 47 n.d.
2 IA (5) MeCN (0.5) 60 172 55
3 IB (3) MeCN (0.5) 60 24 98
4 IB (3) CH2Cl2 (1) 60 4 92
5 IB (1) MeCN (0.5) 60 5 91
6 IC (1) MeCN (0.5) 60 5 99
7 II (5) MeCN (0.5) r.t. 47 n.d.
8 II (5) MeCN (0.5) 60 22 48
9 II (3) MeCN (0.5) 60 71 n.d.
10 II (1) MeCN (0.5) 60 71 n.d.
11 II (5) Toluene (0.5) r.t. 22 n.d.
12 II (5) Toluene (0.5) 60 26 n.d.
13 II (5) THF (0.5) r.t. 22 12
14 III (10) MeCN (0.5) 60 45 82

aReaction: to a solution of the catalyst (amount indicated) in the solvent indicated (0.5 mL), the corresponding thiourea 1a (0.1 mmol) was added.
The reaction mixture was left stirring at different temperatures and the course of the reaction is followed by TLC (n-hexane/ethyl acetate 5:5). The
catalyst was removed from the reaction mixture by silica gel, and the product was evaporated under vacuum. 1,3-Thiazinane 2a was obtained as a
white solid. bTime until the TLC monitoring indicates either the full conversion of thiourea 1a or no further progression of the reaction course.
cIsolated yield by column chromatography.

Figure 4. COSY NMR (300 MHz, CD3COCD3) spectrum for compound 2a′.
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alkynylanilines, and the only example reported in the literature
uses stoichiometric amounts of I2 following two reaction steps
(Scheme 2a).8 Hence, based on our continue search for the
discovery of new metal-catalyzed reactions, we have focused our
investigation on the study of these interesting compounds by
means of gold catalysts,9 and we have optimized the model
process disclosed in Scheme 2b starting from butynyl thiourea
derivatives.

■ RESULTS AND DISCUSSION
To test this idea, a battery of thioureas 1 was first synthesized
with excellent yields (Figure 1 and see the Supporting
Information).

The thioureas 1 have been characterized by NMR, and the
structure of 1c was confirmed by X-ray diffraction studies
(Figure 2). The S1−C1 distance is 1.6917(18) Å, while the C−
N distances are N1−C1 1.347(2) and N2−C1 1.339(2) Å,
which are those expected for thiourea compounds. The presence
of hydrogen bonds between the sulfur atom and the NH groups
of adjacent molecules is also observed.10

In order to study the catalytic cyclization of these thioureas,
some metal catalysts (Figure 3) and conditions were tested in
the model reaction disclosed in Table 1. Several phosphine and
N-heterocyclic carbene gold compounds, together with the most

common salts such as chloroauric acid or silver trifluoroacetate,
were chosen.

From all the combinations and parameters evaluated
(catalysts, temperature, solvent, and catalytic concentration),
it can be deduced that the best conditions are achieved with
catalysts IB and IC, obtaining the highest yields (up to 99% for
catalyst IC) after 5 h of reaction and using a catalyst loading of 1
mol % (in 0.5 mL of MeCN and at 60 °C) (entries 5 and 6, Table
1). Although catalyst IB offers similar yields and reaction times
for the same catalyst loading and temperature than IC, the latter
is chosen due to the lower synthetic complexity and availability
of the phosphine. Additionally, we have also performed a proof
testing the catalyst [Au(NCMe)(JohnPhos)]SbF6, bearing the
analogous JohnPhos phosphine, under the best reaction
conditions and we were able to get the same excellent results
in the model reaction (5 h, 99%). In contrast, the Au(III)
catalyst II (entry 8, Table 1) and the Ag(I) catalyst III (entry 14,
Table 1), despite being capable of catalyzing the cyclization of
thiourea, required higher catalytic loads�5 and 10 mol %,
respectively�and longer reaction times�22 and 45 h�
without achieving complete conversions. The screening of
solvent afforded MeCN as the best choice, maybe due to the
presence of a molecule of MeCN in the catalyst, and therefore,
the necessity of an interchange between this solvent and the
ligand in the catalytic cycle.

Figure 5. HMBC NMR (300 MHz, 75 MHz, CD3COCD3) spectrum for compound 2a′.
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Since an equilibrium exists between the tautomers 2a (1,3-
thiazinane) and 2a′ (5,6-dihydro-4H-1,3-thiazine), the first
thing was to determine the species obtained in this procedure
since surprisingly this important aspect has been overlooked in
other published works. Because of the lack of literature about
these compounds, multiple NMR experiments were carried out
to elucidate the structure. The most indicative experiments were
the COSY (Figure 4) and HMBC spectra (Figure 5).

If the 1,3-thiazinane 2a were formed in solution, coupling
between the CH2 and theNHwithin the ring would be expected.
However, the coupling was only observed between the NH
outside and aromatic protons for some of the final 1,3-thiazines
2′ (Figure 4) (see additional COSY spectra in the Supporting
Information for more examples), but not with the CH2 of the
ring. Therefore, it was assumed that NH is outside the cycle (as
in 2a′ where at high concentration and long acquisition times for

these experiments, we were able to find this key interaction).
Moreover, in the HMBC spectra, coupling between the NH and
aromatic C is also observed supporting the tautomer obtained
(Figure 5). Therefore, in solution we can unambiguously
conclude that we obtain 2a′ (5,6-dihydro-4H-1,3-thiazine) as
the only product.

Interestingly, although the NMR data point toward the
commented tautomer, a single crystal was grown from
compound 2a, and the structure was elucidated by X-ray
diffraction studies (Figure 6).

Surprisingly, the crystal structure obtained highlights the
presence of the NH group within the ring and the N�C outside
the ring; in sharp contrast to that apparently observed in
solution. Compound 2a crystallizes with two independent
molecules. Inside the ring, the N1−C distances are 1.451(4) and
1.348(3) Å, which although are dissimilar highlight the presence

Figure 6. Crystal structure of 1,3-thiazinane 2a and association through hydrogen bonding.

Figure 7. Synthesis of tautomers 2a′−p′ characterized in solution. N.r.: no reaction observed.
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of the thiazinane moiety. The C5−N2 bond length is 1.285(3)
Å, indicating the presence of the imine bond. The molecules
associate in dimers through N−H···N hydrogen bonds of 2.012
Å.

This interesting phenomenon could be explained if the
energetic difference between the crystalline packing of the solid
state and the solvated state could be enough to stabilize one
tautomer against the other in solution, giving rise to a different
result when crystallizing in a certain solvent.11 It is worth
mentioning that both tautomers have been isolated against the
normal situation where even if the individual tautomers are
isolated in the crystal state, in solution, they always exist as a
mixture. Therefore, it is proposed that a tautomeric equilibrium
can be modulated by inducing a phase change in the system,
tuning some conditions of the medium. On the other hand, it
could be appreciated that the equilibrium in solution between
both tautomers is slow enough to analyze one of them. In this
case, it seems that the crystal packing is favored for one of the
tautomers, while the other is predominant in solution. The
possibility to have two different building blocks in two distinct
aggregation states or phases starting from the same single
compound, may lead to the opportunity to work with each one
separately to achieve a divergent synthetic step.

With the best reaction conditions in hand, we explored the
scope of this approach for thioureas 1a−q. In Figure 7, we
represent the tautomers 2′ obtained and characterized for each
product as found in solution.

In all cases, excellent yields were obtained after short reaction
times. Only, thioureas 1k−p required longer reaction times than
those with electron-withdrawing groups in the aromatic ring.
However, the final products 2k′−p′ were also obtained with
excellent yield. Thiourea 1i, with a nitrile group, also required
longer reaction times in contrast to the other activated
substrates, but the final thiazine 2i′ was obtained with very
good yields. As a limitation of this protocol, the reaction was set
up to obtain 2q′, a seven-membered ring. However, the reaction
was unsuccessful under the same conditions. Interestingly, we
tried to methylate 2p′ with MeI, and the final N-methyl-1,3-

thiazine 2r′ was obtained with quantitative yield in a very clean
reaction. Additionally, to prove the utility of this catalytic
procedure, a scaled-up example has been performed. In this case,
the procedure was conducted with 1 mmol of 1a giving 2a′ in
83% (169.6 mg), although with longer reaction times (24 h). On
the basis of the experimental results and in the chemistry of gold,
we propose a plausible mechanism explaining the final products
obtained (Scheme 3).

After coordination of thiourea 1 to the gold center of the
catalyst, an intramolecular nucleophilic attack of the sulfur atom
over the triple bond would give rise to the cyclization of the
product. Final protodeauration would produce the final thiazine
derivative and release of the catalyst to initiate the catalytic cycle
again.

■ CONCLUSIONS
In summary, we have shown the first example of a gold-catalyzed
formation of 1,3-thiazine/1,3-thiazinane derivatives starting
from a family of thiourea derivatives containing the butynyl
moiety. The developed protocol gives rise to a broad scope of
1,3-thiazine derivatives with excellent yields in short reaction
times and with low catalyst loading. The scope of this
methodology may allow a great structural diversification, on
one side using functionalized butynyl amines and on the other
side modulated by the substituents of the isothiocyanate
compounds. Although at this point the pentynyl amine derivate
has not worked under the best reaction conditions, this opens
the possibility of further studies to obtain new seven-membered
ring scaffolds. Interestingly, the two different tautomers were
identified depending on the state of the compound, and in the
crystal state, the 1,3-thiazinane isomer was obtained, while in
solution, the 1,3-thiazine was the unique isomer. This work
represents an interesting procedure for the synthesis of potential
biologically relevant molecules and an important precedent in
tautomerism isolation and characterization.

Scheme 3. Gold-Catalyzed Formation of 5,6-Dihydro-4H-1,3-thiazines 2′
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