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Abstract

Background: Advances in modern high-throughput techniques of molecular biology have enabled top-down
approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among
them is the recent method of dynamic flux estimation (DFE), which uses such data not only for parameter
estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE
furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond
residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as
many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and
information. However, such supplementations incur their own limitations. In particular, assumptions must be made
regarding the functional forms of some processes and detailed kinetic information must be available, in addition to
the time series data.

Results: The authors propose here a systematic approach that supplements DFE and overcomes some of its
shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series
data are available, the approach allows the determination of a subset of fluxes that enables the subsequent
applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial
pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces
cerevisiae.

Conclusions: The results demonstrate that the proposed method successfully complements DFE under various
situations and without a priori assumptions regarding the model representation. The proposed method also permits
an examination of whether at all, to what degree, or within what range the available time series data can be validly
represented in a particular functional format of a flux within a pathway system. Based on these results, further
experiments may be designed to generate data points that genuinely add new information to the structure
identification and parameter estimation tasks at hand.

Keywords: Biochemical systems theory, Dynamic flux estimation, Metabolic pathways, Parameter estimation,
Structure identification, Time series data
Background
A grand challenge of biomathematical modeling is the
conversion of a biological system into a computational
structure that formalizes the underlying system. An im-
portant and very challenging component of this process
is the estimation of parameter values. The task is typic-
ally pursued with one of two generic approaches, namely
a forward (bottom-up) or an inverse (top-down) method.
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Until recently, essentially all models of metabolic path-
way systems were developed according to the first strat-
egy, that is, by characterizing model components and
processes one at a time and subsequently merging all
“local” information about kinetic reaction steps into one
comprehensive dynamic model. Although this forward
approach is theoretically straightforward, implementa-
tion procedures often fail and, moreover, have intrinsic
disadvantages [1]. For instance, the necessary informa-
tion is usually obtained in vitro and from different
experiments, so that there is no guarantee that it is en-
tirely compatible and consistent.
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The second, top-down approach uses data that characterize
the entire system and attempts to estimate all parameter
values at once with a sophisticated optimization algo-
rithm. Specifically, this type of method employs time
series data that describe the full dynamic response of a
pathway system to some stimulus, such as an environ-
mental stress (e.g., heat shock) or the availability of food
(e.g., glucose uptake). In contrast to the local data
obtained from traditional experiments, the great appeal
of using these types of “global” data is that most, if not
all, measurements are taken from the same biological
system under the same conditions. Furthermore, these
data contain enormous and essentially unadulterated in-
formation about the structure, dynamics and regulatory
mechanisms that govern the biological system under in-
vestigation. The main drawback of top-down
approaches is that the actual extraction and integration
of this information into fully functional, explanatory
models is challenging. In fact, more than one hundred
articles addressing this task appeared within the past
ten years. They focused on various aspects of the esti-
mation process, but most of them were dedicated to the
main issue of optimizing parameter values against the
observed time series data (e.g., [2,3]).
Whether a forward or inverse approach is used, the es-

timation of parameter values necessitates assumptions
regarding the functions or rate laws that describe the
reactions of interest. As a prominent example, the typ-
ical default for enzymatic reactions in a metabolic path-
way is the Michaelis-Menten rate law (MMRL) or one of
its variations. While such assumptions are understand-
able, they create an immediate conundrum. Namely, the
true mechanisms governing a biological process are in
reality unknown or at least unclear. As a result, the
estimation process is from the start unguided, uncertain,
or maybe even based on modestly or entirely wrong
assumptions. Also, descriptions of more complex en-
zyme mechanisms contain numerous parameters if sev-
eral substrates or reactions are involved, so that the
alleged functions cannot be identified from the typically
sparse data [4,5].
In addition to the troublesome issue of model selec-

tion, most proposed methods for estimation from time
series data face significant problems related to the data
themselves, to inefficient algorithms, and to a variety of
computational issues. To complicate matters further,
these issues are usually superimposed. The data may be
overly noisy, incomplete, collinear with each other,
or non-informative. The computational algorithms are
often slow to converge, converge to a locally but not glo-
bally optimal solution, or do not converge at all. Finally,
there is a mathematical issue, especially for systems with
many parameters, namely that a system may admit solu-
tions that are distinctly different yet equivalent, or
essentially equivalent, with respect to the residual error.
This type of result, referred to as sloppiness and uniden-
tifiability, may be due to redundancies in candidate
parameter sets and has received much attention in re-
cent times [6-8].
A different type of sloppiness may be caused by the

fact that different model structures may give essentially
identical residual errors. For instance, several probability
density functions often model the same data equally well
[9]. Moreover, two “wrong” structures or representations
within a model may permit compensation of errors be-
tween different terms or equations [10]. It is not even
clear whether the residual error (SSE) is always the best
metric for the quality of fit [11]. For instance, the “best”
models in terms of having the smallest SSE tend to have
too many parameters and therefore encounter over-
fitting problems. This issue can be serious, because an
over-fitted model often lacks the capacity of extrapola-
tion and predictive power with respect to data not used
in the estimation or untested conditions. Therefore, it is
necessary to develop tools for the evaluation of model
validity and quality beyond residual errors. For instance,
one should establish criteria to determine the appropri-
ateness of the chosen mathematical representations,
develop methods for assessing whether residual errors
are due to idiosyncrasies or noise in the data, and de-
velop diagnostic tools of discriminating between valid
and invalid model structures.
Recently we proposed a novel approach to metabolic

systems estimation, called Dynamic Flux Estimation
(DFE), that ameliorates several of the issues listed above
[10]. DFE is executed in two distinct phases. The first
phase consists of an entirely model-free data analysis
that requires minimal assumptions and reveals inconsist-
encies within the data, and between data and the alleged
system topology. Generally, the system is represented as
a set of ordinary differential equations (ODEs) so that
the instant change in each metabolite (i.e., its derivative)
equals the sum of fluxes that enter or leave the metabol-
ite pool:

dXi

dt
¼ _Xi ¼

X
Influxes �

X
Effluxes :

The left-hand side of this ODE can be interpreted as the
slope of the time course of the variable Xi at a given
point in time. Therefore, assuming that the time series
data are more or less complete and smooth—or can be
validly smoothed (see later) —one can estimate the slope
of the time course at each time point and substitute the
slopes for the derivatives. If the system contains N equa-
tions, and if data are measured at K time points, this
substitution decouples the system of N differential equa-
tions into N sets of K algebraic equations each. This
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system is linear in the fluxes and can be assessed with
methods of linear algebra. In particular, it is easily solved
at each time point if the system has full rank.
The result of this first phase of DFE is a representation

of each flux as a numerically characterized function of
time and as a function of all contributing metabolites.
This representation is not explicit, but purely numerical
and consists of points in plots of flux vs. time or flux vs.
metabolites and modulators. The second phase of DFE
addresses the mathematical formulation of each process
in the biological system by attempting to convert these
numerical plots into mathematical representations, such
as a Michaelis-Menten or Hill rate law or a power-law
description. In contrast to most other methods, where a
functional form had to be assumed a priori, this step
allows quantitative diagnostics of whether a candidate of
a mathematical formulation may be appropriate, at least
within certain ranges of the contributing variables. The
subsequent determination of parameter values is now
much easier, because it involves explicit functions that
are addressed one flux at a time.
DFE offers substantial advantages. It makes almost no

assumptions and is straightforward if the right data are
available. It reveals inconsistencies within the data,
avoids compensation among and within equations, and
permits quantitative diagnostic tools of whether the
assumed mathematical formulations are appropriate or
in need of improvement. In addition, since DFE identi-
fies parameters based on explicit single-flux representa-
tions, the estimation of parameter values is much easier
and more reliable than in other top-down approaches.
As a result, DFE promises significantly improved ex-
trapolation capacity toward new data or experimental
conditions.
Alas, DFE also has limitations and drawbacks. First, it

requires more or less complete time series data that
characterize the investigated system. These data are still
relatively seldom, although they are being generated at
an increasing rate and with rapidly improving quality.
Second, and arguably more limiting, a unique solution
of the flux equations in the first phase of DFE is only
possible if the flux system is of full rank. However, most
actually pathway systems contain more fluxes than
metabolites and are therefore underdetermined.
Several constraint-based optimization techniques have

been proposed for stoichiometric analyses of underdeter-
mined metabolic systems [12]. They have become a main-
stay of flux balance analysis (FBA [13]) and work well
under steady-state and pseudo-steady-state (PSS) assump-
tions [14-17]. Mahadevan and co-workers [18] extended
the traditional FBA to account for dynamics and presented
two different formulations: the dynamic optimization ap-
proach (DOA) and the static optimization approach
(SOA). DOA involves optimization over the entire time
period to obtain flux profiles over time, while SOA
involves dividing the batch time into several time intervals
and solving the instantaneous optimization problem at the
beginning of each time interval. These methods basically
are variations of FBA and need, for the determination of
flux profiles at each time point, constraints and objective
functions, which describe some goal the cell aims to reach.
For the case of microbial systems, a reasonable objective
may be maximization of the growth rate. However, deter-
mining an unbiased objective function in a eukaryotic
system is often difficult.
In contrast to these methods that require objective

functions, we proposed extending DFE with the infusion
of additional information [19]. We distinguished four
cases. First, the connectivity of the systems is not fully
known or some of the connections are uncertain. Sec-
ond, some of the time series data were not measured, al-
though it is known how the corresponding metabolites
are involved in the pathway. Third, the system contains
“missing” metabolites which are neither known nor mea-
sured, but in actuality affect the system significantly.
And fourth, the flux system is underdetermined, even
though the time series of all relevant metabolites are
measured.
The first issue might be ameliorated by methods devel-

oped for structure identification of unknown of ill-
characterized pathways. These methods include a wide
spectrum of techniques, such as perturbation methods,
causality models, correlation-based approaches, or prob-
abilistic models, some of which are based on time series
data (see [2] for review). The lack of certain data in the
second case could be complemented by deducing the
unknown time profiles from time series of neighboring
metabolites, if the corresponding enzymatic information
is available for fluxes producing and degrading a metab-
olite in the equation. However, this approach of using
kinetic information obtained in vitro, or maybe even
from different organisms, is naturally problematic due to
some degree of bias and uncertainty. A possible solution
strategy for the third case is to check the mass balance
in the entire system throughout the time period. If
significant changes in mass balance are observed, add-
itional biological insight will be needed to check the
pathway model and identify possible sources of leakage
or gain of mass. If the masses are more or less balanced,
it is still possible that important fluxes or metabolites
are missing. However, there is currently no obvious
defense in this situation. Finally, to complement an
underdetermined flux system, some of the fluxes need to
be estimated with information from other sources. For
instance, it might be possible to obtain fluxes directly
from experiments, but such data are rare. As an alterna-
tive, one may assume the functional form for an enzym-
atic reaction, and if corresponding kinetic information is
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available, for instance from BRENDA [20], parameter
values may be estimated for this functional form. As a
variation on this strategy, one could assume some
canonical model, such as power-law functions [21] or
lin-log approximations [22,23], if some of the variables
and fluxes operate within relatively small ranges. Clearly,
this option runs counter to the model-free nature of
DFE, but might be the only feasible solution. Instead of
using kinetic information, one could also select some of
the decoupled equations and use optimization methods
to fit the selected model to the time series data
(e.g. [24,25]).
Although we presented proof of concept that the differ-

ent approaches described above can be used to supple-
ment DFE, these approaches are not always optimal,
because they require additional information and assump-
tions that are a priori not validated. The question thus
arises: can we directly squeeze additional information out
of the time series data, without the need of further
assumptions and additional information? And if so,
under what conditions is that possible? Providing at least
partial answers to these questions is the topic of this
article.
Specifically, we propose here a distinct approach to sup-

plementing DFE with information hidden in suitable meta-
bolic time series. Extracting this information permits the
determination of a sufficient subset of fluxes to execute
DFE on the rest of the flux system. In contrast to all other
solutions presented so far for the complementation of DFE,
the method proposed here does not require any assump-
tions regarding the mathematical representation of the
fluxes. Furthermore, kinetic information or knowledge of
the functional forms of the enzymatic reactions is not
required. We will demonstrate in the following that the
proposed method can succeed even if some of the time
series data are not measured or when there is mass leakage
in the pathway systems. In addition, the new method allows
us to address a recurring unanswered question, namely
how many time series data are needed to estimate the
structure and parameters of a system.
Specific details of the proposed approach are presented

in the Methods section. While the methodological details
require some technical discussion, the concept of the pro-
posed method may be best explained with the following
simple example. Suppose a metabolic system contains the
equation _Xi ¼ vþi ðXjÞ � v�i ðXiÞ, which is typical for a reac-
tion between Xj and Xi, combined with the degradation of
Xi within a linear section of a pathway system:

Xj ! Xi !

Suppose we have time series data, so that we can estimate
_Xi for every measured time point with sufficient accuracy.
Suppose further that the time series data are such that we
have m time points (in the same or in different datasets)
where Xi has the same value (e.g., ci), whereas Xj has a dif-
ferent value at each of these time points. It is reasonable to
assume that v�i is a function in a strict mathematical sense,
which means that v�i ðciÞ has one unique (although yet un-
known) value vci. If so, we have m equations of the type
_Xi ¼ vþi ðXjÞ � vci , where the values of Xj and _Xi are
known directly from the data and vci always has the same
value. Using these quantities, the methods proposed here
allow us to estimate the functional format of vþi ðXjÞ, at least
over some pertinent range of Xj values. Once we know
vþi ðXjÞ, we can determine v�i ðXiÞ . Thus, we now have nu-
merically quantified two fluxes, which reduce the discrep-
ancy between the number of equations and the number of
independent fluxes. Repeated application of the method
allows DFE for the entire system. An illustrative vþi example
is shown in Methods and other examples are presented in
the Results. If the function depends on more than one vari-
able, the procedure is the same in concept but more com-
plicated in detail (see Additional file 1).

Methods
The proposed method offers a systematic strategy to extend
DFE and to ameliorate its limitations. Just like DFE, the
proposed method starts with an optional data preproces-
sing step, but without any assumption regarding the func-
tional formats of the fluxes in the system. First, the
experimental data are tested for mass conservation to make
sure no mass is lost or gained during the observed time
period. If the data do indicate losses or gains in mass, it is
useful to locate possible branches off the main pathway(s)
and to account for the changes in total mass of the metabo-
lites in the pathway [19]. Second, the time series data are
smoothed as necessary, which makes it easier to estimate
the slopes of all time courses at a given number of time
points, using different numerical techniques. These estab-
lished smoothing methods include splines, artificial neural
networks, as well as different types of filters, such as the
popular Kalman, Savitzky-Golay, Whittaker, or Eilers filter
(see [2,26,27] for applicable methods). In parallel to these
data preprocessing steps, the pathway structure (the system
topology) is used to generate a system of symbolic equa-
tions describing the dynamics of the system. The generic
format for such a representation may be written as

_Xi ¼
X

Vþ
ij ðX1; . . . ;XnÞ �

X
V�
ij ðX1; . . . ;XnÞ; i ¼ 1; . . . ; n;

ð1Þ

where Xi denotes the concentration or amount of a variable
or variable pool and n is the total number of time-
dependent variables in the system. The functions Vþ

i and
V�
i represent reactions or fluxes entering or leaving the

quantity Xi, respectively. Substituting slope estimates for



Figure 1 (a) Generic three-variable linear pathway with
feedback inhibition (Eqs. (3–4)). (b) Time series data, consisting of
50 artificial “measurements” that were generated with initial
conditions X1(t0) = 5, X2(t0) = 0.1, and X3(t0) = 8; X1, X2, X3 are
represented by blue, green, and orange dots, respectively.
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the differentials in this system of equations decouples the
ordinary differential equations (ODEs) and results in a sys-
tem of fluxes that is linear at each time point t [21,28,29].
The algebraic equations may be represented in matrix for-
mat as

sðtjÞ ¼ N� vðtjÞ; j ¼ 1; . . . ;K ; ð2Þ
where s is a vector of slopes, N is the stoichiometric matrix,
v is a vector of fluxes, and K is the number of time points
t1, t2,. . ., tj,. . ., tK where measurements are available.
Next we check the rank of the linear set of algebraic

equations in Eq. (2). The system can be easily solved at
each time step to obtain dynamic profiles of all fluxes if
the system has full rank. Over-determined systems may be
solved by pooling fluxes, the use of pseudo-inverse meth-
ods, or regression. However, if the system is underdeter-
mined, the solution space is infinite. To overcome this
issue, some of the fluxes need to be estimated independ-
ently, until the system has full rank and can be solved
uniquely. Elsewhere we showed that additional informa-
tion maybe used to characterize selected fluxes [19]. Here,
the goal is to estimate some fluxes directly from the time
series data, without evoking other sources of information.
As an introductory example, consider a linear part of a

pathway with feedback inhibition as shown in Figure 1(a).
The equations that describe the system in terms of fluxes are

_X1 ¼ v1 � v2
_X2 ¼ v2 � v3:
_X3 ¼ v3 � v4

ð3Þ

The system could be part of a larger pathway system, but for
this illustration the context is not relevant. For the illustra-
tion, fluxes were generated with a mix of power-law and Hill
functions, namely

v1 ¼ 1:5 X�6
3

v2 ¼ 2:4 X0:8
1

v3 ¼ VmaxX3
2

K3
M þ X3

2
;

v4 ¼ 2 X0:75
3

ð4Þ

where Vmax=5 and KM=2. We use these settings to create
artificial data, but subsequently assume no knowledge of the
functions or parameters in Eq. (4).
Suppose time series data were measured and they are

without noise (Figure 1(b)). Eq. (3) immediately indicates
that the flux system is underdetermined and therefore
has infinitely many solutions. A unique solution could
be obtained if one of the fluxes could be determined in-
dependently. To achieve this independent determination,
one may choose any one of the three equations in the
system. For ease of computation, one will typically prefer
an equation that contains as few fluxes and as few sub-
strates and modulators as possible. In this linear system,
all equations have two fluxes and each of them depends
on only one metabolite, so that there is no advantage to
choosing one equation rather than another.
Generically, we intend to solve the fluxes in the ith

equation, which here happens to have only two fluxes,
namely one influx (vin) going into the pool Xi, and one
efflux (vout) leaving this pool. The flux vin depends only
on the precursor Xin of Xi and vout depends only on Xi

itself; to minimize confusion, we call this variable gener-
ically Xout. Extracting the ith equation from Eq. (1), we
thus obtain, in general terms,

_Xi ¼ vin � vout : ð5Þ
The functional form of neither flux is assumed to be
known. Substitution of derivatives with slopes results in
K equations of the type

SiðtjÞ ¼ vinðtjÞ � voutðtjÞ ; j ¼ 1; . . . ;K : ð6Þ

As a specific illustration, consider the second equation
ð _X2 ¼ v2 � v3Þ in Eq. (3), where v2 depends only on the
precursor X1 and v3 depends only on X2. We substitute
the derivative _X2 with slopes that can be measured dir-
ectly from the time series data, possibly upon smooth-
ing. For a total of 50 time points, one thus obtains 50
algebraic equations of the type

_X2 � S2ðtjÞ ¼ v2ðtjÞ � v3ðtjÞ ; j ¼ 1; . . . ; 50: ð7Þ



Figure 2 (a) Fixing X1 within a narrow range (~0.26), four
instances of X1 are found (solid red circles). Fixing X1 within
another narrow range (~0.6) provides three instances of X1 (solid
orange circles). Similarly, two instances of X1 are found for X1 ~1.26
(solid blue circles). (b) Collection of 34 “bins” that exhibit the
number of times X1 has approximately the same value given on the
x-axis; the range of each bin was chosen as 0.05. Among the 34
bins, 9 bins have at least two instances of the same X1; all other bins
are discarded. (c) Representation of different X2 values
corresponding to at least two X1 values in each of the 9 remaining
bins. The bars connect the two or more X2 values in each bin.
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It is reasonable to assume that the in- and effluxes are
true functions in a mathematical sense. Thus, since vin
depends only on Xin, vin must have one and only one
value for every given value of Xin. In particular, if Xin

assumes the same value at two different time points, vin
must have the same (so far unknown) value at both time
points as well. In the illustration example, v2 depends
only on X1. Thus, for every value of X1 there is one and
only one value of v2. The proposed method therefore
requires a screening of the available datasets with the
goal of identifying different situations where Xin has
some fixed value Xin_const. For all these situations, vin also
has some fixed value vin_const. Since we do not know the
functional form of vin, we cannot directly compute this
value vin_const. However, we do know that this value is
very similar for all situations where Xin � Xin_const. Thus,
for the set of all Xin � Xin_const, Eq. (6) has the form

SiðtjÞ ¼ vin constðtjÞ � voutðtjÞ : ð8Þ

In the illustrative example, we screen the available data
sets and search for different situations where X1 has the
same fixed value X1c and, thus, v2 also has the same (yet
unknown) value v2c. Thus, for the entire set of all X1 �
X1c the second system equation has the form

S2ðtjÞ ¼ v2cðtjÞ � v3ðtjÞ: ð9Þ

For instance, X1 has similar values (~0.26) at time points
4, 4.8, 8.8, and 9.2, while X2 has different values at these
time points (Figure 2(a)).
We repeat this type of screening for different sets of

the same or very similar values of Xin. The result is a set
of sets with equal Xin_const values within each set but dif-
ferent Xin_const values for different sets. These sets form
a histogram with a bin for each Xin_const. If the range of
each bin is small enough, we can assume every Xin in
the same bin to have very similar values, so that their
corresponding vin_const are also very similar. Henceforth,
we only retain bins with at least two entries. An example
in the illustrative example consists of time points 3.4
and 9.6, where X1 has again similar values. In this case,
the value is ~1.26, which is different from the value we
screened before. Similarly, for time points 1, 8.4, and 9.4,
X1 has a value of ~0.6 (Figure 2(a)). Figure 2(b) shows
many situations in the dataset where X1 has approxi-
mately some fixed value, and these sets of X1 are
reflected in a “bin database of values.” Within each bin,
the corresponding value of v2c is very similar as well.
Suppose we have identified P bins that contain at least

two Xin. For these bins we determine the corresponding
Xout values, which are typically different from each other.
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Suppose that bin p contains q values. Thus, we obtain q
equations of the type

SiðbinpÞ ¼ vin constðbinpÞ � voutðbinpÞ; p ¼ 1; . . . ;P;

ð10Þ
where vin_const (binp) always has the same value, but Si
(binp) and vout (binp) have different values. For our
illustration we specify nine bins (P= 9) (which have at
least two X1 (Figure 2(b)), and their corresponding
values of X2 at the same time points are shown in
Figure 2(c). The 6th of the nine bins (shown as the
orange bin in Figure 2(a)) contains three instances of X1.
Therefore, we obtain three equations of the type

S2ðbin6Þ ¼ v2cðbin6Þ � v3ðbin6Þ: ð11Þ
Equation (10) is formulated analogously for each bin p
=1, . . ., P. In each case, vout (binp) can be represented as
at least two equations of the type

voutðbinpÞ ¼ vin constðbinpÞ � SiðbinpÞ; p ¼ 1; . . . ; P:

ð12Þ
Since we do not know the functional form of vin, we do
not know the numerical value of vin_const (binp). However,
since vin_const (binp) is a constant for each bin, the relative
positions of a group of values of vout (binp) depend on
each value –Si (binp) within a given bin, and the slope
values can be measured directly from the time series data.
In addition, since vout (binp) is solely determined by Xout

(binp), we can characterize the relative positions of a set of
Xout (binp) and their corresponding values –Si (binp). Col-
lecting these relationships, we can establish a plot of Xout

(binp) versus –Si (binp). If the bin contains only two points
of Xout, we consider them as a pair and link them with a
connecting line. If the bin contains q points of Xout (where
q> 2), we sort Xout based on their values and connect
Figure 3 (a) The 8th bin in Figure 2(b) contains two different X2 value
X1 ~1.26. The corresponding values of X2 and –S2, obtained from the plot
considered a pair and linked with a red line. (b) The 5th bin of Figure 2(b),
instances of X1 ~0.26. Their corresponding values of X2 and –S2 are (1.20, 0
considered a pair and linked with a red line.
every two adjacent points as a pair to form a total of q-1
pairs. In order to address these pairs, we use an additional
index for the position of each pair in each bin, such as
(Xout (pairr)(1), –Si (pairr)(1)) for the first point and (Xout

(pairr) (2), –Si (pairr) (2)) for the second point, where
r=1, . . ., q–1.
To continue the illustration, the 8th bin contains two

instances of X1 ~1.26. The corresponding values of X2

are 1.54 and 2.93, and the –S2 values are −1.35 and 0.93,
respectively. The points in the plot of X2 (bin8) versus
–S2 (bin8) are therefore represented as (1.54,–1.35) and
(2.93, 0.93). We consider these two points as a pair and
link them using a red line (Figure 3(a)). Similarly, the 5th

bin contains four instances of X1 ~0.26. Their corre-
sponding values of X2 are 1.20, 1.37, 1.66, and 1.99, and
the –S2 values are 0.05, 0.35, 1.02, and 1.65, respectively.
The points in the plot of X2 (bin5) versus –S2 (bin5) are
therefore represented as (1.20, 0.05), (1.37, 0.35), (1.66,
1.02), and (1.99, 1.65). Two points each are considered a
pair and linked with a red line (Figure 3(b)). After the
pairs of points are determined, we prune the set by
neglecting pairs where the distance between Xout (pairr)
(1) and Xout (pairr)(2) is below some threshold
dr ¼ XoutðpairrÞð1Þ � XoutðpairrÞð2Þj j . The reason is that
small line segments tend to lead to unduly high estimation
errors. The default value for dr is set as 0.2 in the examples
shown in this article, but it will generally depend on the ac-
curacy and quantity of the data. The higher the value is,
the fewer pairs will remain after filtration. However, as
long as the remaining pairs cover most of the spectrum in
the X axis, an increase in dr might be preferable. Suppose
s pairs remain after this filtering. Figure 4(a) shows the
collective result for the illustration example.
Equation (12) indicates that Xout (binp) and –Si (binp)

differ by a constant, since we do not know the value of
vin_const (binp). This fact translates into a constant vertical
shift in the y direction for each pair of points. In other
s corresponding to the “blue” instances in Figure 2(a) for
of X2 versus –S2, are (1.54, -1.35) and (2.93, 0.93). These two points are
corresponding to the “red” instances in Figure 2(a), contains four
.05), (1.37, 0.35), (1.66, 1.02), and (1.99, 1.65). Two points each are



Figure 4 (a) Pairs of points satisfying a threshold value of d (see Methods) greater then 0.2. Seven pairs (s= 7; connected by blue lines) are
selected for the following steps. The green line is the true functional representation of X2 versus v3, which in an actual situation is not known. (b)
Pairs in (a) are merged, based on the distances between points in each “node” and the distances between two points in a pair. (c) Subgroups of
pairs in (b) are merged. (d) If the value of v3 is known for X2 = 1 or for some other value. The entire cluster of lines is vertically shifted accordingly.
If small values of X2 are covered by the pairs, the shift is determined by the observation that a flux is usually zero if the substrate concentration is
zero. Here, the sum of errors between the estimated points and corresponding points on the true green line is 0.0354.
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words, the relative y positions of the pair are preserved
and the pair has to be shifted together by a yet unknown
amount. While we do not know the size of the shift for
each individual pair of points, all points collectively repre-
sent the graph of Xout versus vout, and it is reasonable to
assume that this graph is continuous and usually even
monotonic. Therefore, the next step is to merge the indi-
vidual pairs by determining a proper shift for each pair.
Intuitively, it is easy to see how to shift all pairs so that

they are close to one continuous line. Automation of the
process requires an algorithm that is not quite straight-
forward, but can be facilitated with a graphical user
interface; technical details of a possible merging process
are presented in Figure S1 of the Additional file 1. A
pseudo-code of the merging is the following:

SET each pair of points as a node
SET each node as a subgraph
WHILE the graph is not connected

FOR each subgraph in the graph

FOR each node in the current subgraph
SET other-subgraphs as the subgraphs; exclude
the current subgraph
CALCULATE the distance from the current
node to every node contained in other-
subgraphs

END FOR
FIND the shortest distance and its corresponding
nodes
CONNECT these two nodes

END FOR

END WHILE

When the merging is completed, all pairs of points are
close to a relatively smooth line, but the overall shift of
the group of pairs is not known. We do know that es-
sentially all metabolic fluxes will have values close to
zero when their substrate concentration approaches
zero. Thus, if sufficiently small substrate values are avail-
able in one of the bins, one easily estimates a reasonable
shift. Should the flux value associated with some
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substrate concentration be known, the shift can be
determined from this information. A further alternative
is the following. If the inferred trend line suggests that
the flux follows some rate law, such as a Hill function,
the parameters of this function, together with the appro-
priate shift, can be obtained in a single optimization
step.
Figure 4(b) shows, for the illustrative example, the

process of merging and shifting. The human eye has no
problem accomplishing this task intuitively. In the auto-
mated process (see Additional file 1), one connects each
“node” (pair of points) with its closest-neighbor node
and positioning the pair of points. This process creates
two sub-groups of points. We recalculate the distance
between each node in a sub-group with the nodes in the
other sub-group, determine the closest pair of nodes,
connect them, and shift the corresponding pairs into
one sub-group as shown in Figure 4(c). Suppose the
value of v3 is known for X2 = 1. If so, we ultimately shift
the entire trend accordingly. The result is shown in
Figure 4(d). A shift based on the association between
zero flux and zero substrate concentration is an alterna-
tive, although it does not uniquely prescribe a solution
in this case.
Finally, based on the numerical or graphical flux profile

thus determined, one may test candidate functions that
capture the flux-substrate relationship. For instance, the
result in the illustrative example shows that the func-
tional relationship of X2 vs. v3 is s-shaped. It could thus
be consistent with the (true) Hill function in Eq. (4),
although the computed result itself certainly would not
prove that this format is correct. If one assumes, based
on the results, that a Hill function is appropriate, one
may fit this functional form to data to find the optimal
parameter values of the flux-metabolite dependency.
Without making such an assumption, one may alterna-
tively connect the dots in Figure 4(d) with a continuous
line and interpolate the values of fluxes using a spline or
another smoothing method. The resulting trend line can
be used as a “look-up” plot.
Now that we have determined v3, it is easy to compute

v2 from the measured slopes of X2. The plot of v3 is
slightly curved, which is consistent with its power-law
function in Eq. (4), although again, there is no proof.
The Results section discusses further examples.
The parameters of any candidate functional form are

easily estimated, because no differential equations are
involved and the problem is of low dimension; they rep-
resent a fully parameterized kinetic model for the flux
term itself and, subsequently for the differential equa-
tion. Due to this simplicity, it is even possible to scan a
variety of candidate functions and assess their appropri-
ateness. If a suitable functional format can be deter-
mined with appropriate parameter values, the task is
completed. If not, one may represent the flux-substrate
plot with a piecewise-polynomial function, such as cubic
spline. Even in this non-explicit, numerical format, the
result is sufficient to reduce one or two degrees of free-
dom in the overall DFE task. Figure 5 presents the over-
all flow and concept of the method.
The procedure described above has generated one or

two additional flux estimates. For the example in Eq. (3),
the determination of v2 and v3 “fills” the rank, and the
system can be uniquely solved. In fact, only one of the
two is needed. For examples where one or two add-
itional fluxes are not sufficient for a unique solution, the
same procedure has to be performed with other equa-
tions until enough fluxes are determined to make the
flux system full rank. DFE subsequently identifies all
other fluxes as plots against time or against their sub-
strates and modulators.
In cases where fluxes contain more than one variable,

the time courses have to be screened for combinations
where the contributing variables have the same values.
The concepts of the procedure are exactly the same as
for the univariate case, but the implementation is obvi-
ously more involved (see Additional file 1). Also, such
combinations are rarer than in the cases described
above, so that these situations require more diverse data-
sets for structure identification.

Results
The simple linear pathway shown in the previous section
illustrated the concepts of the proposed extension to DFE.
This section describes applications of the proposed meth-
ods in the context of further didactic and actual examples
that become increasingly more complicated. We begin
with two artificial cases with distinct characteristics and
conclude with the analysis of experimental observations
describing trehalose metabolism in the yeast Saccharo-
myces cerevisiae.

Branched pathway with feedforward activation and
feedback inhibition
Consider a branched pathway with fluxes represented
by various functional forms, including Michaelis-
Menten and Hill functions with inhibition and activa-
tion. The pathway, shown in Figure 6(a), can be
described by the following set of ordinary differential
equations [30]:

_X1¼v1 � v2
_X2¼v2 � v3 � v5
_X3¼v3 � v4
_X4¼v5 � v6

ð13Þ



Figure 5 Flowchart of the proposed method. Starting with
experimental time series, the data are smoothed and balanced for mass
conservation, if necessary. The slopes of the time series at each time
point are estimated. Combined with the knowledge of the system
topology, substitution of the derivatives in the ODE with slope
information yields a linear system of fluxes. If the system has full rank,
solve the system with techniques from linear algebra. If the system is
underdetermined, use auxiliary steps, as proposed in this article, to solve
a subset of the fluxes until the system is of full rank. The results are the
dynamic profiles of all extra- and intra-cellular fluxes in the system. If
desired, make assumptions regarding the functional forms of the fluxes.
These functions correspond to symbolic flux representations that can be
independently fitted to the respective dynamic flux profiles and result in
a fully parameterized kinetic model. As an alternative each process may
be approximated as a piecewise function, for instance using spline
methods.
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The kinetic descriptions for each of the reactions are:

v1 ¼ 16� X5

1þ X5

v2 ¼
65� X1

0:3
� 1þ 0:04

2:5
� X3

0:12

� �

1þ X3

0:12
þ X1

0:3
� 1þ X3

2:5� 0:12

� �

v3 ¼ 5� X2ð Þ4
5þ X2ð Þ4

v4 ¼ 8� X3

1þ X3

v5 ¼
58� X2

11

� �3

X2

11

� �3

þ
1þ X1

1

� �3

1þ 63� X1

1

� �3

v6 ¼ 8� X4

1þ X4

ð14Þ

As before, we use these formats to generate artificial
data, but subsequently assume no knowledge of their
characteristics.
The system in Eq. (13) is not of full rank. Thus, some

of the fluxes need to be determined with the proposed
method. For our illustration, we select the third equation
in Eq. (13), because it contains only two fluxes; also, v3
depends only on X2, and v4 depends only on X3, which
we know from the topology of the pathway. In the previ-
ous example, all time series were oscillating and it was
easy to find enough data points where one variable is
fixed and other variables display different values. In the
present example, each single dataset displays changes
over time that show few repeated concentration values
(see Figure 6(c)). In such a situation, which is more typ-
ical than the earlier illustration example, one can use
exactly the same method, applied to multiple datasets
with different dynamic profiles, as long as one can val-
idly assume that the functional forms are not affected by
differences among the datasets.
For this illustration, we simulated multiple datasets

with the initial values presented in Figure 6(b), which
could easily reflect actual experimental settings. Figure 7
(a) shows the result of binning X3 by using the first four
datasets in Figure 6(b). The corresponding pairs of X2

(Figure 7(b)) range from 0.25 to 2.24, which covers most
of the range of X2 in the four datasets (from 0.25 to
2.34). The merging process of pairs is shown in Figure 8,
with panels corresponding to those in Figure 4. In par-
ticular, Figure 8(c) exhibits the merged points, which evi-
dently form a sigmoidal shape where the first few points
are basically flat. Therefore, one can assume the flux at



Figure 7 (a) Bins of instances of X3 for different values; the
range of each bin is chosen as 0.033. Among the 26 bins, 13 bins
have at least two X3 values; the others are discarded. (b)
Representation of 13 sets of corresponding X2 values in those bins
that have at least two X3. The bars connect two or more X2 values
within each X3 bin.

Figure 6 (a) Metabolic network with positive feedforward and
negative feedback. All enzymatic reactions are assumed to follow
Michaelis-Menten or Hill kinetics except for those corresponding to v2
and v5, which are assumed to be represented with an Irreversible
General Hyperbolic Modifier Kinetic function and with an Irreversible Hill
function with one modifier, respectively (see Eq. (14) for details). (b) Sets
of initial conditions used to generate six different datasets. (c) Time series
data corresponding to the first set of initial values in (b); X1, X2, X3, X4 are
represented by blue, red, orange, and green dots, respectively.
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the smallest X2 (~0.25) to be close to zero and shift the
entire set of merged pairs up by about six units to obtain
the estimates of v3. Indeed, this step recoups the true
flux, which is shown in green, but would be unknown in
a real application. Once v3 is determined, the system of
Eq. (13) is still underdetermined and another flux needs
to be estimated to make the system full rank. The most
straightforward choice is v4, which is directly computed
from v3 and the measured slopes of X3.
Instead of v4, one could also estimate an additional

flux from another equation in Eq. (13) using the same
procedure, for example, by solving v5 and v6 in the
fourth equation. Flux v6 depends only on X4 but v5
depends on two variables X1 and X2. The steps of esti-
mating v5 and v6 are described in Additional file 1. We
also tested the proposed method by using six datasets in
Figure 6(b) and the results similarly recover the true
functional form (data not shown).
The proposed method was also tested on a five-

variable system that has been used as a benchmark prob-
lem in many articles (e.g. [24,31-33]). To demonstrate
the applicability of the method, we also added artificial
noise to the time series data in this example and
randomly picked sub-datasets from data generated with
ten conditions. The details and results are shown in
Additional file 1.

Glycolysis and trehalose production
This last example describes in a simplified fashion
how the baker’s yeast Saccharomyces cerevisiae
converts glucose into end products and how trehalose
is synthesized and degraded in a cyclic pathway



Figure 8 (a) Collection of s pieces exceeding a chosen threshold d (here s=12 and d=0.2; see Text). The green line is the “true” functional
representation of X2 versus v3. (b) Pairs in (a) are merged based on their distances and on the distances between two points in a pair. (c) The
subgroups of pairs in (b) are merged. (d) The sigmoidal shape of points in (c) suggests that the flux of the smallest X2 (~0.25) should be close to
zero. The sum of errors between the estimated points and their corresponding true values (on the green line) is 0.0551.
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(Figure 9). The data [34] consist of actual in vivo
NMR measurements of metabolic profiles that char-
acterize how the yeast responds to heat stress in two
time regimes at the genome, protein, and metabolic
levels. For the illustration here we use the metabolite
dynamics of normally grown cells that were then
exposed to heat stress (39°C) and fed with a pulse of
glucose. Immediately after glucose addition, the initial
metabolite pools (G6P and FBP) increase, while trehal-
ose (Tre) increases with a short delay and begins to
decrease slightly after two minutes. The end products
ethanol, glycerol, and acetate gradually accumulate.
The concentration data are shown as dots in Figure 10,
together with the modeling results that are described
next.
The model contains eight dependent variables and

eight fluxes, as shown in Eq. (15), where Vext and Vint

represent the extracellular (0.05 L) and intracellular
(0.00717 L) volume of the bioreactor and the cell popu-
lation, respectively. Each of the fluxes is a function of
some of the variables, as shown in Eq. (16), but it is im-
portant to note that we do not make any assumptions
regarding the functional forms of the fluxes. In
principle, DFE seems to be directly applicable. However,
the time series data contain the measurements of only
five of the metabolites, namely Glc (X1), G6P (X3), Tre
(X4), FBP (X5), and extracellularly accumulated end pro-
ducts (EtOH, Gly, and Ace; X6). Without the measure-
ments of X2, X7, and X8, the system in Eq. (15) is not of
full rank and, due to the experimental set-up, v7 and v8
cannot be measured or determined directly by estimat-
ing slopes.
To complement the rank of the flux system, we use

the proposed method of flux estimation. First, one
should note that the measurements of Glc (X1) con-
cern extracellular glucose. Thus, X1 is easy to measure
experimentally, but it is very difficult to obtain good
measurements of intracellular glucose (X2), because it
is immediately converted in to G6P (X3). Thus, the
proportion of Glc (X2) is negligible in comparison to
Glc (X1), and because the measured concentration of
glucose is close to the sum of Glc (X1) and Glc (X2),
we merge X1 and X2 into one pool, which is
represented by the sum of the first two equations in
Eq. (15). Furthermore, the amount of material enter-
ing the pentose phosphate pathway (PPP; X7) is not
directly measurable, but independent lab experiments
had indicated that it has a value of approximately 5%



Figure 9 Schematic representation of a simplified model of glycolysis and the trehalose cycle in the yeast Saccharomyces cerevisiae
(adapted from [34]). Xi and vi represent dependent variables and fluxes, respectively. One inhibitory interaction is shown in red. Abbreviations:
X1, extracellular glucose; X2, intracellular glucose; X3, glucose 6-phosphate; X4, trehalose; X5, fructose 1,6-bisphosphate; X6, extracellularly
accumulating end products (ethanol, glycerol and acetate); X7, mass diverted into the pentose phosphate pathway; X8, mass consumed by other
pathways (e.g., TCA); v1, glucose transport; v2, hexokinase and glucokinase; v3: aggregated step of all enzymatic steps between glucose
6-phosphate and the production of trehalose; v4, trehalase; v5, phosphoglucose isomerase and phosphofructokinase; v6, aggregated step of all
enzymatic steps between fructose 1,6-bisphosphate aldolase and the release of end-products; v7, flux into the pentose phosphate pathway; v8,
flux towards other pathways (leakage). Metabolites without available experimental measurements are shown in gray. The flux v6 (blue) is directly
measurable from the time series of X6. Fluxes v3 and v4 (green) were estimated using the proposed method.
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of the glycolytic flux; thus v7 ¼ 0:05� v5 [34]. With
these simplifications, the system can be formulated as:

_X1¼� v1=Vext
_X2¼ðv1 þ 2v4 � v2Þ=Vint

_X3¼ðv2 � 2v3 � v5 � v7Þ=Vint

_X4¼ðv3 � v4Þ=Vint

_X5¼ðv5 � v6 � v8Þ=Vint

_X6¼2v6=Vext

_X7¼v7=Vint

_X8¼v8=Vint

ð15Þ

v1 ¼ F1 X1;X3ð Þ
v2 ¼ F2 X2ð Þ
v3 ¼ F3 X3ð Þ
v4 ¼ F4 X4ð Þ
v5 ¼ F5 X3ð Þ
v6 ¼ F6 X5ð Þ
v7 ¼ 0:05� v5
v8 ¼ F8 X5ð Þ

ð16Þ
To supplement the underdetermined DFE, we select the
equation _X4 ¼ ðv3 � v4Þ=V int in Eq. (15), since it contains
only two terms and the measurements of X3 and X4 are
available. As before, we fix X3 at some values
(Figure 11(a)) and find the corresponding X4 and –S4
(Figure 11(b)). The merged pairs suggest an approximately
exponential function (at least for the range of available X4)
and the minimum of X4 is very close to zero. For a con-
centration close to zero, the value of the flux should be
close to zero as well. Therefore, the entire cluster of pairs
is moved up around 4 units, and the updated functional
plot is shown in Figure 11(d). The corresponding v3 can
now be calculated accordingly and transformed to the
form as fluxes versus time. After the determination of v3
and v4, the system of Eq. (15) becomes full rank and the
rest of the fluxes at each time point can be solved with
DFE even without knowledge of the times series of X7 and
X8. Indeed, the time courses of X7 and X8 can be calcu-
lated via point-by-point integration of v7 and v8. Upon the
determination of the concentrations of all variables, the
total mass over time can be calculated, confirming no sig-
nificant loss or gain of mass (Figure 11(f)).



Figure 10 Experimental metabolite time courses of glucose metabolism determined by in vivo 13 C-NMR in Saccharomyces cerevisiae
grown under optimal temperature (30°C) with a single pulse of glucose (65 mM) (adapted from [34]). The dots for X1, . . ., X6 are
experimental measurements, while X7 was determined from the flux v7, which was inferred with the methods described in the Text. The lines are
the result of a model simulation with the inferred fluxes. The end products (ethanol, glycerol and acetate) are summarily represented as X6.
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Once we have obtained the time series of all fluxes, we
can generate the plots of concentrations of metabolites
that are involved in the enzymatic reactions (see Eq. (16))
versus a flux. The results are shown in Figure 12. As a
Figure 11 (a) The experimental concentration data (29 time points) w
yielding metabolite levels of X3 at about 300 time points. These X3 val
bins have at least two X3 values. (b) Graph of X4 values, corresponding to a
threshold d of 0.3 (here s= 12; see Text) are selected. (c) Pairs in (b) are me
the dots in (c), while the red triangles represent the true plot of X4 vs. v4 in
Functional plot of X3 vs. v3 (blue dots), calculated from the blue dots in (d)
(f) Confirmation that the total mass (represented as the number of 3-carbo
validation test, we used these numerical flux representa-
tions of each enzyme catalyzed reaction to simulate the
concentration changes of metabolites. The simulation
results are shown in Figure 10.
ere smoothed and interpolated with a spline function, thereby
ues were put into 186 different bins with size 0.03. Among these, 54
t least two X3 values in each of the X3 bins. Selection of s pairs with a
rged. (d) Resulting functional plot of X4 vs. v4; the blue dots represent
the dynamic model; in reality, these would not be known. (e)
, and true values of X3 (red triangles) according to the dynamic model.
n units) does not change appreciably over time.



Figure 12 Results from the proposed method and subsequent application of DFE to yeast data from the model in Figure 9. Shown are
metabolite concentrations against fluxes at different time points (blue dots), connected by inferred trend lines for all fluxes (green lines).
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Discussion
Of all steps in the generic mathematical modeling
process, parameter estimation and structure identifica-
tion continue to be among the most severe bottlenecks
for modeling biological systems. Until recently, this task
was typically pursued from the bottom up by using local
data from individual enzymatic steps. However, modern
techniques of molecular biology have provided us with a
strikingly different estimation strategy, namely a top-
down or inverse approach, which is based on dynamic
time series data that are being generated with rapidly in-
creasing frequency and quality. Many recent articles
have proposed various methods to tackle this inverse es-
timation problem using time series data. However, none
of these methods are effective in all cases. Furthermore,
almost all methods have been focusing on the goodness
of fit and the speed of the algorithm, but not necessarily
the quality of fit in terms of the validity of the model,
extrapolation ability, and predictive power with respect
to data not used in the estimation. In addition, there has
been little discussion of the diagnostic tools for data fits
beyond the residual error. For instance, it is possible that
a fit is good in terms of the residual error, but that the
estimated fluxes are incorrect because of numerical
compensations between terms within the model [10].
Dynamic Flux Estimation (DFE) [10] addresses several

of these issues successfully, but only if the data are ra-
ther comprehensive. More limiting, DFE requires that
the system of fluxes is of full rank. When the number of
fluxes exceeds that of the dependent metabolites, either
because of the stoichiometry of the pathway or due to
the lack of measurements of some metabolites, DFE can-
not be applied directly, because the system of fluxes is
underdetermined. To supplement such a system, we re-
cently proposed methods for supplementing DFE with
other information that may be used as a substitute for
unknown fluxes [19]. However, these methods are suc-
cessful only under certain restrictive conditions, for in-
stance, when the enzymes in the system are well
characterized under pertinent conditions, sufficient kin-
etic information is available, and all significant metabolic
time series are measured. One could also determine
some of the fluxes within the system by fitting pre-
selected models to time series data. However, this pre-
selection requires the definition of functional forms for
the reactions in question, which in truth are often
unknown.
In this article we propose a model-free approach with

minimal assumptions to supplement DFE with informa-
tion already embedded in the time series data. The pro-
posed method starts with the selection of a decoupled
equation; preferable one that contains a minimal num-
ber of terms and contributing metabolites. Within this
equation, we repeatedly fix one or a few variables that
have constant or very similar values within certain small
ranges, and find the corresponding values of the vari-
ables that appear in another flux of the equation. The re-
sult of this step is a plot of a flux versus a metabolite,
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with several pairs of points showing the relative posi-
tions of the true metabolite concentration and the flux
values in each pair. The position of each pair is initially
subject to shifting in the y direction by an unknown
amount. The correct shifting of pairs may be accom-
plished with an automated or manual merging process
that, for instance, accounts for the fact that the flux
value should be zero when the metabolite concentration
is zero. One could also measure the flux value at some
metabolite concentration experimentally. Furthermore, if
an enzymatic rate function is deemed correct and corre-
sponding kinetic information is available, the vertical
shift in the flux can be calculated. Once the metabolite-
flux plots are established for all fluxes, one can select a
suitable mathematical representation for the entire de-
pendency or use a piecewise approximation for different
ranges of data. One could also use the metabolite-flux
relationships directly as “look-up” plots.
The proposed method may appear cumbersome or

even baroque. However, one should consider that it
solves a problem that so far has not even been
addressed—let alone solved—with any systematic ap-
proach. Also, the method is presently likely to suffer
from a lack of suitable data. But judging by the develop-
ment of high-throughput experimental methods and the
number and increasing quality of published time series
over the past decade, this issue seems to be primarily a
matter of time. Indeed, one should expect that it will
soon be feasible to generate strategically selected, mul-
tiple datasets for the identification of a system, which
differ slightly in their settings. These datasets must come
from experiments that do not alter the functional charac-
teristics of the fluxes in the system but might, for instance,
measure system responses under modestly different sub-
strate or inhibitor conditions. At the same time, the data
should be representative of the dynamics of the system
within the pertinent ranges of its variables.
The method involves one step that is subject to bias.

Namely, the overall shifting of the flux-metabolite rela-
tionship requires extrapolation or some other information,
unless metabolite concentrations close to zero are avail-
able. To resolve this issue, it might be possible to deter-
mine a reference point for the shift from enzymatic or
kinetic information. However, in many cases, this informa-
tion will have been obtained in vitro and possibly under
different conditions. A more direct approach would be to
measure a flux value experimentally at some point, for in-
stance, at the steady state. Such a measurement is rela-
tively simple when the flux of interest is an input or
output flux. It might also be possible to measure some
fluxes directly by estimating the rate of consumption and
production of the initial substrate or the end product, re-
spectively. However, the measurements of fluxes at these
locations are usually of lower interest since they are
seldom associated with the underdetermined subsystems
of the internal fluxes. One or more intracellular fluxes
could also possibly be characterized through measure-
ments of a suitable isotopomer distribution at steady state
(i.e. [17,35]), but such data are still rare. Finally, if one has
valid reason to assume a particular format for a flux, such
as a Michaelis-Menten or Hill function, the shift may be
obtained through optimization. All estimation methods
are negatively affected by noise, and the proposed method
is no different (see Additional file 1). However, issues of
noise can be logistically separated from this method to
some degree. Namely, the time series data used as basis
for the proposed method may (in fact, should) be
smoothed in a preprocessing step, for instance with a filter
[2,26,27]. This well-established step allows an assessment
of the characteristics of the noise as well as the smoothing
process itself. Once the data are smoothed and noise is
thus reduced, the proposed method is applied as if the
data had been noise free.
Outside these remaining details, the proposed method

has several notable advantages. First, no assumptions are
needed regarding the mathematical representations when
determining the individual fluxes. Second, the application
of the method is not limited to a small range of a metabol-
ite or its flux. Instead, it allows the modeler to examine
the full spectrum of the functional form, depending on
how widely the available time series data cover metabolite
concentrations along the x axis of the metabolite-flux plot.
Third, even under the condition that some of the time
series are missing, the proposed method can still re-
cover—at least to some degree—the governing flux pro-
files. Finally, since the range of coverage depends on the
available datasets, we can, arguably for the first time, esti-
mate how many data points are necessary to identify the
functional format of a flux or what values of metabolite
concentrations are needed to cover the concentration
range of interest. Namely, if it is possible to implement the
proposed method for a system at hand with sufficient reli-
ability, then we know that we have enough data to assess
the range over which the flux can be determined. If a
wider range needs to be known, additional data will have
to be made available in that extended range. This insight
in itself will aid the design of specific experiments that can
be used to generate more extensive functional plots.

Conclusions
In this article we propose a systematic strategy to supple-
ment and ameliorate the limitations of the method of Dy-
namic Flux Estimation (DFE). The proposed strategy
makes no a priori assumptions regarding the model repre-
sentation and uses instead information embedded in the
time series data. The results demonstrate that the pro-
posed approach successfully complements DFE in various
situations. The method permits the examination of a full
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spectrum of functional forms, as well as a determination
of whether at all, to what degree, or within what range, the
available time series data can be validly represented in a
particular functional flux format within a pathway model.
Based on these results, one can, arguably for the first time,
estimate how many data points are required to identify
the functional format of processes within a system model
and design experiments to generate data points that genu-
inely add new information to the parameter estimation
and structure identification tasks.

Additional file

Additional file 1: This file contains: (1) details regarding the process
of merging pairs of points; (2) the estimation procedure for a four-
variable branched pathway and results of two cases where fluxes
contain more than one variable; and (3) the results of the method
for a five-variable system where different levels of artificial noise
were added to the time series data and sub-datasets were
randomly picked from data generated with ten sets of initial
conditions. [24,31-33].
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