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Abstract Fibrosis is defined as an excessive accumula-

tion of extracellular matrix components that lead to the

destruction of organ architecture and impairment of organ

function. Moreover, fibrosis is an intricate process at-

tributable to a variety of interlaced fibrogenic signals and

intrinsic mechanisms of activation of myofibroblasts. Be-

ing the dominant matrix-producing cells in organ fibrosis,

myofibroblasts may be differentiated from various types of

precursor cells. Identification of the signal pathways that

play a key role in the pathogenesis of fibrotic diseases may

suggest potential therapeutic targets. Here, we emphasize

several intracellular signaling pathways that control the

activation of myofibroblasts and matrix production.
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Introduction

Fibrosis, characterized by excessive accumulation of ex-

tracellular matrix (ECM) in and around inflamed or dam-

aged tissue, leads to tissue destruction,permanent scarring,

and organ malfunction [1••]. Although fibrotic conditions

may result from diverse causes, it is generally thought that

an initial injury activates a repair process that aims to re-

store the original tissue structure, and that a failure to

delicately regulate this process results in sustained fibrob-

last activation, matrix deposition, and tissue devastation

[2]. Fibrosis is part of progressively chronic diseases in

parenchymal organs throughout the body, and the fibrotic

process plays an essential role in the deterioration of these

organs [1••, 3••, 4]. Few effective therapies to halt tissue

fibrosis, or to reverse it, are available in clinical practice

[5••]. Consequently, it is important to thoroughly under-

stand the cellular and molecular mechanisms of fibroge-

nesis, not only to acquire novel insights into the

pathogenesis of the fibrotic process, but also to further

exploit efficient strategies to treat patients with fibrotic

disorders.

Fibrogenesis is a dynamic and progressive process in

which nonresolving inflammation following a persistent

injury sets the stage for fibrosis and triggers the activation

of matrix-producing myofibroblasts differentiated from a

variety of precursor cell types through different mechan-

isms, including activation of resident fibroblasts and peri-

cytes, phenotypic transition of epithelial and endothelial

cells, phenotypic modulation of vascular smooth muscle

cells, and recruitment of circulating multipotent monocytes

and fibrocytes [5••]. The mechanisms governing the fibrotic

process have been studied in great detail in the past years.

Regardless of the initiating event, a feature common to all

fibrotic diseases is the activation of myofibroblasts, key

mediators in fibrotic tissue remodeling. Once activated,

myofibroblasts produce and secrete components of ECM,

such as collagen and fibronectin [5••, 6•, 7•]. Because fi-

brogenesis may be evoked by a variety of stimuli, it is

conceivable that a diverse array of signaling networks and

mediators might be involved in regulating the progression
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of fibrosis. The scope of this review is limited to several

key intracellular signal transduction pathways that are

essential in controlling a host of transcription regulators

and signaling mediators that are necessary for fibrogenesis.

It is hoped that a precise delineation of these fibrotic sig-

naling cascades will yield further insights into the patho-

genesis of fibrosis and lead to the identification of novel

targets for therapy.

Smad Pathway: Canonical Pathway
of Transforming Growth Factor-b Signaling

Transforming growth factor-b (TGF-b) is a profibrotic

factor and a central mediator of fibrogenesis. The classical

Smad-dependent pathway for TGF-b signaling occurs

when TGF-b receptor type 2, which is constitutively active,

transphosphorylates and forms a complex with the TGF-b-
bound TGF-b receptor type 1. This complex then phos-

phorylates serine residues of cytoplasmic receptor-activat-

ed Smad (R-Smad), a complex of Smad2 and Smad3.

These two heterodimerize and bind to the common me-

diator Smad (Co-Smad) Smad4, and the whole complex

translocates across the nuclear membrane to interact with

specific cis-acting elements in the regulatory regions of its

target genes [8••], recruiting coactivators such as p300 and

CBP; corepressors such as c-Ski, SnoN, transforming

growth-inhibiting factor, and Smad nuclear-interacting

protein 1; or transcription factors such as AP-1 and Sp1 to

modulate gene expression [4]. Inhibitory Smad (I-Smad)

Smad6 or Smad7, acting as negative regulators, not only

antagonizes the TGF-b/Smad pathway by binding to TGF-

b1 or competing with activated R-Smad for binding to Co-

Smad, but also recruits the E3 ubiquitin–protein ligases

Smurf1 and Smurf2, which target Smad proteins for pro-

teasomal degradation, thereby blocking Smad2/3 activa-

tion, facilitating receptor degradation, and eventually

terminating Smad-mediated signaling [4, 8••, 9–11].

A large amount of evidence shows that Smad signaling

plays a crucial role in governing TGF-b-induced fibrosis. A

variety of genes for mediating myofibroblast activation and

epithelial–mesenchymal transition (EMT) are the down-

stream targets of TGF-b/Smad signaling, including con-

nective tissue growth factor (CTGF), Snail, a-smooth

muscle actin (a-SMA), collagen IA2, inhibitor of differ-

entiation 1 (Id1), Wnt, matrix metalloproteinase 2 (MMP-

2), integrin-linked kinase (ILK), b1-integrin, and PINCH-1

[12–15, 16•]. Mounting studies indicate that the canonical

Smad2/3 pathway induces transition of the increased

number of fibroblasts into active myofibroblasts and EMT,

and acts on the latter cells as transcriptional activators of

multiple ECM proteins as well as regulators of matrix ac-

cumulation [17].

The necessity of Smad signaling in fibrogenesis is

illustrated clearly in Smad3 knockout mice [4, 16•].

Mice lacking Smad3 are protected from bleomycin-in-

duced skin and lung fibrosis, dimethylnitrosamine-in-

duced liver fibrosis, renal interstitial fibrosis due to

unilateral ureteral obstruction, skin fibrosis following ir-

radiation, and cardiac fibrosis [18–23]. In addition,

Smad4-deficient mice also are protected from renal fi-

brosis after obstructive injury [8••, 24]. Conversely,

I-Smad, such as Smad7, counteracts TGF-b-induced fi-

brosis. Overexpression of Smad7 blocks bleomycin-in-

duced lung fibrosis and bile duct ligation-induced liver

fibrosis [25, 26]. Dysregulation of SnoN, Ski, or Smurf2

may give rise to deviant TGF-b/Smad signaling in the

pathogenesis of kidney fibrosis [27, 28].

Mitogen-Activated Protein Kinase Pathway: Erk,
p38, and Jnk

Besides activating the Smad-dependent pathway, TGF-b
also can signal in a noncanonical manner. One of the

Smad-independent pathways is the mitogen-activated pro-

tein kinase (MAPK) family. As the ubiquitous intracellular

serine/threonine kinases, MAPK family members can

transmit extracellular signals from cell surface receptors to

intracellular targets, ultimately activating or inhibiting

nuclear transcription factors and determining the cell’s fate

[4]. MAPKs contain three major subfamilies: the extra-

cellular signal-regulated kinases (Erk1 and Erk2), the p38/

MAP kinases (a, b, c, and d), and the stress-activated

protein kinases known as c-Jun N-terminal kinases (Jnk1,

Jnk2, and Jnk3). All three MAPK pathways may be acti-

vated by TGF-b, and signaling through these cascades can

further regulate the expression of Smad proteins and me-

diate Smad-independent TGF-b responses [9]. These three

MAPK pathways are all involved in TGF-b-induced fi-

brosis [8••, 9, 29, 30].

TGF-b induces phosphorylation on TGF-b receptors 1

and 2 and/or Shc, which recruit Grb2/Sos to activate Erk

through membrane-anchored Ras and downstream MAPK

cascades [8••, 31]. Depending on the cell type studied, the

activation of Erk can up- or down-regulate Smad signaling

activity, whereas Jnk or p38 generally promote TGF-b-
stimulated responses [4]. The TGF-b-Erk axis can mediate

the transcription of genes controlling the EMT process,

CTGF expression, and collagen I production by working

with the Smad-dependent pathway, whereas Erk also can

repress R-Smad activity through phosphorylation [4, 8••,

32, 33]. Together with Smads, the activated JnK/p38

pathways regulate TGF-b-induced fibroblast differentiation

into myofibroblasts [8••, 30].
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Phosphoinositide 3-Kinase Pathway: Akt/mTOR
and PAK2/c-Abl

The phosphatidylinositol 3-kinase (PI3K) pathway is an-

other non-Smad pathway contributing to TGF-b-induced
fibrosis. It induces two profibrotic pathways: Akt–mam-

malian target of rapamycin (mTOR) and p21-activated

kinase 2 (PAK2)/Abelson kinase (c-Abl) [4, 8••, 9, 34].

Akt is a serine/threonine kinase that can engage multiple

downstream signaling substrates and pathways. One of its

downstream targets is Tuberin [tuberous sclerosis complex

2 (TSC2)], which binds to hamartin (TSC1). TSC1 con-

tributes stability and prolongs the half-life of TSC2 within

this complex, and TSC2 becomes phosphorylated and

thereby inactivated. TSC2 functions as a GTPase-activat-

ing protein (GAP) specifically for Ras homolog enriched in

brain (Rheb) [17, 35]. Rheb exists in either an active or

inactive GDP-bound state, and Rheb–GTP activates target

of rapamycin complex 1 (TORC1) [36–38]. TORC1 con-

sists of several protein components, including mTOR itself,

the regulatory-associated protein of mTOR (Raptor), and

mLST [39, 40]. Active (nonphosphorylated) TSC2 con-

verts mTORC1-activating Rheb–GTP to Rheb–GDP. Thus,

active TSC2 is an inhibitor of mTORC1, and loss of TSC2

activity by phosphorylation increases mTORC1 activity.

This activates downstream substrates, including p70 S6

kinase (S6K), a translational activator of many proteins,

including cell cycle proteins, and hence, proliferation [17].

The Akt–mTORC1–P70S6K branch pathway contributes

to fibroblast proliferation and myofibroblast differentiation.

Abnormal activation of mTORC1 is involved in the

pathogenesis of fibrotic disorders. Activation of mTORC1

induced by TGF-b is essential for its profibrotic effects on

collagen production, whereas pharmacologic and genetic

manipulation that decreases mTORC1 activity prevents

fibrotic changes [17, 26, 41]. Rheb/mTORC1 signaling

may promote activation of kidney fibroblasts and con-

tributes to the development of interstitial fibrosis [38].

PI3K also acts as a branch point in response to TGF-b,
leading to activation of PAK2/c-Abl. The latter not only

stimulates collagen gene expression in normal fibroblasts,

but also induces fibroblast proliferation, thereby increasing

the number of myofibroblast precursors [42]. PAK2/c-Abl

promotes fibrosis through its downstream mediators, in-

cluding PKCd/Fli-1 and early growth response (Egr)-1, -2,

and -3 [8••, 43•, 44]. Unrestrained TGF-b activity might be

associated with aberrantly sustained c-Abl activation,

leading to Erk1/2-dependent upregulation and persistent

expression of Egr-1 in fibroblasts [45]. Sustained Egr-1

expression in target tissues in turn would induce or per-

petuate fibrotic responses. Activation of the c-Abl–Egr-1

pathway, presumably through PI3K and PAK2, represents

an important novel mechanism for mediating TGF-b re-

sponses in fibroblasts [45].

Rho GTPase Signaling Pathway

Rho GTPases, a subfamily of small GTP-binding proteins

belonging to the Ras superfamily, modulate the actin cy-

toskeleton. Their activity is regulated by Rho guanine nu-

cleotide exchange factors. The latter can interact directly

with Rho proteins, allowing exchange of GDP for GTP

[8••]. Rho is activated due to GTP-bound state and it can

interact with downstream effector proteins, most notably

Rho-associated, coiled-coil containing protein kinase

(ROCK) and mouse diaphanous-related formin 1 (mDia1),

which together initiate and stabilize actin stress fibers.

Mechanistically, mDia1 induces F-actin filament nucle-

ation, whereas phosphorylated ROCK regulates stabiliza-

tion of F-actin through multiple downstream target genes

[8••]. Hence, the amount of F-actin is increased, resulting

in a decrease in G-actin monomer-free myocardin-related

transcription factor (MRTF) to travel into the nucleus,

where it cooperates with serum response factor (SRF) to

induce gene transcription [8••].

Multiple target genes for MRTF/SRF are known drivers

of fibrosis, including CTGF, a-SMA, and collagen [46, 47].

SRF-mediated gene transcription is crucial for the induc-

tion and maintenance of myofibroblast differentiation [48–

50]. Of interest, Rho GTPase signaling with its downstream

gene transcription mechanism MRTF/SRF seems to play a

convergent role in pathways downstream of TGF-b,
lysophosphatidic acid (LPA), endothelin 1 (ET-1), and

integrins in fibrosis [8••]. It suggests that the Rho/MRTF/

SRF transcriptional pathway may be a therapeutic target

for fibrotic diseases [8••].

Canonical Wnt/b-Catenin Signaling

Wnt proteins deliver their signal across the plasma mem-

brane by interacting with Fizzled receptors and corecep-

tors, members of the LDL receptor-related protein 5/6.

Once Wnts bind to their receptors/coreceptors, they initiate

a chain of downstream signaling events implicating Di-

sheveled, axin, adenomatosis polyposis coli (APC), casein

kinase 1 (CK-1), and glycogen synthase kinase 3b (GSK-

3b), leading to dephosphorylation of b-catenin [16•]. Es-

caping from degradation mediated by the ubiquitin/pro-

teasome system stabilized b-catenin accumulates in the

cytoplasm and translocates into the nuclei, where it inter-

acts with its DNA-binding partner, known as T cell factor

(TCF)/lymphocyte enhancer-binding factor 1 (LEF1), to
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stimulate the transcription of Wnt target genes [2, 16•, 51].

Wnt/b-catenin is an evolutionarily conserved cellular

signaling system that plays an essential role in a diverse

array of biologic processes, such as organogenesis, tissue

homeostasis, and the pathogenesis of many human diseases

[16•]. The contribution of Wnt/b-catenin signaling to fi-

brogenesis is becoming increasingly clear. Several studies

suggest that the aberration of components of this pathway

that fine-tunes the signaling is an essential driver of b-
catenin-mediated fibrosis in fibrotic diseases. Activation of

Wnt/b-catenin signaling has been reported in skin, kidney,

liver, lung, and cardiac fibrosis [1••, 2].

With regard to cellular targets, several in vitro studies

show that activation of Wnt/b-catenin signaling enhances

proliferation, migration, and matrix production in human

dermal fibroblasts, suggesting a key role for this signaling

pathway in fibroproliferation and differentiation of fibrob-

lasts into myofibroblasts [52, 53]. In addition to fibroblasts,

epithelium is a notable target of Wnt/b-catenin signaling.

In vivo, b-catenin is upregulated predominantly in renal

tubular epithelium in fibrotic kidneys, and in vitro, acti-

vation of b-catenin in tubular epithelial cells induces EMT

as well as the expression of several fibrosis-related genes,

such as Snail1, plasminogen activator inhibitor 1 (PAI-1),

MMP-7, and fibronectin [54, 55•, 56–58]. Likewise, acti-

vation of Wnt/b-catenin signaling is involved in mediating

podocyte EMT, podocyte dysfunction, and glomeruloscle-

rosis [59•]. Furthermore, many b-catenin target genes are

key EMT regulatory transcription factors and mediators,

including Snail, Twist, LEF1, and Jagged1 [16•]. Interest-

ingly, recent studies demonstrate that tubular b-catenin can

control the fate of interstitial fibroblasts via MMP-7-me-

diated epithelial–mesenchymal communication in renal fi-

brosis after obstructive injury [58]. Besides the

aforementioned cell types, several studies indicate that a

multipotent adipogenic progenitor that can be changed

toward a fibrotic phenotype may be a critical target of Wnt/

b-catenin signaling in fibrotic diseases [2]. By inhibiting

adipogenic transcription factors CCAAT/enhancer-binding

protein a and peroxisome proliferator-activated receptor c
[60], Wnt/b-catenin signaling antagonizes adipogenic gene

expression and promotes dedifferentiation toward a phe-

notype of myofibroblast in both hepatic lipofibroblasts [61]

and 3T3-L1 cells [2, 62].

Increasing evidence exists regarding crosstalk between

Wnt/b-catenin and TGF-b. Wnt/b-catenin signaling can

upregulate expression of TGF-b1 [52, 63], and TGF-b1 can
activate b-catenin [56, 63, 64]. Smad3 knockout mice

display less b-catenin activation, whereas a lack of b-
catenin attenuates the ability of TGF-b to promote prolif-

eration in fibroblasts [63]. b-Catenin and TGF-b can syn-

ergize to coregulate the same genes via Smad and TCF-

binding sites within the promoter [65]. Although it is

unclear whether Wnt/b-catenin signaling simply col-

laborates with the profibrotic factor TGF-b to promote

matrix synthesis and assembly or it primarily governs cell

fate decisions leading to abundant myofibroblasts through

differentiation or transition from various other cell types

during fibrogenesis, it is exciting to see that pharmacologic

inhibition of Wnt/b-catenin signaling by different ap-

proaches is protective, resulting in amelioration of tissue

fibrosis in models of fibrotic disease [2, 54, 58, 66•, 67, 68,

69•].

Sonic Hedgehog Signaling

Hedgehog signaling is a highly conserved signaling path-

way that orchestrates multiple aspects of embryogenesis,

development, and tissue remodeling in a wide spectrum of

systems [70, 71]. Hedgehog transmits its signaling by

binding to the plasma membrane receptor, Patched (Ptc). In

the absence of hedgehog, Ptc keeps the coreceptor

Smoothened (Smo) in its inactive form and silences the

Smo-dependent downstream intracellular signaling. When

the extracellular microenvironment is enriched with sol-

uble hedgehog, the interaction of hedgehog and Ptc leads to

Ptc internalization and degradation, resulting in the dere-

pression of Smo. Activated Smo moves from an intracel-

lular vesicle to the cell membrane [72•], leading to an

intracellular signaling cascade that ultimately drives the

activation and nuclear translocation of glioblastoma (Gli)

family zinc-finger transcription factors. The binding of Gli

proteins to their cognate cis-acting elements regulates the

expression of hedgehog target genes [73]. Gli1 and Gli2

mostly are responsible for providing prolonged cellular

responses to hedgehog, whereas Gli3 primarily acts as a

signaling repressor [74, 75]. Direct targets of hedgehog

signaling contain several components in its own pathway,

such as Ptc, Smo, Glis, and hedgehog-interacting protein 1,

thereby providing both positive and negative feedback to

ensure the delicate regulation of the pathway [72•, 76].

Among the three vertebrate hedgehogs, sonic hedgehog

(Shh) is the best characterized and most widely studied.

Shh signaling has been implicated in the regulation of in-

jury repair and wound healing after tissue damage [72•,

77•]. Shh expression is upregulated in chronic fibrotic lung

diseases, and the Shh signaling pathway may be involved

in the remodelling of damaged pulmonary epithelium [78].

In mouse cholangiocytes, coculture with myofibroblastic

hepatic stellate cells, a source of Shh, promotes EMT and

cell migration, whereas addition of Shh-neutralizing anti-

bodies to cocultures blocks these effects. Moreover, mice

haploinsufficient for the Shh inhibitor Ptc exhibit increased

Shh signaling activity, and their livers show enhanced fi-

brogenesis after bile duct injury and elevated expression of
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Gli2 and several mesenchymal markers [74, 79]. Thus,

activation of Shh signaling promotes EMT and contributes

to the evolution of biliary fibrosis during chronic

cholestasis [74, 79]. In a mouse model of obstructive

nephropathy, Shh is induced predominantly in renal tubular

epithelium but targets interstitial fibroblasts. Either genetic

Gli1 ablation or pharmacologic inhibition of Smo at-

tenuates matrix gene expression and mitigates renal fibrotic

lesions. This epithelial–mesenchymal communication,

mediated by Shh/Gli1 signaling, probably plays a crucial

role in the pathogenesis of renal fibrosis [72•].

Shh signaling elicits its action by regulating the tran-

scription of its target genes [72•, 76]. The best-characterized

direct target and downstream mediator of Shh is Gli1; an-

other is Snail1, a key transcription factor for mediating EMT

and fibroblast migration. Besides regulating its target genes,

Shh might directly control the expression of a battery of

fibrogenic genes, such as a-SMA, fibronectin, collagen I,

and desmin, genes directly involved in myofibroblast acti-

vation and matrix production [72•]. It is worthwhile to note

that through crosstalk with Wnt/b-catenin signaling and

Notch signaling, Shh signaling can act in concert with other

fibrogenic signaling pathways as well [76, 80], and the ex-

pression of Snail1 may be induced by both Wnt/b-catenin
and Shh signaling [54, 59•, 72•]. Consequently, targeting

Shh signaling might be a promising strategy for therapeutic

intervention in a variety of fibrotic diseases.

Notch Signaling

Notch proteins are single-pass transmembrane receptors

with conserved expression among animal species during

evolution. Their principal function is the regulation of

many developmental processes, including proliferation,

differentiation, and apoptosis. Mammals possess four dif-

ferent Notch receptors, referred to as Notch1–4. The Notch

receptor consists of an extracellular domain, which is in-

volved in ligand binding, and an intracellular domain that

works in signal transduction. Notch ligands also are single-

pass transmembrane proteins named Jagged (Jag1 and 2)

and Delta (Dll1, 3, and 4) [81, 82]. Activation of this

signaling pathway requires cell–cell contact. Interaction of

ligands with the Notch receptors triggers a series of pro-

teolytic cleavages, by a metalloprotease of the ADAM

family (TACE; tumor necrosis factor-a-converting en-

zyme) and finally by the c-secretase complex. The final

cleavage leads to the release of Notch intracellular domain

(NICD), which travels to the nucleus and binds to other

transcriptional regulators (mainly of the CBF1/RBP-Jj,
SU(H), Lag1 family) to trigger the transcription of the

target genes, classically belonging to the Hes and Hey

family. This core signal transduction pathway is used in

most Notch-dependent processes and is known as the

canonical pathway [81, 83••, 84].

During the past few years, activation of Notch signaling

has shown fibrogenic effects in a wide spectrum of dis-

eases, including systemic sclerosis (SSc) [85•, 86], scle-

roderma, idiopathic pulmonary fibrosis (IPF) [87], kidney

fibrosis [81, 88, 89], and cardiac fibrosis [83••].

Activated Notch1 and an elevated level of NICD are

found in the lesional skin of SSc patients and in the skin

and lungs of mouse models with SSc. Blocking the release

of NICD with a c-secretase inhibitor or treating SSc mice

with Notch siRNA may reduce the collagen content in the

skin and lungs [85•, 86, 90]. Activation of Notch signaling

has major implications on fibroblast activation in SSc.

Stimulation of SSc fibroblasts with a recombinant Jag-1-Fc

chimera results in their differentiation into myofibroblasts

overexpressing a-SMA and producing large amounts of

ECM, whereas pharmacologic blockade of Notch signaling

normalizes the proliferation rate of dermal fibroblasts ex-

tracted from lesional skin [85•, 90].

Activation of Notch signaling is associated with abnormal

differentiation of respiratory epithelial cells in progressive

IPF or secondary pulmonary fibrosis as observed in SSc. Hes-

1, aNotch target gene, is upregulated in lungmucus cells from

patients with chronic obstructive pulmonary disease, idio-

pathic pulmonary arterial hypertension, and IPF [87]. Acti-

vation of Notch signaling is critical for lung fibroblasts to

differentiate into myofibroblasts. In bleomycin-induced lung

fibrosis, Notch is indispensable in the upregulation of a-SMA

induced by FIZZ1 (found in the inflammatory zone), a cys-

teine-rich secreted protein with fibrogenic properties, thus

triggering the differentiation of fibroblasts into myofibrob-

lasts [91].Activation ofNotch signaling induces expressionof

a-SMA, collagen I, and vimentin in alveolar epithelial cells in

rats with lung fibrosis, which suggests that this signaling is

involved in the EMT process, and Notch-mediated induction

of Snail1 is required for TGF-b1-induced EMT in human

alveolar epithelial cells [92, 93].

The participation of Notch in chronic kidney disease

(CKD) has been studied in detail. Elevated levels of Notch

ligands and receptors are detected in several glomerular

diseases and tubulointerstitial fibrosis [81, 88, 89]. Either

genetic deletion of a Notch transcriptional partner (CBF1),

specifically in podocytes and tubular cells, or pharmacologic

blockade of the Notch pathway with a c-secretase inhibitor
protects against glomerular injury and tubulointerstitial fi-

brosis in vivo [81]. Overexpression of Notch in renal tubular

cells is necessary and sufficient for tubulointerstitial fibrosis

development, and upregulation of Notch1 NICD (NICD1)

increases ECM production in cultured tubular cells [94•].

NICD1 promotes tubulointerstitial fibrosis and glomeru-

losclerosis when overexpressed conditionally in tubular cells

and podocytes in vivo, respectively [88, 95].
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Integrin-Linked Kinase Signaling

Abundant studies demonstrate that integrin signaling plays

a critical role in the production and assembly of matrix

proteins. Integrins are a family of heterodimeric trans-

membrane receptors containing a and b subunits. Integrins

integrate signals between cells and their extracellular en-

vironment by connecting the cytoskeleton to the ECM.

Because they have no enzymatic or actin-binding activity,

integrins transmit their signals by activating their down-

stream effector kinases, focal adhesion kinase (FAK), and

integrin-linked kinase (ILK) [5••, 16•, 96].

ILK can integrate and mediate several different intracel-

lular signals associated with fibrogenesis, mainly because it

is both a scaffolding protein and a serine/threonine protein

kinase. Ectopic expression of ILK directly phosphorylates

GSK-3b, then the inactivation of GSK-3b leads to stabi-

lization of Snail1 and b-catenin. Snail1 regulates EMT and

fibroblast motility, whereas b-catenin directly governs the

transcription of fibronectin and PAI-1. On the other hand, as

a scaffolding protein, ILK assembles a multicomponent

protein complex that contains ILK, PINCH, and parvin [5••,

14, 97]. These characteristics of ILK enable it to bridge the

integrins, actin cytoskeleton, and other growth factor signal

cascades [5••]. It is worth noting that the integrity and ac-

tivity of this complex are necessary for ECM production,

because either inhibition of ILKactivity or destruction of this

complex attenuates ECM expression, deposition, and ex-

tracellular assembly [14, 96, 98, 99]. Several critical fibro-

genic signals induce ECM production by regulating this

complex. For instance, TGF-b1 promotes induction of b1-
integrin, ILK, and PINCH1, as well as their assembly. CTGF

binds to both integrins and LDL receptor-related protein 1

(LRP1), resulting in the activation of ILK and production of

matrix components. PDGF and FGF2 signaling are poten-

tially linked to this complex via PINCH1. Tissue-type

plasminogen activator promotes collagen I expression by

triggering LRP1-mediated b1-integrin recruitment and ILK

activation. Angiotensin II induces TGF-b1 expression, ac-

tivates Smad signaling, and induces b1-integrin and ILK

expression. Therefore, this molecular complex functions as a

platform that integrates various fibrogenic signals and con-

trols ECM production [5••].

Conclusion

Given the diversity of known fibrogenic mediators, the

intracellular signal cascades involved might be immensely

complex, with almost immeasurable crosstalk and feed-

back. In essence, the activation of major fibrogenic sig-

naling mentioned earlier is characteristic of various fibrotic

diseases. During the past decade, our understanding of the

profibrotic mechanisms of these signaling pathways has

evolved and improved considerably. It seems intriguing

and meaningful to identify some of the converging mole-

cular machineries that integrate various signal inputs and

control the transcriptional program for myofibroblast acti-

vation and matrix production. Because several strategies to

target key profibrotic mediators and signaling pathways to

block the process of fibrosis are effective in different ani-

mal models and clinical trials [1••, 5••, 100••, 101••],

therapeutic strategies based on these observations will

bring new hope to clinicians and patients in the future.
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