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Notch Signaling in the Bone
Marrow Lymphopoietic Niche
Kilian Sottoriva and Kostandin V. Pajcini*

Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago,
IL, United States

Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells
that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-
natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive
studies have been devoted to identifying the niche that maintains HSPC homeostasis and
supports hematopoietic potential. The Notch signaling pathway is required for the
emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic
development, but its role in BM HSC homeostasis is convoluted. Recent work has
begun to explore novel roles for the Notch signaling pathway in downstream progenitor
populations. In this review, we will focus an important role for Notch signaling in the
establishment of a T cell primed sub-population of Common Lymphoid Progenitors
(CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact,
Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic
niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific
role for Notch activation in early T cell development and what this means to the paradigm
of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute
lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream
lymphoid signals in the pathological BM niche.
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INTRODUCTION

Notch signaling is a highly conserved pathway activated through cell-to-cell, ligand-receptor
interactions. There are five Notch ligands in mammals: Delta like (Dll) 1, 3 and 4 and Jagged
(Jag) 1 and 2 which are presented on the surface of multiple cells and tissues (1). When the ligand
interacts with one of the 4 mammalian Notch receptors, (Notch1-4) a series of proteolytic cleavages
releases the Notch receptor from the plasma membrane (2). Subsequently, the intracellular Notch
(ICN) domain translocates to the nucleus, where it binds to Recombining Binding Protein
Suppressor of Hairless (RBP-J) and co-activator Mastermind-like (MAML) (2, 3). Ultimately, it
is this tri-molecular complex that binds to enhancer and promoter elements to initiate
transcriptional activation of target genes. Along with Wtn, Hedgehog, and Bone Morphogenic
Peptide/TGF- b, Notch signaling is one of the fundamental pathways essential for mammalian
embryogenesis (4). Notch signaling plays a multitude of roles in the differentiation, proliferation,
self-renewal, and survival in diverse cell types across many tissues (5). Particularly well studied are
the roles of Notch1 in somite segmentation (6, 7), in angiogenesis and vascular development (8, 9),
org July 2021 | Volume 12 | Article 7230551

https://www.frontiersin.org/articles/10.3389/fimmu.2021.723055/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.723055/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:kvp@uic.edu
https://doi.org/10.3389/fimmu.2021.723055
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.723055
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.723055&domain=pdf&date_stamp=2021-07-28


Sottoriva and Pajcini Notch in Bone Marrow Lymphopoiesis
and the emergence of the definitive hematopoietic stem cell (HSC)
in the aorta-gonad-mesonephros (10, 11). In the post-natal murine
BM, HSC cell-autonomous and non-cell-autonomous Notch
signaling has been implicated in several contexts including aging,
regeneration, and mobilization, reviewed in these studies (12–15).
Though loss-of-function studies in adult mice do not support a
requirement for HSC cell-autonomous Notch activation during
homeostasis (16, 17) and in one more recent study in regenerative
hematopoiesis (18), Notch signaling has been implicated in the
development of several different blood lineages, including
megakaryocytes (19), NK cells (20), and erythrocytes (21). Yet, it
is the role of Notch signaling in the cell fate determination of the T
cell lineage that remains as the archetypic functionof thepathway in
adult hematopoiesis (22, 23).

The developmental progression from the BM HSC to the
production of functional peripheral T cells is physiologically
continuous but can be delineated using surface markers and
expression of key transcriptional regulators. In both mouse and
human, BM lymphoid progenitors give rise to thymic precursors,
which progress through well-defined developmental stages in the
thymus to become naïve T cells (24). Progression through
distinct stages of thymic T cell development requires the
careful coordination of several lineage regulatory transcription
factors, including: Ikaros, Gfi1, Myb, Runx family proteins, E2A,
HEB, TCF1, GATA3, Bcl11b, LEF1, and of course Notch1 (25).
In the thymus, the roles of Notch signaling have been well
studied. After homing to the thymus, early progenitors activate
Notch signaling, which is required for thymocyte development
(26–28). Notch is implicated in a variety of functions such as
inhibition of progenitor apoptosis, induction of T cell lineage
master regulators Gata3, Tcf7, and Bcl11b, as well as activation of
genes involved in functional T cell receptor (TCR) production
such as Ptcra (29–31). Notch signaling becomes dispensable for
T cell differentiation after b-selection occurs, at which point
subsequent development is dependent on signals from the pre-
TCR complex (29, 32). Themain receptor expressed by thymocytes
is Notch1, while the major Notch ligand expressed by cortical
Thymic Epithelial Cells (TECs) is Delta-like 4 (Dll4) (30, 33).
While the role of Notch in T cell development in undeniable, the
temporal and spatial aspects of the first requirement for Notch in
driving T cell fate have not been fully established. Recently, several
findings have begun to address this issue by suggesting that pre-
thymic Notch signals influence the ability of primitive BM
lymphoid progenitors to produce thymus-seeding cells (18, 34,
35). Here, we will review the work which encompasses our current
understanding of the BM populations that give rise to thymic
progenitors, and the role of Notch signaling as a niche
component in driving this process. Under this new paradigm of
pre-thymicNotch activation, wewill then examine the pathological
Notch-dependent mechanisms of the lymphoid niche in the
leukemic BM environment.
BM THYMOCYTE PROGENITORS

In adult mammals, the hematopoietic system is maintained via the
production offunctional blood cells and hematopoietic progenitors
Frontiers in Immunology | www.frontiersin.org 2
by self-renewingHSCs in the BM (36). The BMmicroenvironment
is composed of osteoprogenitors, stromal cells, endothelial cells,
and multiple hematopoietic cell types (Figure 1) (37, 38). At the
apex of BM hematopoiesis is the HSC, which is defined best by its
self-renewal and functional capacity to produce all the lineages of
blood rather than by a specific set of markers. Even so, for isolation
purposes the HSC has been classified by surface markers as Lin-

cKit+Sca1+CD150+CD48- (39), by thepresenceof effluxpumps (40)
and by the expression of intracellular proteins includingHoxb5 and
a-catulin (41, 42). Next in the hematopoietic hierarchy are the
HSPCs, which in murine hematopoiesis are generally classified by
the combinationof Lin-cKit+Sca1+ andbecome increasingly lineage
committed. This differentiationpotential arises at the expense of the
capacity to self-renew (43, 44). As the HSPCs gain lineage specific
potential, they begins to express surface proteins which have been
used to define specific progenitor populations in the BM, termed
Multipotent Progenitor Populations (MPP) (45–47).

In the case of early BM lymphopoiesis, several progenitor
populations have been described. Cells within the HSPC pool
which express the tyrosine kinase receptor Fms-like tyrosine
kinase 3 (Flt3) have been labeled as lymphoid-primed MPPs
(LMPP), also termed MPP4 (45, 48–50). LMPP lineage output is
functionally distinct from myeloid biased MPP2 (Flt3-

CD48+CD150+) and MPP3 (Flt3-CD48+CD150-) populations
as determined via murine transplantation experiments (50).
LMPPs were shown to have equivalent B and T cell potential,
retain some granulocyte and monocyte potential, but lack the
ability to produce erythroid and megakaryocyte lineages (49, 51).
LMPPs can be further segregated into lymphoid biased cells
through expression of a selection of surface proteins. The
Interleukin 7 receptor (IL7r), which is required for lymphoid
development, is expressed on a subset of LMPPs which efficiently
generate T cells and innate lymphoid cells in a murine
transplantation setting (52, 53). L-selectin (CD62L) is involved
in the trafficking of naïve lymphocytes to peripheral lymphoid
organs by binding to a selection of different glycan residues and
can be used to specify T lineage progenitors in the BM (54–57).
Expression of CD62L separates LMPPs which have transient B
cell potential and can yield rapid thymocyte production, but lack
the ability to produce cells of myeloid lineages (58). Furthermore,
CD62L upregulation has been shown to be an early event in the
lymphoid priming of human BM progenitors (59).

Additionally, Vascular Cell Adhesion Molecule 1 (VCAM1)
and Flt3 expression can be used to segregate MPPs with
combined lymphoid/myeloid (Flt3hiVCAM1+), erythroid
(Flt3loVCAM1+), or B and T cell potential (Flt3hiVCAM1-)
(60). VCAM1 is a cell adhesion molecule with roles in vascular
adhesion and transendothelial migration of leukocytes (61, 62).
Originally identified on the surface of endothelial cells (63, 64),
VCAM1 has since been found to be expressed on the surface of
multiple cell types including hematopoietic progenitors,
macrophages, and BM fibroblasts (65). It is through ligand
binding, specifically the a4b1 integrin (CD49d/CD29) and
a4b7 integrins expressed on the surface of leukocytes, that
VCAM1 mediates adhesion and transmigration of T cells and
macrophages (61, 66). The VCAM1- LMPP population in the
BM homogeneously expresses Flt3, and expression of C-C
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chemokine Receptor type 9 (CCR9), which also is suggested to
play a major role in the recruitment of BM derived cells to the
thymus, further delineates a subset of T cell progenitors (67–69).
Taken together, MPPs expressing Flt3, IL7r, CD62L, CCR9 and
lacking VCAM1 appear to be the main HSPC component
contributing to B and T cell development.

Downstream of the LMPP population, the Common
Lymphoid Progenitor (CLP), which in murine hematopoiesis is
isolated by surface markers Lin-cKitLoSca1LoFlt3+IL7r+,
represents a canonical branching point between myeloid and
lymphoid development and is restricted for lineage production of
Natural Killer (NK), B cell and T cell development (70). IL7
signaling is critically involved in BM B cell and thymic T cell
lymphopoiesis, and the CLP population is defined by IL7r
expression (70–72). Surface expression of Lymphocyte Antigen
6 Family Member D (Ly6D) can be used to divide the CLP
population into those with T cell biased potential (Ly6D-) and B
cell biased potential (Ly6D+) (73–75). Downstream of the CLP in
Frontiers in Immunology | www.frontiersin.org 3
bone marrow NK development is the Pre-Natural Killer
Progenitor (Pre-NKP) and Refined Natural Killer Progenitor
(rNKP) (76). In B cell development, the CLP differentiates into a
series of BM sub-populations traditionally referred to as the Hardy
Fractions (43), of which Fraction A (B220+CD43+CD24−BP-1-) is
immediately downstream of the CLP (77–79). The next well-defined
downstream T cell lineage progenitor of the CLP is the early T
lineage progenitor (ETP), which is the earliest T cell progenitor in
the thymus (80, 81).

While both LMPPs and CLPs possess T cell lineage potential,
efforts to determine the exact BM progenitor population which is
the Thymic Seeding Progenitor (TSP) have yielded conflicting
reports. Although transplantation of CLPs yields thymus
engraftment and thymopoiesis, Ikaros-deficient mice have been
shown tohave thymicETPswithout a detectableCLP population in
the BM (82, 83). Additionally, IL7r+ LMPPs can generate
thymocytes in a CLP-independent manner post-transplant (53).
A potential resolution for this issue has been proposed during
FIGURE 1 | The BM niche for pre-thymic T cell progenitor development. LMPPs and CLPs reside in the endosteal niche. Notch, IL7r, and CXCR4 ligands are
derived from the osteoblastic and stromal niche, while SCF is provided from peri-arteriolar cells. Flt3L is provided by mature immune cells. Overall, these signaling
pathways converge to stimulate lymphoid progenitors to the T cell lineage.
July 2021 | Volume 12 | Article 723055
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pre-natal thymopoiesis, where TSPs are produced in two separate
waves, the first of which resembles CLPs and a second resembling
LMPPs (84). However, a caveat to these findings is the use of
transplantation to determine functional kinetics of TSP generation,
which requires removal of these BM resident populations and
injection into a recipient’s bloodstream. Thus, while TSP
generation is determined in vivo, the path of the populations in
question from the BM to the bloodstream and finally the thymus is
in the form of a transplant and does not necessarily mimic natural
BM egress and thymic homing. This a principle commonly seen in
HSCstudies,where ithasbeenrecognized that transplantation leads
to oligoclonal dominance that does not reflect unperturbed
hematopoiesis (85, 86). In order to more accurately determine the
BM source for TSP generation, additional methods such as in vivo
lineage tracing and single cell RNA sequencing should be applied,
such as in recent work which unveiled direct production of
megakaryocyte progenitors (MkP) from long term HCSs (LT-
HSCs) (87). Thus, while the exact BM population for TSP
generation has yet to be specifically determined, both the LMPP
and CLP populations remain viable sources.
PRE-THYMIC NOTCH SIGNALING
IN LYMPHOPOIESIS

Notch signaling is essential for T cell development as shown by
the seminal loss-of-function studies by Radtke F et al. (28).
However, similar loss of function experiments that deleted the
DNA binding member of the trimolecular complex RBPJ (88–
90) as well as pan-Notch inhibition with a Mastermind
truncation named dominant-negative Mastermind (dnMAML)
(17) all indicated that loss of Notch signaling in the BM HSC
population had no effect on HSC homeostasis in adult mice.
However, as we have described above, several stages of progenitor
differentiation occur between the HSC in the BM and the
emigrating TPS. The critical temporal question is whether Notch
signaling is activated and required for development of the LMPP,
CLPor the ETP. Early insight into the role ofNotch inBMT lineage
lymphopoiesis can be found in studies which showed that the CLP
population expresses Notch1 at the mRNA level, and that Notch1
deficient CLP cells erroneously differentiate into B cells in the
thymus (91, 92). BM cells transduced with dnMAML failed to
produce ETP cells post-transplant, once again hinting at a pre-
thymic role for Notch in ETP generation (26). It was further
observed that CCR9+ T cell biased MPPs have the potential to
activate Notch signaling (68). To determine the expression of
individual Notch receptors in HSPC populations, an in vivo
lineage tracing system has been developed. Cre-recombinase was
“knocked into” the individual loci for Notch1-4, which allowed for
determination of receptor expression using a fluorescent Cre-
reporter mouse strain. This system revealed Notch1 expression in
LMPPs, Notch1 andNotch2 expression in CLPs, and an absence of
Notch3 or Notch4 in either population (21).

Abrogation of Notch signaling in the BM through inhibition
or genetic deletion of Notch receptors or ligands has indicated a
role for Notch-dependent T cell progenitor development in the
Frontiers in Immunology | www.frontiersin.org 4
BM. Injection of Notch ligand Dll4 neutralizing antibodies,
which have been shown to block ligand specific signaling, leads
to a decrease in the BM CLP population (93, 94). Consistently,
deletion of either Notch ligand Dll4 or Mindbomb (Mib), which
is involved in Notch ligand endocytosis, in Osteocalcin (Ocn)
expressing bone cells led to a significant decrease in the CLP
population (34, 95). Similar results were obtained when either
RBP-J or GDP-fucose protein O-fucosyltransferase 1 (POFUT1)
were deleted from BM hematopoietic progenitors (34, 96). The
CLP defect observed after conditional deletion of osteoblastic
Dll4 underscores the potential existence of an osteoblastic niche
for Notch-dependent priming of BM lymphoid progenitors
(Figure 1). Indeed, it has been shown that C-X-C Motif
Chemokine Ligand 12 (Cxcl12) derived from osteoblasts, and not
endothelial or hematopoietic cells, is required for CLP and LMPP
maintenance in the BM niche (97). The osteoblastic niche has also
been implicated in BM B cell progenitor development, through
stimulation of HSCs towards the lymphoid lineage via Gsa
dependent osteoblast IL7 production (98–100). Peri-arteriolar
LEPR+Osteolectin+ cells have also been shown to stimulate CLP
development through secretion of SCF (Figure 1) (101). This
osteoblast-derived SCF secretion decreases in aged mice which
have an imbalance in blood lineageoutputwith a propensity toward
myeloid populations (101, 102).

While there is mounting evidence supporting the osteoblastic
microenvironment as a lymphoid sub-niche in the BM, there are
also reports that implicate different niche cells in the priming of
lymphoid progenitors. For example, endothelial cells which express
high levels ofNotch ligandsDll4 and Jag1 (103)havebeen suggested
as an alternative niche for lymphoid progenitor development.
Deletion of endothelial expression of Dll4, but not Dll1, leads to a
decrease in the frequencyofCLPcells,withnoeffecton theLMPP in
the BM (104). However, a direct contribution of endothelial Notch
ligand to CLP Notch receptor activation was not shown, and the
potential mechanism of CLP depletion was myeloid skewing of
upstream HSCs. Additionally, conditional deletion of Cxcl12 in
endothelial cells lead to specific depletion of HSCs in the BM, not
lymphoid progenitors (97). Furthermore, deletion of SCF derived
from peri-arteriolar LEPR+ cells, and not arteriolar or sinusoidal
endothelial cells, depleted CLP cells in the BM (101, 105, 106).
Taken together these experiments do not support a direct
contribution of endothelial derived factors in lymphoid
progenitor maintenance during steady-state hematopoiesis in the
adult mouse bone marrow.

In most circumstances, the proposed endothelial niche, be it
sinusoidal or peri-arterial (101), has been shown to sustain
stemness and support self-renewal of HSCs or HSPCs, which
by virtue of their hierarchical position in BM hematopoiesis yield
more downstream progenitors including CLPs (107, 108). This is
evident in several experiments where regenerating or expanding
endothelial compartments produce more HSCs and by
connection more lineage specific progenitors (109–112).
Because Notch signaling is essential for endothelial growth and
regeneration, and because the endothelium is a primary niche for
HSCs, the effects observed in the CLP compartment could be
attributed to an increase in the general abundance in HSC
July 2021 | Volume 12 | Article 723055
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numbers. Disassociation of the intrinsic role of Notch signaling
in arterial cell fate and endothelial function must first be shown
to determine if endothelial cells represent the key components of
the BM lymphopoietic niche.

Hematopoietic derived signals have also been shown toplay a role
in CLP homeostasis. Flt3 and Flt3-Ligand (Flt3-L) regulate both
myeloid and lymphoid hematopoiesis, and Flt3-L knock-out mice
havea severedefect inCLPgeneration(113,114). Interestingly,Flt3-L
has been shown to be produced in the BM by immune cell
populations, including CD4+ memory T cells, rather than stromal,
endothelial, or osteoblastic niche cells (115, 116). Although a role for
Notch inregulationofFlt3 inhomeostatic lymphopoiesishasyet tobe
established, canonical Notch target Hes1 transcriptionally represses
Flt3 expression in Acute Myeloid Leukemia (AML) (117).
Additionally, lymphoma/leukemia-Related Factor (LRF), which
plays a role in erythroid and late lymphoid lineage decisions,
downregulates Dll4 in BM erythroblasts, thus preventing a Notch1
dependent increase inCLPgeneration at the expense of theHSCpool
(118–120).

Confirmation of the existence of the lymphopoietic sub-niche in
the BMhas been supported by other studies that have shown a cell-
intrinsic role for Notch receptor activation in BM lymphoid
development. Hematopoietic LRF expression promotes proper B
cell development through suppression of Notch signals in CLPs,
andhematopoietic deletion ofLRF leads to enhancedNotch activity
and extra-thymic CD4+CD8+ T cell generation in the BM (121).
Hypomorphic Notch signaling achieved by deletion of the Notch1
Transcriptional Activation Domain (TAD) showed a significant
decrease in CLP abundance in the BM (18, 122). Furthermore, an
inducible RBPj on/off genetic mouse model has confirmed a role of
pre-thymic Notch signaling. Specifically, Notch signaling through
RBPj is involved inCD62L+ LMPP generation, with no effect in the
T cell primed Ly6D- CLP (35). Collectively, these findings
confirm a cell-intrinsic role for Notch signaling in pre-thymic
T cell progenitor development in the BM microenvironment.
MECHANISMS OF NOTCH IN
CLP DEVELOPMENT

The activation of the Notch receptor is only the first step in the
signaling pathway that eventually leads to transcriptional
activation of target genes. While a direct role for Notch
signaling in pre-thymic progenitor development is evident, the
cell intrinsic mechanisms that prime T cell development
downstream of Notch in the BM are unknown. A possible
mechanism involves the regulation of receptors that are
important for cellular migration and tissue retention. Recently,
a genetic mouse model for inducible deletion and subsequent
inducible expression of RBPj in vivo has been developed (35). In
this model, floxed Rbpj can be conditionally deleted through an
inducible Vav-Cre transgene, while a tetracycline responsive
element-controlled hemagglutinin (HA)-tagged RBPJ transgene
can be induced via doxycycline (Dox) injection. RNA sequencing
of LMPP cells isolated from Rbpjf/+ control, RBPj knock-out, and
Dox induced RBPj-HA expressing mice suggested that PSGL1,
Frontiers in Immunology | www.frontiersin.org 5
CCR7, and CCR9 are regulated by Notch signaling in the CD62L+
LMPP population (35). Additionally, deletion of Dll4 in the
osteoblastic niche lead to a decrease in CLP cells expressing
CCR7 and P-selectin glycoprotein ligand-1 (PSGL1) (34).
PSGL1, CCR7 and CCR9 are all involved in the recruitment and
migration of BM derived progenitor cells to the thymus (69, 123,
124). However, Notch signaling has also been shown to directly
repress CCR9 expression in fetal liver derived T cell progenitors
produced via co-culture with stromal cells expressing Dll1 (125).
The caveat of fetal progenitor acclimation to ex vivo co-culture
conditions could account for these contrary results. Overall, these
observations highlight the possibility that Notch activation in BM
lymphoid progenitors prepares cells for thymic migration through
induction of genes involved in thymic homing.

Another chemokine pathway involved in BM hematopoiesis
is CXCR4/CXCL12, which regulates migration, survival, and
quiescence of various progenitor populations (126–130).
CXCL12 is expressed by several cell types in the BM, including
endothelial cells, osteoblasts, stromal cells, and hematopoietic
cells (131). Interestingly, stromal CXCL12 production and HSC
release from the BM have been shown to be influenced by
circadian neural release of noradrenaline, which activates
AdrB3 receptor on Nestin+ osteoprogenitors (132, 133).
Although migration of mature leukocyte populations in the
BM is regulated in part by circadian rhythms, a direct role for
circadian influences on BM lymphoid progenitor biology has yet
to be established (134). In humans, there is evidence that
MCAM+CD146+ subendothelial stromal cells express CXCL12
(135). Hematopoietic deletion of CXCR4 results in a reduction of
the BM stem cell pool. Specifically affected are HSCs in close
contact with CXCL12-abundant reticular cells which surround
sinusoidal endothelial cells in the BM (136). CXCR4 has also
been shown to regulate the integrity of the vascular barrier in the
BM, which further modulates hematopoietic trafficking (137).
Work in multiple cell types has revealed dynamic regulation of
CXCR4 by the Notch pathway in both mouse and human
mesenchymal and endothelial cells (138–142). In the BM,
Notch2 has been shown to directly activate CXCR4 expression
in HSPCs, while stromal production of CXCL12 has been shown
to play a role in CLP maintenance (143, 144). It should be noted,
however, that blockade with a Notch2 specific antibody yields
only a modest reduction of the CLP population compared to a
30% decrease with antibody blockade of Notch1 (144).
Furthermore, mice expressing CXCR4 mutations derived from
patients with Warts, Hypogammaglobulinemia, Infections, and
Myelokathexis (WHIM) syndrome, which prevent receptor
internalization and desensitization, have decreased LMPP and
CLP populations (145). These findings suggest a potential role
for the CXCR4/CXCL12 axis in the CLP population by placing
the CLP near CXCL12-abundant reticular cells, which have
further been shown to provide CLPs with the pro-lymphoid
cytokine IL7 (72, 126, 146). These observations highlight the
potential for the Notch-CXCR4 pathway in lymphoid progenitor
development and trafficking within the BM niche.

Lineage commitment of BM hematopoietic progenitors is a
complex process involving coordination of cell fate determining
July 2021 | Volume 12 | Article 723055
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transcriptional networks, which contribute to the heterogeneity
of the progenitor pool (44, 86, 147). Given that Notch signaling is
essential in the differentiation and maturation of thymic T cells, a
direct functional role for Notch signaling in the early BM
hematopoietic lineage decisions is a strong possibility (5, 25).
Indeed, Dll4 expressed by vascular cells has been shown to
suppress the myeloid transcriptional program in HSCs (104).
Abrogation of Notch within hematopoietic progenitors leads to
an altered myeloid differentiation program, with an increase in
GMP production at the expense of MEPs and CMPs (19, 148). In
the context of lymphoid progenitors, RNA sequencing has
shown that Notch inhibits the myeloid program in both the
thymic DN1a/b population and the CD62L+PSGL1+CCR9+

subset of LMPPs, which constitutes a putative TSP population
(35, 58). Additionally, deletion of Dll4 in Ocn+ BM osteoblasts
yields specific depletion of the T lineage primed Ly6D- CLP
population, hinting at a role for endosteal Notch signaling in
influencing B cell vs T cell fates in BMCLPs (34, 73). Such a role has
also been established in the thymus, as thymocyte Notch signaling
inhibits expression of B-lineage specific factors EBF1 and Pax5 (80).
Taken together, there are likely multiple distinct roles for the Notch
pathway in the priming and generation of lymphoid progenitors in
the BM, including activation of receptors involved in niche
trafficking and repression of alternative lineage potential.
NOTCH IN BM LEUKEMIC NICHE

Notch signaling has been implicated in progression of various
types of cancer, including Acute Lymphoblastic Leukemia (ALL)
(149). Notch signaling plays a well-established role in T-cell
acute lymphoblastic leukemia (T-ALL), which is a neoplasm of
T-cell blasts accounting for 25% of adult ALL (150). Greater than
60% of patient samples contain mutations in the Notch pathway,
with several gain of function mutations in the Notch1 gene, and
inactivating mutations in negative regulators of Notch signaling,
including FBW7 (151–158). Notch3, which is a Notch1 target
gene, has also been shown to play a role in T-ALL (159–161).
Mechanisms of Notch signaling in T-ALL oncogenesis include
promotion of anabolic cell growth and chemoresistance,
activation of the PI3K-AKT-mTOR pathway, and induction of
genes involved in G1/S cell cycle progression (158, 162, 163).
Notch has also been implicated in B cell leukemias. Hyperactive
Notch1 and Notch2 have been shown to sustain B cell Chronic
lymphocytic leukemia (B-CLL) (164–167). Conversely, all Notch
receptors and the Notch target Hes5 have been shown to act as
tumor suppressors in B cell ALL (B-ALL). Even so, Notch3 and
Notch4 can prevent apoptosis of human B-ALL cells cultured on
human stromal cells ex vivo (168–170).

In the context of the BMmicroenvironment, leukemic cells have
been shown to modulate the hematopoietic niche to form a pro-
leukemic microenvironment at the expense of homeostatic
hematopoiesis (Figure 2) (171). Interestingly, and unlike
homeostatic lymphoid progenitors, Notch driven T-ALL cells are
notmaintainedbya specificBMniche, but lead to remodelingof the
endosteal niche and loss of osteoprogenitors (172). Such
Frontiers in Immunology | www.frontiersin.org 6
remodeling leads to perturbations in BM hematopoiesis,
including reduced quiescence of HSCs and more severe leukemia
progression (173). Additionally, a multitude of cell extrinsic
signaling molecules have been implicated in the pathogenesis of
T-ALL (174). The CXCL12/CXCR4 pathway is involved in homing
of T-ALL cells to the bone marrow and in Leukemia Initiating Cell
(LIC) activity (175). LICs propagate leukemia progression via their
ability to both self-renew and produce clonal daughter blasts (176).
Similarly to homeostatic HSPCs, T-ALL cells are subject to
increased CXCR4 expression and activity downstream of Notch
activation (144, 175, 177, 178). In human Chronic Lymphoid
Leukemia (CLL) and Multiple Myeloma (MM), CXCR4 is also a
direct transcriptional target of Notch1 (179, 180). Furthermore,
CXCL12 receptor CXCR7 has been shown to be transcriptionally
activated by Notch signaling in T-ALL and potentiates CXCR4
signaling and migration (181, 182). This pathway has become
clinically relevant since CXCR4 inhibition has shown therapeutic
potential in T-ALL (183). Specifically, direct CXCR4 antagonism
prevents migration of CD4+/CD8+ leukemic cells from the thymus
to the bone marrow in hypermorphic Notch3 transgenic mice
(178). Furthermore, CXCR4 deletion in Notch1-induced T-ALL
cells or CXCL12 deletion in endothelial, but not perivascular cells,
limits T-ALL progression in mice through induction of cell death
(177, 183). Thus, the CXCR4/CXCL12 axis, regulated in part by a
hyperactive Notch pathway, is involved in the homing and
progression of several leukemia subtypes in the BM niche.

IL7 signaling is critical for lymphopoiesis and, in the context of
T-ALL, itplaysa role in activationof the JAK/STAT5andPI3K/Akt/
mTORpathways, with 10% of patient leukemia samples containing
activating IL7r mutations (184–186). Stromal derived IL7 has been
shown to activate the PI3K/Akt pathway, which is the dominant
pathway mediating the proliferative and pro-survival signals
downstream of IL7 in T-ALL cells (187–189). Notch1 activates
IL7r transcription inhumanhematopoietic progenitors, aswell as in
murine leukemia cells (190–192). Additionally, in a human T cell
leukemiacell line, IL7rhas been shown tobedirectly co-regulatedby
Notch1 and RUNX1 (182). Thus, hyperactive Notch signaling
contributes to the IL7 dependent proliferation of BM T-ALL cells.
Another growth factor involved inBM lymphopoiesis is Insulin-like
growth factor 1 (IGF1), which is released from osteoblasts,
osteoclasts, and stromal cells in BM and is critical for bone growth
(193, 194). Bone marrow levels of IGF1 decrease with age, resulting
in increased myeloid bias of HSCs, while temporary IGF1
stimulation of murine hematopoietic progenitors ex vivo
promotes lymphoid differentiation post-transplant in recipient
mice (195). Notch1 has been shown to directly activate expression
of Insulin-like growth factor 1 receptor (IGF1R) in T-ALL, which
contributes to leukemia survival through the PI3K/Akt pathway
(196, 197). IGF1R inhibition yields therapeutic benefits in several
solid tumor types and leukemias (198). However, not all T-ALL cell
lines are sensitive to IGF1R inhibition, with co-expression of surface
IGF1R and tumor-suppressor PTEN indicating IGF1 dependence
(196, 199). Interestingly,miR-233has alsobeenshown tobe aNotch
target which separately regulates IGF1R expression via targeting of
the 3′ UTR and reduction of IGF1R protein levels in T-ALL (200).
Taken together, Notch signaling in T-ALL allows for optimal
July 2021 | Volume 12 | Article 723055
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signaling of BM derived growth factors, through regulation of
their receptors.

Another important, though understudied, component of the BM
niche is the extra-cellular matrix (ECM), which has been proposed
to regulate both HSPCs and leukemia cells (201–204). The ECM is a
vital component of structural and signaling mechanisms in all
tissues and consists of collogens, proteoglycans, and glycoproteins
(205–207). One protein involved in ECM binding is CD44, which is
a cell adhesion molecule that binds to hyaluronan, fibronectin,
collagen, E-selectin, and is involved in migration of fetal liver HSCs
to the fetal BM (208–212). CD44 is also expressed on adult HSPCs
and is involved in progenitor egress from the bone marrow and
entry into the thymus (213, 214). Conversely, CD44 has been
proposed to play a role in HSPC retention and quiescence, and
contributes to apoptosis resistance in LICs (215). A potential
mechanism of CD44 mediated chemoresistance in leukemia is
through induction of drug efflux (216). In human T-ALL, CD44
has been proposed as a target of Notch1 and suggested to be
required for BM engraftment of early leukemic cells (217).
Additionally, CD44 can be used as a marker of LICs and is
positively regulated by Notch signaling (218). In many tissues,
Frontiers in Immunology | www.frontiersin.org 7
additional ECM components have been shown to influence
Notch activity, and there is cross-talk between ECM mediated
signaling pathways and Notch (219). Microfibril Associated
Glycoprotein-2 (MAGP-2) is found in elastic fibrils and has been
shown to regulate Notch activity in COS cells and endothelial cells
via binding to Notch1 Epidermal Growth Factor (EGF) repeats
(220–222). The Cyr61, CTGF, and NOV, (CCN) family of ECM
proteins influence osteogenesis and angiogenesis by binding to and
enhancing Notch1 signaling (223–226). Additionally, Epidermal
Growth Factor-Like Protein 7 (EGFL7), which is secreted by
endothelial cells into the vascular microenvironment, regulates
angiogenesis in part through antagonization of Notch signaling
(227–230). These findings support the need for further exploration
into the cross-talk and direct regulation between ECM components
and the Notch pathway in T-ALL.
CONCLUDING REMARKS

This review serves to highlight recent work which describes a
pre-thymic niche in the BM where Notch signaling influences
FIGURE 2 | Notch driven mechanisms of T-ALL in the lymphoid niche. Hypermorphic Notch signaling promotes T-ALL progression and amplification of pathways
involved in early BM lymphopoiesis. Growth factor signaling from IL7 and IGF1 are augmented via Notch driven expression of IL7r and IGF1R. CXCR4 and CD44
promote maintenance of LIC blasts in the BM microenvironment.
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lymphoid, and specifically T cell, development. BM lymphoid
progenitors receive Notch signals primarily in the osteoblastic
niche, which also provides important signals involved in
lymphoid development, including CXCL12, IL7, and SCF.
Mechanisms of pre-thymic Notch signaling in BM lymphoid
development include induction of molecules involved in bone
egress and thymus migration. Ultimately a key outcome of this
Notch signaling agenda is the early repression of the myeloid
transcriptional program. However, while we know that Notch is
active and functions in the BM, the downstream target genes of
Notch activation in BM lymphopoiesis, particularly with respect
to proliferation and survival, have yet to be fully established. We
also examined the roles for aberrant Notch signaling in the BM
migration, maintenance, and proliferation of T-ALL. Taken
Frontiers in Immunology | www.frontiersin.org 8
together, the works described here underscore the need for
careful study of BM Notch signaling in lymphoid hematopoiesis.
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