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A B S T R A C T   

Our prophase studies have manifested that the sweet triterpenoid glycoside from the leaves of Cyclocarya paliurus 
(CPST) effectively improved the disorders of glucolipid metabolism in vitro and in patients. The current purpose 
was to further detect its mechanisms involved. The results demonstrated that CPST could ameliorate high-fat diet 
(HFD)-induced insulin resistance (IR), which was linked to reducing HFD-induced mice’s body weight, serum 
glucose (GLUO), triglyceride (TG), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C), 
lowering the area under the oral glucose tolerance curve and insulin tolerance, elevating the percentage of brown 
adipose, high-density lipoprotein cholesterol (HDL-C), reducing fat droplets of adipocytes in interscapular brown 
adipose tissue (iBAT) and cross-sectional area of adipocytes. Further studies manifested that CPST obviously 
downregulated TLR4, MyD88, NLRP3, ASC, caspase-1, cleased-caspase-1, IL-18, IL-1β, TXNIP, and GSDMD 
protein expressions and p-NF-кB/NF-кB ratio in iBAT. These aforementioned findings demonstrated that CPST 
ameliorated HFD induced IR by regulating TLR4/NF-κB/NLRP3 signaling pathway, which in turn enhancing 
insulin sensitivity and glucose metabolism.   

1. Introduction 

Nowadays, with the gradual improvement of the national living 
standard and the acceleration of the pace of life, the modern lifestyle of 
high intake and low consumption have become very widespread (He 
et al., 2020). As a result, dietary obesity and various metabolic diseases 
caused by it, such as insulin resistance (IR), type 2 diabetes (T2D) 

(Tanase et al., 2020), non-alcoholic fatty liver, atherosclerosis, hyper-
tension, etc., are becoming the main threat to peopleʼs health world-
wide, which is closely related to the excessive accumulation of adipose 
tissue and energy imbalance (Natur et al., 2022; Rangel-Azevedo et al., 
2022; Yu et al., 2021). As everyone knows, white adipose tissue (WAT) 
acts as a secretory organ to regulate insulin sensitivity and maintain 
energy metabolic homeostasis, while brown adipose tissue (BAT) is an 
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energy-consuming tissue which maintains body temperature and energy 
homeostasis through thermogenesis (Boström et al., 2012; Kim et al., 
2022; Wu et al., 2012; Xuan et al., 2022). Recent studies have revealed 
that their distributions are not independent of each other, many stimuli, 
such as cold and agonists, can promote the transformation of WAT into 
BAT, also named white adipocyte browning (Jiang et al., 2022; Scarano 
et al., 2021). The white adipocytes browned has a high thermogenic 
efficiency, which can rapidly consume energy and promote lipid meta-
bolism, so accelerating the browning process of WAT is considered a 
new strategy for the effective treatment of obesity (Monfort-Pires et al., 
2022). 

An increasing body of evidence suggests that the adipose tissue is 
considered to be one of the most important endocrine organs involved in 
the regulation of the inflammatory response, closely related to the 
inflammation caused by obesity (Gonzalez-Muniesa et al., 2017; Jor-
quera et al., 2021; Kojta et al., 2020), which is the main cause of IR and 
other obesity related metabolic diseases (Roberts-Toler, O’Neill and 
Cypess, 2015). In recent years, scholars have found that the activated 
toll like receptor 4/nuclear factor κB/NOD like receptor protein 3 
(TLR4/NF-κB/NLRP3) signaling pathway plays an extremely important 
role in the inflammatory activation of adipose tissue and the expression 
and secretion of inflammatory mediators and inflammatory factors 
(Griffin et al., 2018; Lu et al., 2022; Sánchez-Tapia et al., 2019). On the 
one hand, a large number of fat factors and saturated fatty acids 
generated in patients of obesity-induced IR can boost TLR4, and promote 
NF-κB activation, increase the expressions of tumor necrosis factor-α 
(TNF-α) and interleukin-1β (IL-1β), etc. proinflammatory cytokines in 
WAT/BAT promote the formation of WAT, and affect glucose uptake and 
fatty acid metabolism (Benomar et al., 2016; Kumari et al., 2016; 
Ono-Moore et al., 2017); On the other hand may activate NLRP3 
inflammasome, and its activation lead to activation of caspase-1 and 
releases of IL-1β and IL-18. All of these indicated that the related protein 
expressions of NLRP3 inflammasome were significantly elevated in ad-
ipose tissue from obese, dyslipidemic, and diabetic patients and posi-
tively correlated with the severity of IR (Jourdan et al., 2013; Zhang 
et al., 2021). Therefore, promoting the browning of WAT to BAT and 
intervening the TLR4/NF-κB/NLRP3 signaling pathway in BAT of 
obesity-induced IR patients is of great significance in regulating dysli-
pidemia and improving the inflammatory state of adipose tissue for the 
prevention and treatment of obesity-induced IR. 

Cycocarya paliurus (Batal) Iljinskaja (C. paliurus), also known as 
“sweet tea tree”, “money tree”, is a deciduous tree of the genus Cyco-
carya in the dicotyledonaceae family and a monocotyledonous genus 
endemic to China, as well as a new food raw material recognized by the 
National Health Commission (Liu et al., 2017, 2018). According to the 
records in “Chinese Traditional Medicine Resources”, the leaves, bark, 
and roots of C. paliurus can be used as traditional Chinese medicine, 
which is warm, pungent, and slightly bitter, and has the function of 
clearing heat, reducing swelling and relieving pain, and can be used to 
treat ringworm. Because of the sweet taste of its leaves, as well as its 
excellent effect on lowering lipids, sugar and blood pressure, it is known 
as “divine tea”, and the “third tree” in the medical field. Studies on 
chemical constituents demonstrated its main components are triterpe-
noids, flavonoids, polysaccharides, phenylpropionic acid, and so forth, 
which has the traditional effect of dispelling wind and relieving itching 
(Wang et al., 2018; Xiong et al., 2018; Zhao et al., 2022). Modern 
pharmacological researches have demonstrated that C. paliurus is used 
to treat diabetes, hyperlipidemia, hypertension and other three high 
diseases. At the same time, it also has the effects of pain relief, 
anti-inflammatory, anti-tumor, and improving immunity (Fang et al., 
2019; Feng et al., 2021; Lin et al., 2021; Liu et al., 2020; Zhao et al., 
2021; Wang et al., 2016; Wang et al., 2022; Wang et al., 2020; Wu et al., 
2020; Wu et al., 2021). Our prophase studies have manifested that the 
sweet triterpenoid glycoside from the leaves of C. paliurus (CPST) 
revealed good therapeutic effects on the disorders of glucolipid meta-
bolism in vitro and in patients, and further verified that inhibiting the 

abnormal expression and secretion of inflammatory mediators and in-
flammatory factors were closely related to ameliorating obesity-induced 
IR (Qin et al., 2016; He et al., 2021a,b; He et al., 2021; Zhou et al., 
2016). However, its potential molecular mechanisms have not been fully 
enlightened. 

Based on the central player of TLR4/NF-κB/NLRP3 inflammatory 
pathway in ameliorating obesity-induced IR, and therapeutic effects on 
the disorders of glucolipid metabolism in our prophase studies, the 
current study was to further detect its therapeutic effects on BAT in 
obesity-induced IR mice, and its potential mechanisms through modu-
lating TLR4/NF-κB/NLRP3 signaling pathway, which would lay a 
foundation for expanding the application range of the leaves of 
C. paliurus and developing sophisticated products in the future. 

2. Materials and methods 

2.1. Plant material 

C. paliurus leaves in April 2021 were purchased from Quanzhou 
Qingqianliu Planting Base (Guangxi, China), and were identified by 
professor Yubing Wang, China Three Gorges University. Voucher spec-
imens (2021-0426) are deposited in the Yichang Key Laboratory of 
Development and Utilization of Health Products with Drug and Food 
Homology, College of Biological and Pharmaceutical Sciences, China 
Three Gorges University. 

2.2. Reagents 

All solvents used for the extraction and analysis of CPST in our study 
were of analytical grade and obtained from Sinopharm Chemical Re-
agent Co., Ltd (Shanghai, China). Agilent XB C18 column was purchased 
from Agilent Technologies, USA. RIPA lysate, phosphatase inhibitors 
and PMSF were obtained from Beijing Solarbio Science Technology Co., 
Ltd. (Beijing, China). BCA protein concentration determination kit was 
purchased from Beyotime Biotechnology (Nanjing, China). Rabbit anti 
mouse myeloid differentiation primary response gene 88 (MyD88), NF- 
ĸBp65, p-NF-кBp65, NLRP3, apoptosis associated speck like protein 
containing CARD (ASC), caspase-1, cleaved caspase-1, IL-18, IL-1β, 
gasdermin-D (GSDMD) and uncoupling protein 1 (UCP1) were obtained 
from Cell Signaling Technology (MA, USA). Rabbit anti mouse 
thioredoxin-interacting protein (TXNIP) was purchased from Affinity 
Bioreagents (MA, USA). Rabbit anti-mouse TLR4 and β-actin were ob-
tained from AB clonal Biotechnology (Wuhan, China). All primary 
antibody dilutions were 1:1000. WesternBright ECL prime detection 
reagent, SDS-PAGE gel kit, PVDF membrane were obtained from Bosh-
ide Biotechnology Company (Wuhan, China). Other regents used in the 
present study were of analytical grade. 

2.3. Extraction of CPST 

5.0 kg of dry C. paliurus leaves were accurately weighed, and added 
50.0 L of lime water with a pH of 13, was soaked at room temperature for 
1 h, filtered, and discarded. Washing the filtrate with clean water three 
times until the pH test paper was neutral. Then, 20 times 70% ethanol 
was added for reflux extraction for 2 h and repeated four times. The 
liquid after centrifugal filtration is the ethanol extract, and eluting it 
with ten times water of the column volume, 20% ethanol, and 80% 
ethanol through the macroporous adsorption resin (Brand: X-5, speci-
fication: 500 g, loading amount: 4.0 L, size: diameter 100 mm, length 
800 mm). We collected the 80% ethanol eluent and recovered the 
ethanol under pressure to obtain the 80% ethanol elution site. Then the 
parts were dispersed with 1.0 L water and extracted with 4.0 L ethyl 
acetate. After recovering the solvent, we obtained the ethyl acetate parts 
that we defined as CPST. 
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2.4. Pterocaryoside B determination in CPST 

In our previous research, we isolated and identified a monomeric 
compound from the CPST as pterocaryoside B with strong sweetness, 
which is structurally characterized by a dammarane-type triterpene 
parent nucleus with a 2,3-position cleavage ring, containing two un-
saturated double bonds and connected to an is arabinose ligand, 
consistent with the characteristics of the main component contained in 
the defined C. paliurus sweet triterpenoid. Therefore, this paper deter-
mined the content of pterocaryoside B by high performance liquid 
chromatography (HPLC) for the CPST prepared by the above means. The 
analysis of the plant extracts was performed according to a previously 
reported method with minor modifications. Briefly, the appropriate 
amounts of CPST samples were weighed separately and precisely into 
conical flasks, sonicated with chromatographic grade methanol for 1 h, 
weighed for mass, sonicated for 1 h, cooled to room temperature and 
weighed for mass, methanol was added dropwise to make up the mass 
reduced by volatilization due to sonication, filtered through a micro-
porous membrane (0.45 μm), and the renewed filtrate was taken to 
obtain the CPST test solution. HPLC analysis was implemented on an XB 
C18 column (4.6 mm × 250 mm, 5 μm. The flow rate: 1.0 mL/min, 
column temperature: 30 ◦C, the detection wavelength: 205 nm). The 
mobile phase is composed of solvent A (0.1% phosphoric acid-water) 
and solvent B (acetonitrile). Gradient method: 0 min: 10% B, 5 min: 
10% B, 20 min: 30% B, 30 min: 45% B, 60 min: 55% B, 70 min：80% B, 
80 min: 80 % B. The eluent was detected and measured as follows: de-
tector, Alltech 3300 Evaporative Light Scattering Detector (ELSD, 118 
Alltech, Chicago, IL, USA), ELSD drift-tube temperature was set to 80 ◦C, 
nitrogen flow rate, 2.0 mL/min. 

2.5. Animals and diets 

Male C57BL/6 J mice (four weeks old) supplied by Laboratory Ani-
mal Center of China Three Gorges University (Yichang, China), were 
used for the present study. The experimental mice were housed under a 
12 h light/dark cycle and temperature and humidity controlled 

environment, and food and water were supplied ad libitum, whose 
welfare and experimental procedures were carried out in accordance 
with the National Institutes of Health (Bethesda, Maryland, USA) and 
the related ethical regulations of China Three Gorges University. The 
experimental protocols were agreed by the Animal Ethics and Welfare 
Committee of China Three Gorges University (Permission number: 
CTGUAEWC-2021-085). 

After a week of adaptation, the mice were randomized into five 
groups with 10 mice in each group including control group, high-fat diet 
(HFD) group (Model), HFD + CPST 25 mg/kg group (CPST-25 mg/kg), 
HFD + CPST 50 mg/kg group (CPST-50 mg/kg), HFD + CPST 100 mg/ 
kg group (CPST-100 mg/kg), All drugs were administered by gavage. 
Mice in the control group were fed a regular diet for 8 months. In the IR 
and drug-treated groups, with a HFD for a similar period. In addition, 
giving the drug group daily therapeutic doses of CPST based on their 
body weight. The body weight and food intake of mice were monitored 
daily. We measured the IR levels 2 weeks before execution. The HFD 
feeding consists of 53% regular feed, 20% fructose, 5% cholesterol, 20% 
lard, 1% salt, 0.25% sodium chloride, and it was irradiated for 
sterilization. 

2.6. Glucose and insulin tolerance test 

For oral glucose tolerance test (OGTT), after mice fasted for 16 h, 
body weight was weighed and recorded, and the volume of 20% glucose 
was calculated for each mouse by oral gavage at 2.0 g/kg, and the 
amount of glucose (mL) = body weight × 0.01. Blood was collected from 
the tail tip to measure fasting blood glucose concentration (t = 0), fol-
lowed by gavage of 20% glucose solution, and blood glucose concen-
tration was measured at different periods until the mice’s blood glucose 
returned to 0 min when the measurement was stopped. For insulin 
tolerance test (ITT), briefly, mice were injected with insulin at 0.75 U/kg 
intraperitoneally after 4 h of fasting, and other treatments were the same 
as OGTT (Attia et al., 2019; Nagata et al., 2017). 

Fig. 1. The chromatogram and chemical structures of pterocaryoside B obtained from C. paliurus leaves. (A)The HPLC analysis of CPST, position P is pterocaryoside 
B. (B) Chemical structures of pterocaryoside B. 
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2.7. Serum assays 

On the next day after the last administration, the experimental mice 
were anesthetized with pentobarbital sodium (50 mg/kg, i. p.), and 
blood samples were collected. The serum samples were acquired from 
blood and allowed to stand for 1 h at room temperature, followed by 
centrifugation (2000 rpm, 15 min). Aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), creatinine (Crea), Urea nitrogen (Urea), 
GLUO, TG, T-CHO, HDL-C and LDL-C levels were measured with an 
automated clinical chemistry analyzer ADVIA-2400 (Siemens AG, 
German) according to the instructions. 

2.8. BAT histopathology analysis and adipocyte cross-sectional area 
statistics 

After collected the bloods, the experimental mouse was sacrificed, 
and the interscapular BAT (iBAT) was removed. The iBAT sample 
selected from each iBAT of the experimental mouse was fixed in 4% 
paraformaldehyde, dehydrated in gradient alcohol, transparent in 
xylene, paraffin-embedded sections with a thickness of 4 μm, then 
routinely stained with hematoxylin and eosin (H&E), sealed, and 
observed under the light microscope. Ten adipocytes were randomly 
selected under the same field of view, calculated their cross-sectional 
areas for statistical analysis (Kim et al., 2022). The residual iBATs 

were preserved at − 80 ◦C for molecular analyses. 

2.9. Western blot analysis 

The total proteins of the iBAT were extracted by using protein 
extraction kits, and the protein content was measured by Multifunc-
tional Enzyme Labeler (TECAN, Switzerland). Forty micrograms of tis-
sue protein were transferred to PVDF membrane, and the blots were 
probed with primary antibodies against TLR4, MyD88, NF-кB, p-NF-кB, 
NLRP3, ASC, caspase-1, cleaved caspase-1, IL-18, IL-1β, TXNIP, GSDMD, 
UCP1 and β-actin at 4 ◦C overnight and then incubated with secondary 
antibody. The blots were developed using the ECL detection kit. Quan-
titative analysis was executed by using Image J Morphology Analysis 
System (National Institute of Health, USA), and molecular expressions 
were normalized to β-actin (Wen et al., 2011). 

2.10. Statistical analysis 

The results were expressed as mean ± SD. Data were analyzed with 
SPSS 21.0 software version (SPSS Inc., Chicago, IL, USA) and GraphPad 
Prism 8.0.1 (Graph-Pad Software, Inc., San Diego, CA, USA), and one- 
way analysis of variance (ANOVA) was used for multi group compari-
son. Differences were considered statistically significant at P values less 
than 0.05. 

Fig. 2. Effect of CPST on body weight and iBAT index in the HFD mice (A) Body weight curve of mice on normal or HFD. (B) The proportion of iBAT in the overall 
body weight of mice. The data were shown as the mean ± SD (n = 10). #P < 0.05, ##P < 0.01 vs. the control group. *P < 0.05, **P < 0.01 vs. the model group. 

Fig. 3. Effect of CPST on the serum biochemical indexes of the HFD mice. (A–B) ALT and AST of the HFD mice. (C–I) Urea, Crea, GLUO, TG, T-CHO, HDL-C, LDL-C 
indexes of the HFD mice. The data were shown as the mean ± SD (n = 10). #P < 0.05, ##P < 0.01 vs. the control group. *P < 0.05, **P < 0.01 vs. the model group. 
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3. Results 

3.1. Phytochemical analysis of CPST 

Our previous verified that pterocaryoside B existed in the CPST, and 
Fig. 1A manifested its spectrum. The chromatographic peak corre-
sponding to the composition at a retention time of 51 min was calibrated 
by pterocaryoside B control, as indicated at position P in the drawing. In 
Fig. 1B, the chemical structure formula of pterocaryoside B was placed, 
which was a moderately weak polar triterpenoid saponin with a mo-
lecular weight of 621.40026 and a strong sweet taste. The results 
demonstrated that the peaks in the retention time range of 40~65 min 
represented by pterocaryoside B. The content of it in CPST was deter-
mined, and the results manifested that the level of pterocaryoside B was 
177.44 mg/g. 

3.2. Effect of CPST on body weight and adipose tissue index in the HFD 
mice 

To evaluate the effect of CPST on HFD mice, we fed all mice with a 
HFD except control group. The administration group was given corre-
sponding concentration of CPST by gavage. Over 8 months, their body 
weight changes from 0 to 28 weeks were calculated, as illustrated in 
Fig. 2A. Compared with the control group, the body weight of the mice 
in the model group was significantly more elevated, and their growth 
rate was higher than the control group notably (P < 0.01, respectively). 
After the treatment with CPST, the body mass decreased sequentially 
with growing doses, and the body weight growth rate declined 

enormously compared with the model group (P < 0.05 or P < 0.01, 
respectively). It was interesting to see the percentage of the different 
groups. As shown in Fig. 2B, the iBAT in the mice fed with HFD was 
remarkably lower than that of the control group (P < 0.01, respectively). 
After the administration of CPST treatment, the iBAT indexes were 
obviously reversed compared with the model group (P < 0.05 or P <
0.01, respectively). 

3.3. Effect of CPST on serum biochemical index in the HFD mice 

After 8 months of feeding, executed the mice, and collected the 
serum for biochemical analysis to observe the effects treated with HFD 
and CPST on the liver and kidney functions of mice, and to verify 
whether the IR model was successfully established, and investigate 
whether experiment drug can lower lipids and glucose. As shown in 
Fig. 3, the serum AST, ALT, Urea, and Crea levels of mice in the model 
group demonstrated no noteworthy changes compared with the control 
group. GLUO, LDL-C, TG, and CHOL levels were substantially higher 
than those in the control group (P < 0.01, respectively). In contrast, 
HDL-C was significantly lower than that of the control group (P < 0.01). 
Abnormal changes of the aforementioned indicators were dramatically 
reversed after the administration of CPST (P < 0.05 or P < 0.01, 
respectively). 

3.4. Effect of CPST on glucose and insulin tolerance in the HFD mice 

According to the literature research, OGTT and ITT are the classic 
methods for assessing the ability of glucose metabolism (Attia et al., 

Fig. 4. Effects of CPST on glucose tolerance, insulin sensitivity and hyperglycemia levels in the HFD mice. (A) OGTT: Blood glucose levels were measured in mice. (B) 
AUC of the mean glucose levels after feeding glucose. (C) ITT: Blood glucose levels were measured in mice. (D) AUC of the mean glucose levels after insulin injection. 
The data were shown as the mean ± SD (n = 10). #P < 0.05, ##P < 0.01 vs. the control group. *P < 0.05, **P < 0.01 vs. the model group. 
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2019). Therefore, to test whether the model of IR was successfully 
established, we carried out OGTT and ITT on C57BL/6 mice, plotted the 
related curves, and subsequently calculated their area under the curve 
(AUC) (Xu et al., 2016). As demonstrated in Fig. 4A, we noticed that 
after 30 min of oral glucose, the blood glucose of control mice reached 
its summit. It is proverbial that the body regulates the utilization of 
glucose by peripheral target organs through the secretion of insulin, so 
orally absorbed glucose will gradually metabolize, and glucose levels 
will drop to the initial range over time. As shown in Fig. 4B, IR mice 
achieved a peak of 15 min of oral glucose, and their glucose levels were 

higher than those in the control group (P < 0.01). The area under the 
OGTT curve in the CPST groups indicted a dose-dependent downturn 
trajectory (P < 0.05 or P < 0.01, respectively). For ITT, as indicated in 
Fig. 4C, after injecting insulin into control mice, the glucose level 
dropped quickly, and then the blood glucose returned to normal level. In 
the model group, it decreased gradually and reached the trough value 
within 30 min. In terms of the AUC for ITT, as shown in Fig. 4D, the 
results were consistent with OGTT (P < 0.05 or P < 0.01, respectively). 
The data of OGTT and ITT manifested that CPST might ameliorate in-
sulin sensitivity and glucose metabolism. 

Fig. 5. Effect of CPST on macroscopic and microscopic histopathology of mice. (A) Representative images of hematoxylinoscopic histopat iBAT (scale bar = 100 μm). 
(B) Cross-sectional area of adipocytes by H&E staining statistics. The data were shown as the mean ± SD (n = 10). #P < 0.05, ##P < 0.01 vs. the control group. *P <
0.05, **P < 0.01 vs. the model group. 

Fig. 6. The expression of the TLR4/NF-кB/NLRP3 inflammasome signaling pathway in iBAT. The protein expression of TLR4, MyD88, NF-κB, p-NF-κB, NLRP3, ASC, 
caspase-1, cleaved caspase-1, IL-18, IL-1β, TXNIP, GSDMD and UCP1 were detected in iBAT from each group mice. The data were shown as the mean ± SD (n = 4). 
#P < 0.05, ##P < 0.01 vs. the control group. *P < 0.05, **P < 0.01 vs. the model group. 
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3.5. Effect of CPST on iBAT in the HFD mice 

To observe the changes in iBAT in IR mice, we treated the slices of 
iBAT, then H&E staining, and observed under a microscope if they had 
the typical morphology and size changes following the development of 
IR. As shown in Fig. 5A, in the control group, all brown adipocytes were 
multilocular, no unilocular lipid droplet adipocytes were seen, and the 
adipocytes were densely distributed, while in the model group, a large 
number of unilocular adipocytes were distributed in brown adipocytes, 
and a round lipid droplet was found in the center of the cell, the iBAT 
was “whitening” seriously, accompanied by inflammatory infiltration, 
and the fat droplets were significantly larger compared with the control 
group (P < 0.01). After treatment with CPST, the number of unilocular 
adipocytes and the volume of lipid droplets was effectively suppressed, 
iBATs “whitening” and inflammatory infiltration were effectively alle-
viated, which was further confirmed after calculating their adipocyte 
cross-sectional area (P < 0.05 or P < 0.01, respectively) (Fig. 5B). 

3.6. Effect of CPST on TLR4/NF-кB/NLRP3 inflammasome signaling 
pathway in the HFD mice 

It has recently found that the inflammatory activation of adipose 
tissue and the expression and secretion of inflammatory mediators and 
inflammatory factors play an extremely important role in IR, while 
TLR4/NF-κB/NLRP3 inflammasome signaling pathway is closely related 
to this process (Sánchez-Tapia et al., 2019; Lu et al., 2022). After con-
firming CPST improves IR of the HFD mice, we next explored its po-
tential mechanism through the signaling pathway. As the results shown 
in Fig. 6A–B, TLR4, MyD88, p-NF-кB/NF-кB, NLRP3, ASC, caspase-1, 
cleaved caspase-1, IL-18, IL-1β, TXNIP, GSDMD and UCP1 protein ex-
pressions were significantly elevated in iBAT of model group compared 
with control group (P < 0.01, respectively). After treated with CPST, the 
above protein expression levels were remarkably lowered (P < 0.05 or P 
< 0.01, respectively). The present results were compatible with the 
characterization of IR, which demonstrated that the ameliorative effect 
of CPST on IR was associated with the inhibition of the activation of the 
TLR4/NF-кB/NLRP3 inflammasome signaling pathway. 

4. Discussions 

The leaves of C. paliurus is one kind of crop that has unique medicinal 
value and nutritional health care function, which also is a healthy food 
with lots of nutrients. In the folk, it is often used to clear heat, reduce 
swelling, stimulate saliva and quench thirst, and is known as the sugar 
lowering “divine tea”. Enlightened by these, we researched the 
structure-activity relationships and screened CPST for improving the 
disorders of glucolipid metabolism and relieving IR, and found that 
CPST was the most abundant ingredient and major active component in 
leaves of C. paliurus, which was divided into dammarane triterpene and 
3,4-schicyclodane triterpenoids (Qin et al., 2016; He et al., 2021a,b; He 
et al., 2021). In order to further verify its improving the disorders of 
glucolipid metabolism and relieving IR functions, as well as the mech-
anisms involved, we conducted the current study. In this research, our 
results manifested that CPST could ameliorate HFD-induced IR, which 
was linked to reducing HFD-induced mice’s body weight, serum GLUO, 
TG, T-CHO and LDL-C, lowering the area under the oral glucose toler-
ance curve and insulin tolerance, elevating the percentage of brown 
adipose, HDL-C, reducing fat droplets of adipocytes in iBAT and 
cross-sectional area of adipocytes, downregulating TLR4, MyD88, 
NLRP3, ASC, caspase-1, cleaved caspase-1, IL-18, IL-1β, TXNIP, GSDMD 
and UCP1 protein expressions and p-NF-кB/NF-кB ratio in iBAT. Our 
current study manifested that CPST ameliorated HFD-induced IR by 
regulating TLR4/NF-κB/NLRP3 signaling pathway, which in turn 
enhancing insulin sensitivity and glucose metabolism. 

IR is a metabolic disease caused by an impaired response to insulin 
stimulation by insulin-targeted cells such as hepatocytes, skeletal muscle 

cells, and adipocytes, and its clinical manifestation is hyperinsulinemia, 
hyperglycemia, and hyperlipidemia (Lee et al., 2022; Xu et al., 2019). It 
is the basis for the development of T2D, and early intervention of IR is 
currently considered the most effective strategy for the treatment of 
T2D. In recent years, the relationship between inflammation and IR is 
becoming a hotspot in the study of endocrine metabolism (Greenhill, 
2018). Some researchers put forward the “inflammation theory”, which 
suggested that inflammation was the prime mechanism of IR. In type 2 
diabetes mellitus (T2DM) and obese patients, the release of inflamma-
tory factors, such as IL-1β, IL-6, IL-18, TNF-α levels are remarkably 
elevated, leaving the body in a state of chronic inflammation (Al-Daghri 
et al., 2022; Xie et al., 2021). These results suggest that the close rela-
tionship between inflammation and IR, and intervention in inflamma-
tion is a pivotal approach to preventing and treating IR. In the present 
study, we found that the blood GLUO, LDL-C, TG and CHOL levels in the 
model mice were significantly elevated, the content of HDL-C dramati-
cally decreased, the protein expressions of IL-1β, IL-18 in iBAT appar-
ently raised. The results of OGTT and ITT also manifested that the 
insulin sensitivity and glucose metabolism in the model mice were 
significantly suppressed. On the contrary, treatment with CPST might 
efficiently lessen blood GLUO, LDL-C, TG and CHOL levels and the 
protein expressions of IL-1β, IL-18 in iBAT, ascend the blood HDL-C 
level, increase the sensitivity of HFD-induced IR mice to insulin, and 
enhance the metabolic capacity of glucose. The inhibitory effects of 
abnormal hypertrophy of adipocytes and the production of inflamma-
tory markers in iBAT of the CPST treated groups were also similar to it. 
In addition, except HDL-C level, none of the above indexes in each 
treatment group returned to the normal level. The aforementioned re-
sults indicate that CPST could effectively reduce the expression of in-
flammatory factors, augment the metabolisms of blood glucose and 
lipids, and thus ameliorate the IR-induced by HFD. However, it’s ther-
apeutic effect is less effective than the normal diet. 

It is well-known that BAT is the main place of non-trembling ther-
mogenesis in human body, and its main function is to produce heat and 
consume energy. When the body is stimulated by cold or fed, BAT can 
uncouple mitochondrial respiration mediated by UCP1, and use glucose 
and fatty acid as raw materials to generate heat and consume energy 
(Kulterer et al., 2020). Studies have shown that sustained expression of 
UCP1 in brown adipose tissue promotes uptake of plasma TG, while 
inhibiting oxidative stress and improving IR (Cheng et al., 2021; Gaspar 
et al., 2021). From here we see that the heat production, energy con-
sumption and secretion of BAT have many beneficial effects on the 
regulation of glucose and lipid metabolism. Therefore, the effect of BAT 
transplantation on weight loss and improvement of glucose and lipid 
metabolism has become a research focus of recent scholars. Guna-
wardana et al. (Gunawardana and Piston, 2012). found that after sub-
cutaneous transplantation of embryonic mouse BAT into T1DM model 
mice, the fasting blood glucose of mice dramatically decreased, the 
glucose tolerance was ameliorated, the glucose homeostasis was better, 
and the clinical symptoms of polydipsia and polyuria were also mark-
edly improved. Further experiments demonstrated that BAT trans-
plantation might better glucose metabolism, weight loss, elevate insulin 
sensitivity (Scheele and Wolfrum, 2020; Stanford et al., 2013; Villarroya 
et al., 2017). In our study, the multilocular adipocytes, more fat droplets 
in cytoplasm, and the remarkably increased adipocyte cross-sectional 
area were confirmed in the model groupʼs iBAT, which manifested 
that the brown adipocytes were severely damaged and transformed into 
white adipocytes, and the glucose and lipid metabolism were inhibited. 
After treatment with CPST, the transformation of brown adipocytes into 
white adipocytes was effectively reversed, the cross-sectional area of 
brown adipocytes was reduced, and the functions of glucose and lipid 
metabolism were restored. Similar to the previous results, the 
cross-sectional area was return to normal in each group after treatment. 
All the aforementioned aspects were consistent with the melioration of 
GLUO, LDL-C, TG, CHOL and HDL-C levels in the blood and the UCP1 
protein expression in iBAT of HFD mice. 
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Recent studies have found that obese patients are in a low degree of 
chronic inflammation, their adipose tissues have a large number of in-
flammatory cell infiltrating, which leads to adipose tissue and IR (Kunz 
et al., 2021). Shankar and Gunawardana et al. (Gunawardana and Pis-
ton, 2015; Shankar et al., 2019) found that after the mice removed iBAT 
were fed with HFD, their adipose tissues emerged inflammatory cell 
infiltration and elevated serum TNF-α, IL-1β, IL-6 levels, and accompa-
nied by obesity and IR aggravation. On the contrary, after trans-
plantation of iBAT in HFD mice, the number of large adipocytes in 
adipose tissue and the destruction of cell membrane evidently 
decreased, the levels of serum TNF-α, IL-1β, IL-18 were obviously sup-
pressed. The aforementioned results manifested that iBAT might play a 
role in reducing weight and improving IR by reducing inflammation of 
adipose tissue. Further research found that the TLR4, MyD88, p-NF-κB, 
TNF-α, IL-1β, IL-6 protein expressions in iBAT of obese mice induced by 
HFD were noticeably elevated, the apoptosis of brown adipocytes raised. 
In contrast, after the TLR4 gene knockout HFD mice or HFD mice are 
treated by Restortrol, the above protein expressions were significantly 
reduced, and apoptosis was restrained. The experimental results 
demonstrated that TLR4 gene knockout or Restoratrol therapy might 
efficiently alleviate the chronic inflammation of iBAT in obese mice 
induced by HFD and improve IR by restraining TLR4/MyD88/NF-κB 
signaling pathway (Li et al., 2022; Xiao et al., 2011). In addition, the 
downstream NLRP3 inflammasome of this pathway also plays a crucial 
role in lipid metabolism and adipose tissue function, and their excessive 
activation equally leads to adipose tissue inflammation (Unamuno et al., 
2021). Kursawe and Zhang et al. (Kursawe et al., 2016; Zhang et al., 
2018) found that NLRP3, ASC, caspase-1 and IL-1β levels in serum and 
adipose tissue of T2DM patients were dramatically ascended, which 
confirmed that the abnormally generated glucose, FFA, saturated fatty 
acid and other metabolic signal molecules leaded to the excessive pro-
duction of ROS, and induced the separation of TXNIP from thioredoxin 
protein (TRX), which combined with NLRP3 inflammasome, resulted in 
the activation of NLRP3 inflammasome (Murphy et al., 2019). Normally, 
the activated NLRP3 inflammasome acted on adipose tissue, liver, 
skeletal muscle and other tissues. In adipose tissue, NLRP3 

inflammasome activation may induce self-cleavage activation of 
caspase-1 to become cleaved caspase-1. The cleaved caspase-1, cleaved 
Gasdermin D to produce the amino terminal (N-terminal) cleaving 
product GSDMD-N, which was located in the plasma membrane and 
further oligomerized. The formation of pores on the membrane leaded to 
rapid permeability of the plasma membrane, caused membrane 
dysfunction. The activated NLRP3 inflammasome might also interfere 
with the browning of white fat in the body and promote the “whitening” 
of brown fat, increase inflammation of adipose tissue, repress fatty acid 
oxidation, increase fat decomposition, and trigger IR (Benetti et al., 
2013; Murphy et al., 2019). Thus it can be seen that the 
TLR4/NF-κB/NLRP3 inflammasome signaling pathway and related 
proteins play an important role in HFD induced IR and adipose tissue 
inflammation, and regulate this pathway will help to improve 
HFD-induced IR and restore the normal function of iBAT (Reynolds 
et al., 2012). In the present study, we found that the TLR4, MyD88, 
p-NF-кB/NF-кB, NLRP3, ASC, caspase-1, cleaved caspase-1, IL-18, IL-1β, 
TXNIP, and GSDMD protein expressions were dramatically elevated in 
the HFD-induced mouse iBAT. Conversely, CPST might efficiently sup-
press the aforementioned protein expression levels, even if the effect did 
not reach the extent of the control group. These current data manifested 
that ameliorative effect of CPST on HFD-induced IR through inhibiting 
the TLR4/NF-κB/NLRP3 inflammatory signaling pathway. 

5. Conclusion 

The present study authenticated for the first time that CPST 
possessed ameliorative property against HFD-induced IR, and its refor-
mative effects were tightly related with restraining TLR4/NF-κB/NLRP3 
inflammatory signaling pathway, thereby relieving inflammation of 
BATs and improving IR (Fig. 7). These data furnished new slants for 
elucidating the potential mechanism of CPST’s ameliorative effect, and 
it indicated commitment in become a candidate agent to treat IR. 

Fig. 7. Potential molecular mechanism of CPST’s ameliorative effect on obesity-induced IR.  
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Abbreviations 

ALT Alanine aminotransferase. 
ASC Apoptosis associated speck like protein containing CARD. 
AST Aspartate aminotransferase. 
AUC Area under the curve. 
BAT Brown adipose tissue. 
C. Paliurus Cycocarya paliurus (Batal) Iljinskaja. 
CPST Sweet triterpenoid glycoside from the leaves of Cyclocarya 

paliurus. 
Crea Creatinine 
HDL-C High-density lipoprotein cholesterol. 
H&E Hematoxylin and eosin. 
HFD High-fat diet. 
HPLC High performance liquid chromatography 
iBAT Interscapular brown adipose tissue. 
IL Interleukin. 
IR Insulin resistance. 
ITT Insulin tolerance test. 
LDL-C Low-density lipoprotein cholesterol. 
MyD88 Myeloid differentiation primary response gene 88. 
NF-κB Nuclear factor κB. 
NLRP3 NOD like receptor protein 3. 
OGTT Oral glucose tolerance test. 

T2D Type 2 diabetes. 
T2DM Type 2 diabetes mellitus. 
TG Triglyceride. 
TLR4 Toll like receptor 4. 
TNF-α Tumor necrosis factor-α. 
TRX Thioredoxin protein. 
TXNIP Thioredoxin interacting protein. 
Urea Urea nitrogen. 
UCP1 Uncoupling protein 1. 
WAT White adipose tissue. 
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